--- dataset_info: features: - name: task_id dtype: string - name: language dtype: string - name: prompt dtype: string - name: test dtype: string - name: entry_point dtype: string splits: - name: multilingual-humaneval_python num_bytes: 165716 num_examples: 164 download_size: 67983 dataset_size: 165716 license: apache-2.0 task_categories: - text-generation tags: - mxeval - code-generation - mbxp - multi-humaneval - mathqax pretty_name: mxeval language: - en --- # MxEval **M**ultilingual E**x**ecution **Eval**uation ## Table of Contents - [MxEval](#MxEval) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Social Impact of Dataset](#social-impact-of-dataset) - [Executional Correctness](#execution) - [Execution Example](#execution-example) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** [GitHub Repository](https://github.com/amazon-science/mxeval) - **Paper:** [Multi-lingual Evaluation of Code Generation Models](https://openreview.net/forum?id=Bo7eeXm6An8) ### Dataset Summary This repository contains data and code to perform execution-based multi-lingual evaluation of code generation capabilities and the corresponding data, namely, a multi-lingual benchmark MBXP, multi-lingual MathQA and multi-lingual HumanEval.
Results and findings can be found in the paper ["Multi-lingual Evaluation of Code Generation Models"](https://arxiv.org/abs/2210.14868). ### Supported Tasks and Leaderboards * [MBXP](https://huggingface.co/datasets/mxeval/mbxp) * [Multi-HumanEval](https://huggingface.co/datasets/mxeval/multi-humaneval) * [MathQA-X](https://huggingface.co/datasets/mxeval/mathqa-x) ### Languages The programming problems are written in multiple programming languages and contain English natural text in comments and docstrings. ## Dataset Structure To lookup currently supported datasets ```python get_dataset_config_names("AmazonScience/mxeval") ['mathqa-x', 'mbxp', 'multi-humaneval'] ``` To load a specific dataset and language ```python from datasets import load_dataset load_dataset("AmazonScience/mxeval", "mbxp", split="python") Dataset({ features: ['task_id', 'language', 'prompt', 'test', 'entry_point', 'description', 'canonical_solution'], num_rows: 974 }) ``` ### Data Instances An example of a dataset instance: ```python { "task_id": "MBSCP/6", "language": "scala", "prompt": "object Main extends App {\n /**\n * You are an expert Scala programmer, and here is your task.\n * * Write a Scala function to check whether the two numbers differ at one bit position only or not.\n *\n * >>> differAtOneBitPos(13, 9)\n * true\n * >>> differAtOneBitPos(15, 8)\n * false\n * >>> differAtOneBitPos(2, 4)\n * false\n */\n def differAtOneBitPos(a : Int, b : Int) : Boolean = {\n", "test": "\n\n var arg00 : Int = 13\n var arg01 : Int = 9\n var x0 : Boolean = differAtOneBitPos(arg00, arg01)\n var v0 : Boolean = true\n assert(x0 == v0, \"Exception -- test case 0 did not pass. x0 = \" + x0)\n\n var arg10 : Int = 15\n var arg11 : Int = 8\n var x1 : Boolean = differAtOneBitPos(arg10, arg11)\n var v1 : Boolean = false\n assert(x1 == v1, \"Exception -- test case 1 did not pass. x1 = \" + x1)\n\n var arg20 : Int = 2\n var arg21 : Int = 4\n var x2 : Boolean = differAtOneBitPos(arg20, arg21)\n var v2 : Boolean = false\n assert(x2 == v2, \"Exception -- test case 2 did not pass. x2 = \" + x2)\n\n\n}\n", "entry_point": "differAtOneBitPos", "description": "Write a Scala function to check whether the two numbers differ at one bit position only or not." } ``` ### Data Fields - `task_id`: identifier for the data sample - `prompt`: input for the model containing function header and docstrings - `canonical_solution`: solution for the problem in the `prompt` - `description`: task description - `test`: contains function to test generated code for correctness - `entry_point`: entry point for test - `language`: programming lanuage identifier to call the appropriate subprocess call for program execution ### Data Splits - HumanXEval - Python - Java - JavaScript - Csharp - CPP - Go - Kotlin - PHP - Perl - Ruby - Swift - Scala - MBXP - Python - Java - JavaScript - TypeScript - Csharp - CPP - Go - Kotlin - PHP - Perl - Ruby - Swift - Scala - MathQA - Python - Java - JavaScript ## Dataset Creation ### Curation Rationale Since code generation models are often trained on dumps of GitHub a dataset not included in the dump was necessary to properly evaluate the model. However, since this dataset was published on GitHub it is likely to be included in future dumps. ### Personal and Sensitive Information None. ### Social Impact of Dataset With this dataset code generating models can be better evaluated which leads to fewer issues introduced when using such models. ### Dataset Curators AWS AI Labs ## Execution ### Execution Example Install the repo [mxeval](https://github.com/amazon-science/mxeval) to execute generations or canonical solutions for the prompts from this dataset. ```python >>> from datasets import load_dataset >>> from mxeval.execution import check_correctness >>> mbxp_python = load_dataset("AmazonScience/mxeval", "mbxp", split="python") >>> example_problem = mbxp_python[0] >>> check_correctness(example_problem, example_problem["canonical_solution"], timeout=20.0) {'task_id': 'MBPP/1', 'passed': True, 'result': 'passed', 'completion_id': None, 'time_elapsed': 10.582208633422852} ``` ### Considerations for Using the Data Make sure to sandbox the execution environment since generated code samples can be harmful. ### Licensing Information [LICENSE](https://huggingface.co/datasets/AmazonScience/mxeval/blob/main/LICENSE)
[THIRD PARTY LICENSES](https://huggingface.co/datasets/AmazonScience/mxeval/blob/main/THIRD_PARTY_LICENSES) # Citation Information ``` @article{mbxp_athiwaratkun2022, title = {Multi-lingual Evaluation of Code Generation Models}, author = {Athiwaratkun, Ben and Gouda, Sanjay Krishna and Wang, Zijian and Li, Xiaopeng and Tian, Yuchen and Tan, Ming and Ahmad, Wasi Uddin and Wang, Shiqi and Sun, Qing and Shang, Mingyue and Gonugondla, Sujan Kumar and Ding, Hantian and Kumar, Varun and Fulton, Nathan and Farahani, Arash and Jain, Siddhartha and Giaquinto, Robert and Qian, Haifeng and Ramanathan, Murali Krishna and Nallapati, Ramesh and Ray, Baishakhi and Bhatia, Parminder and Sengupta, Sudipta and Roth, Dan and Xiang, Bing}, doi = {10.48550/ARXIV.2210.14868}, url = {https://arxiv.org/abs/2210.14868}, keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` # Contributions [skgouda@](https://github.com/sk-g) [benathi@](https://github.com/benathi)