File size: 7,500 Bytes
5ef4eef
 
 
 
 
 
 
 
 
 
 
602f496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef4eef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
---
license: mit
language:
- vi
tags:
- question-generation
- ag, t5, vit5, squad-format, vietnamese, education, nlp
pretty_name: Vietnamese Question Generation
size_categories:
- 10K<n<100K
---
# HVU_QA

**HVU_QA** is a project dedicated to sharing datasets and tools for **Question Generation Processing (NLP)**, developed and maintained by the research team at **Hung Vuong University (HVU), Phu Tho, Vietnam**.  
This project is supported by **Hung Vuong University, Phu Tho, Vietnam**, with the aim of advancing research and applications in low-resource language processing, particularly for the Vietnamese language.

---

## 📚 Overview

This repository enables you to:

1. Fine-tune the [VietAI/vit5-base](https://huggingface.co/datasets/DANGDOCAO/GeneratingQuestions) model on your own GQ dataset.
2. Generate multiple, diverse questions given a user-provided text passage (context).

---

## 📁 Datasets

* Built following the **SQuAD v2.0 standard**, ensuring compatibility with NLP pipelines.
* Includes tens of thousands of high-quality **Question–Context–Answer triples (QCA)**.
* Suitable for both **training** and **evaluation**.

---

## 📁 Vietnamese Question Generation Tool

A **command-line tool** for:

* **Fine-tuning** a question generation model.
* **Automatically generating questions** from Vietnamese text.

Built on **Hugging Face Transformers (VietAI/vit5-base)** and **PyTorch**.

---

## Features

* Fine-tune a question generation model with SQuAD v2.0 format data.
* Generate diverse and creative questions from text passages.
* Flexible generation parameters (`top-k`, `top-p`, `temperature`, etc.).
* Simple command-line usage.
* GPU support if available.

---

## 📊 Evaluation Results

We conducted both **manual evaluation** (500 samples) and **automatic evaluation** (1,000 samples).

| Evaluation Type  | Precision | Recall | F1-Score |
|------------------|-----------|--------|----------|
| Automatic (1000) | 0.85      | 0.83   | 0.84     |
| Manual (500)     | 0.88      | 0.86   | 0.87     |

➡️ The model generates diverse, grammatically correct, and contextually appropriate questions.

---

## Creation Process

The dataset was built using a **4-stage automated pipeline**:

1. Select relevant QA websites from trusted sources.
2. Automatic crawling to collect raw QA pages.
3. Semantic tag extraction to obtain clean Question–Context–Answer triples.
4. AI-assisted filtering to remove noisy or inconsistent samples.

---

## 📝 Quality Evaluation

A fine-tuned model trained on **HVU_QA (VietAI/vit5-base)** achieved:

* **BLEU Score**: 90.61
* **Semantic similarity**: 97.0% (cosine ≥ 0.8)
* **Human evaluation**:
  * Grammar: **4.58 / 5**
  * Usefulness: **4.29 / 5**

➡️ These results confirm that **HVU_QA is a high-quality resource** for developing robust FAQ-style question generation models.

---

## 📂 Project Structure

```
.HVU_QA
├── t5-viet-qg-finetuned/
├── fine_tune_qg.py
├── generate_question.py
├── 30ktrain.json
└── README.md
```
> All data files are UTF-8 encoded and ready for use in NLP pipelines.

---

## 🛠️ Requirements

* Python 3.8+
* PyTorch >= 1.9
* Transformers >= 4.30
* scikit-learn
* Fine-tuned model (download at: [link](https://huggingface.co/datasets/DANGDOCAO/GeneratingQuestions/tree/main))

---

## ⚙️ Setup

### 🛠️ Step 1: Download and Extract

1. Download `HVU_QA.zip`
2. Extract into a folder, e.g.:

   ```
   D:\your\HVU_QA
   ```

### 🛠️ Step 2: Add to Environment Path (if needed)

1. Open **System Properties → Environment Variables**
2. Select `Path`**Edit****New**
3. Add the path, e.g.:

   ```
   D:\your\HVU_QA
   ```

### 🛠️ Step 3: Open in Visual Studio Code

```
File > Open Folder > D:\HVU_QA
```

### 🛠️ Step 4: Install Required Libraries

Open **Terminal** and run:

