|
import json |
|
from difflib import SequenceMatcher |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
from transformers.utils import logging as hf_logging |
|
|
|
hf_logging.set_verbosity_error() |
|
|
|
MODEL_DIR = "t5-viet-qg-finetuned" |
|
DATA_PATH = "30ktrain.json" |
|
|
|
tokenizer = T5Tokenizer.from_pretrained(MODEL_DIR) |
|
model = T5ForConditionalGeneration.from_pretrained(MODEL_DIR) |
|
|
|
def find_best_match_from_context(user_context, squad_data): |
|
best_score, best_entry = 0.0, None |
|
ui = user_context.lower() |
|
|
|
for article in squad_data.get("data", []): |
|
context_title = article.get("title", "") |
|
score_title = SequenceMatcher(None, ui, context_title.lower()).ratio() |
|
|
|
for paragraph in article.get("paragraphs", []): |
|
context = paragraph.get("context", "") |
|
for qa in paragraph.get("qas", []): |
|
answers = qa.get("answers", []) |
|
if not answers: |
|
continue |
|
answer_text = answers[0].get("text", "").strip() |
|
question_text = qa.get("question", "").strip() |
|
|
|
score = score_title |
|
if score > best_score: |
|
best_score = score |
|
best_entry = (context, answer_text, question_text) |
|
|
|
return best_entry |
|
|
|
def _near_duplicate(q, seen, thr=0.90): |
|
for s in seen: |
|
if SequenceMatcher(None, q, s).ratio() >= thr: |
|
return True |
|
return False |
|
|
|
def generate_questions(user_context, |
|
total_questions=20, |
|
batch_size=10, |
|
top_k=60, |
|
top_p=0.95, |
|
temperature=0.9, |
|
max_input_len=512, |
|
max_new_tokens=64): |
|
with open(DATA_PATH, "r", encoding="utf-8") as f: |
|
squad_data = json.load(f) |
|
|
|
best_entry = find_best_match_from_context(user_context, squad_data) |
|
if best_entry is None: |
|
print("Không tìm thấy dữ liệu phù hợp trong file JSON.") |
|
return |
|
|
|
context, answer, _ = best_entry |
|
|
|
|
|
input_text = f"answer: {answer}\ncontext: {context}\nquestion:" |
|
inputs = tokenizer( |
|
input_text, |
|
return_tensors="pt", |
|
truncation=True, |
|
max_length=max_input_len |
|
) |
|
|
|
unique_questions = [] |
|
remaining = total_questions |
|
|
|
while remaining > 0: |
|
n = min(batch_size, remaining) |
|
outputs = model.generate( |
|
**inputs, |
|
do_sample=True, |
|
top_k=top_k, |
|
top_p=top_p, |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
num_return_sequences=n, |
|
no_repeat_ngram_size=3, |
|
repetition_penalty=1.12 |
|
) |
|
|
|
for out in outputs: |
|
q = tokenizer.decode(out, skip_special_tokens=True).strip() |
|
if len(q) < 5: |
|
continue |
|
if not _near_duplicate(q, unique_questions, thr=0.90): |
|
unique_questions.append(q) |
|
|
|
remaining = total_questions - len(unique_questions) |
|
if remaining <= 0: |
|
break |
|
|
|
unique_questions = unique_questions[:total_questions] |
|
|
|
|
|
print("Các câu hỏi mới được sinh ra:") |
|
for i, q in enumerate(unique_questions, 1): |
|
if not q.endswith("?"): |
|
q += "?" |
|
print(f"{i}. {q}") |
|
|
|
if __name__ == "__main__": |
|
user_context = input("\nNhập đoạn văn bản:\n ").strip() |
|
|
|
raw_n = input("\nNhập vào số lượng câu hỏi bạn cần:").strip() |
|
if raw_n == "": |
|
total_questions = 20 |
|
else: |
|
try: |
|
total_questions = int(raw_n) |
|
except ValueError: |
|
print("Giá trị không hợp lệ. Dùng mặc định 20.") |
|
total_questions = 20 |
|
|
|
if total_questions < 1: |
|
total_questions = 1 |
|
if total_questions > 200: |
|
total_questions = 200 |
|
|
|
batch_size = 20 if total_questions >= 30 else min(20, total_questions) |
|
|
|
print("\nĐang phân tích dữ liệu...\n") |
|
|
|
generate_questions( |
|
user_context=user_context, |
|
total_questions=total_questions, |
|
batch_size=batch_size, |
|
top_k=60, |
|
top_p=0.95, |
|
temperature=0.9, |
|
max_input_len=512, |
|
max_new_tokens=64 |
|
) |
|
|