import json from datasets import Dataset from sklearn.model_selection import train_test_split from transformers import ( T5Tokenizer, T5ForConditionalGeneration, TrainingArguments, Trainer ) def load_squad_data(file_path): with open(file_path, "r", encoding="utf-8") as f: squad_data = json.load(f) data = [] for article in squad_data["data"]: for paragraph in article["paragraphs"]: context = paragraph.get("context", "") for qa in paragraph["qas"]: if not qa.get("is_impossible", False) and qa.get("answers"): answer = qa["answers"][0]["text"] question = qa["question"] input_text = f"answer: {answer} context: {context}" data.append({"input": input_text, "target": question}) return data def preprocess_function(example, tokenizer, max_input_length=512, max_target_length=64): model_inputs = tokenizer( example["input"], max_length=max_input_length, padding="max_length", truncation=True, ) labels = tokenizer( text_target=example["target"], max_length=max_target_length, padding="max_length", truncation=True, ) model_inputs["labels"] = labels["input_ids"] return model_inputs def main(): data_path = "30ktrain.json" output_dir = "t5-viet-qg-finetuned" logs_dir = "logs" model_name = "VietAI/vit5-base" print("Tải mô hình và tokenizer...") tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) print("Đọc và chia dữ liệu...") raw_data = load_squad_data(data_path) train_data, val_data = train_test_split(raw_data, test_size=0.2, random_state=42) train_dataset = Dataset.from_list(train_data) val_dataset = Dataset.from_list(val_data) tokenized_train = train_dataset.map( lambda x: preprocess_function(x, tokenizer), batched=True, remove_columns=["input", "target"] ) tokenized_val = val_dataset.map( lambda x: preprocess_function(x, tokenizer), batched=True, remove_columns=["input", "target"] ) print("Cấu hình huấn luyện...") training_args = TrainingArguments( output_dir=output_dir, overwrite_output_dir=True, per_device_train_batch_size=1, gradient_accumulation_steps=1, num_train_epochs=3, learning_rate=2e-4, weight_decay=0.01, warmup_steps=0, logging_dir=logs_dir, logging_steps=10, fp16=False ) print("Huấn luyện mô hình...") trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_train, eval_dataset=tokenized_val, tokenizer=tokenizer, ) trainer.train() print("Lưu mô hình...") model.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) print("Huấn luyện hoàn tất!") if __name__ == "__main__": main()