#### Windows (PowerShell)

**Required only**

```powershell
python -m pip install --upgrade pip
pip install torch transformers datasets scikit-learn sentencepiece safetensors
```

**Required + Optional**

```powershell
python -m pip install --upgrade pip
pip install torch transformers datasets scikit-learn sentencepiece safetensors accelerate tensorboard evaluate sacrebleu rouge-score nltk
```

#### Linux / macOS (bash/zsh)

**Required only**

```bash
python3 -m pip install --upgrade pip
pip install torch transformers datasets scikit-learn sentencepiece safetensors
```

**Required + Optional**

```bash
python3 -m pip install --upgrade pip
pip install torch transformers datasets scikit-learn sentencepiece safetensors accelerate tensorboard evaluate sacrebleu rouge-score nltk
```

✅ Verify installation:

* Windows (PowerShell)

```powershell
python -c "import torch, transformers, datasets, sklearn, sentencepiece, safetensors, accelerate, tensorboard, evaluate, sacrebleu, rouge_score, nltk; print('✅ All dependencies installed correctly!')"
```

* Linux/macOS

```bash
python3 -c "import torch, transformers, datasets, sklearn, sentencepiece, safetensors, accelerate, tensorboard, evaluate, sacrebleu, rouge_score, nltk; print('✅ All dependencies installed correctly!')"
```

---

## Usage

* Train and evaluate a question generation model.
* Develop Vietnamese NLP tools.
* Conduct linguistic research.

### Training (Fine-tuning)

When you run `fine_tune_qg.py`, the script will:

1. Load the dataset from **`30ktrain.json`**
2. Fine-tune the `VietAI/vit5-base` model
3. Save the trained model into a new folder named **`t5-viet-qg-finetuned/`**

Run:

```bash
python fine_tune_qg.py
```

### Generating Questions

```bash
python generate_question.py
```

**Example:**

```
Input passage:
Iced milk coffee (Cà phê sữa đá) is a famous drink in Vietnam.

Number of questions: 5
```

✅ Output:

1. What type of coffee is famous in Vietnam?
2. Why is iced milk coffee popular?
3. What ingredients are included in iced milk coffee?
4. Where does iced milk coffee originate from?
5. How is Vietnamese iced milk coffee prepared?

---

## ⚙️ Generation Settings

In `generate_question.py`, you can adjust:

* `top_k`, `top_p`, `temperature`, `no_repeat_ngram_size`, `repetition_penalty`

---

## 🤝 Contribution

We welcome contributions:

* Open issues
* Submit pull requests
* Suggest improvements or add datasets

---

## 📄 Citation

If you use this repository or datasets in research, please cite:

**Ha Nguyen-Tien, Phuc Le-Hong, Dang Do-Cao, Cuong Nguyen-Hung, Chung Mai-Van. 2025. A Method to Build QA Corpora for Low-Resource Languages. Proceedings of KSE 2025. ACM TALLIP.**

### 📚 BibTeX

```bibtex
@inproceedings{nguyen2025hvuqa,
  title={A Method to Build QA Corpora for Low-Resource Languages},
  author={Ha Nguyen-Tien and Phuc Le-Hong and Dang Do-Cao and Cuong Nguyen-Hung and Chung Mai-Van},
  booktitle={Proceedings of KSE 2025},
  year={2025}
}
```

---

## 📬 Contact

* **Ha Nguyen-Tien** (Corresponding author)  
  📧 [nguyentienha@hvu.edu.vn](mailto:nguyentienha@hvu.edu.vn)

* **Phuc Le-Hong**  
  📧 [Lehongphuc20021408@gmail.com](mailto:Lehongphuc20021408@gmail.com)

* **Dang Do-Cao**  
  📧 [docaodang532001@gmail.com](mailto:docaodang532001@gmail.com)

📍 Faculty of Engineering and Technology, Hung Vuong University, Phu Tho, Vietnam  
🌐 [https://hvu.edu.vn](https://hvu.edu.vn)

---

*This repository is part of our ongoing effort to support Vietnamese NLP and make language technology more accessible for low-resource and underrepresented languages.*