Datasets:
Delete loading script
Browse files
ASCEND.py
DELETED
|
@@ -1,139 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
""" Common Voice Dataset"""
|
| 16 |
-
|
| 17 |
-
from datasets import AutomaticSpeechRecognition
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
import datasets
|
| 21 |
-
import os
|
| 22 |
-
import pandas as pd
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
_CITATION = """\
|
| 26 |
-
@inproceedings{lovenia2021ascend,
|
| 27 |
-
title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
|
| 28 |
-
author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
|
| 29 |
-
booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},
|
| 30 |
-
publisher = {European Language Resources Association},
|
| 31 |
-
year = {2022},
|
| 32 |
-
pages = {}
|
| 33 |
-
}
|
| 34 |
-
"""
|
| 35 |
-
|
| 36 |
-
_DESCRIPTION = """\
|
| 37 |
-
ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.
|
| 38 |
-
"""
|
| 39 |
-
|
| 40 |
-
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/ASCEND"
|
| 41 |
-
|
| 42 |
-
_URL = "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/"
|
| 43 |
-
_URLS = {
|
| 44 |
-
"train": _URL + "train_metadata.csv",
|
| 45 |
-
"test": _URL + "test_metadata.csv",
|
| 46 |
-
"validation": _URL + "validation_metadata.csv",
|
| 47 |
-
"waves": "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2",
|
| 48 |
-
}
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
class ASCENDConfig(datasets.BuilderConfig):
|
| 52 |
-
"""BuilderConfig for ASCEND."""
|
| 53 |
-
|
| 54 |
-
def __init__(self, name="main", **kwargs):
|
| 55 |
-
"""
|
| 56 |
-
Args:
|
| 57 |
-
**kwargs: keyword arguments forwarded to super.
|
| 58 |
-
"""
|
| 59 |
-
super(ASCENDConfig, self).__init__(name, **kwargs)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
class ASCEND(datasets.GeneratorBasedBuilder):
|
| 63 |
-
"""ASCEND: A Spontaneous Chinese-English Dataset for code-switching. Snapshot date: 5 January 2022."""
|
| 64 |
-
|
| 65 |
-
BUILDER_CONFIGS = [
|
| 66 |
-
ASCENDConfig(
|
| 67 |
-
name="main",
|
| 68 |
-
version=datasets.Version("1.0.0", ""),
|
| 69 |
-
description=_DESCRIPTION,
|
| 70 |
-
)
|
| 71 |
-
]
|
| 72 |
-
|
| 73 |
-
def _info(self):
|
| 74 |
-
features = datasets.Features(
|
| 75 |
-
{
|
| 76 |
-
"id": datasets.Value("string"),
|
| 77 |
-
"path": datasets.Value("string"),
|
| 78 |
-
"audio": datasets.Audio(sampling_rate=16_000),
|
| 79 |
-
"transcription": datasets.Value("string"),
|
| 80 |
-
"duration": datasets.Value("float32"),
|
| 81 |
-
"language": datasets.Value("string"),
|
| 82 |
-
"original_speaker_id": datasets.Value("int64"),
|
| 83 |
-
"session_id": datasets.Value("int64"),
|
| 84 |
-
"topic": datasets.Value("string"),
|
| 85 |
-
}
|
| 86 |
-
)
|
| 87 |
-
return datasets.DatasetInfo(
|
| 88 |
-
description=_DESCRIPTION,
|
| 89 |
-
features=features,
|
| 90 |
-
supervised_keys=None,
|
| 91 |
-
homepage=_HOMEPAGE,
|
| 92 |
-
citation=_CITATION,
|
| 93 |
-
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="transcription")],
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
def _split_generators(self, dl_manager):
|
| 97 |
-
downloaded_files = dl_manager.download_and_extract(_URLS)
|
| 98 |
-
|
| 99 |
-
return [
|
| 100 |
-
datasets.SplitGenerator(
|
| 101 |
-
name=datasets.Split.TRAIN,
|
| 102 |
-
gen_kwargs={
|
| 103 |
-
"metadata_path": downloaded_files["train"],
|
| 104 |
-
"wave_path": downloaded_files["waves"],
|
| 105 |
-
},
|
| 106 |
-
),
|
| 107 |
-
datasets.SplitGenerator(
|
| 108 |
-
name=datasets.Split.TEST,
|
| 109 |
-
gen_kwargs={
|
| 110 |
-
"metadata_path": downloaded_files["test"],
|
| 111 |
-
"wave_path": downloaded_files["waves"],
|
| 112 |
-
},
|
| 113 |
-
),
|
| 114 |
-
datasets.SplitGenerator(
|
| 115 |
-
name=datasets.Split.VALIDATION,
|
| 116 |
-
gen_kwargs={
|
| 117 |
-
"metadata_path": downloaded_files["validation"],
|
| 118 |
-
"wave_path": downloaded_files["waves"],
|
| 119 |
-
},
|
| 120 |
-
),
|
| 121 |
-
]
|
| 122 |
-
|
| 123 |
-
def _generate_examples(self, metadata_path, wave_path):
|
| 124 |
-
print(metadata_path)
|
| 125 |
-
metadata_df = pd.read_csv(metadata_path)
|
| 126 |
-
|
| 127 |
-
for index, row in metadata_df.iterrows():
|
| 128 |
-
example = {
|
| 129 |
-
"id": str(index).zfill(5),
|
| 130 |
-
"path": os.path.join(wave_path, row["file_name"]),
|
| 131 |
-
"audio": os.path.join(wave_path, row["file_name"]),
|
| 132 |
-
"transcription": row["transcription"],
|
| 133 |
-
"duration": row["duration"],
|
| 134 |
-
"language": row["language"],
|
| 135 |
-
"original_speaker_id": row["original_speaker_id"],
|
| 136 |
-
"session_id": row["session_id"],
|
| 137 |
-
"topic": row["topic"],
|
| 138 |
-
}
|
| 139 |
-
yield index, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|