import json from difflib import SequenceMatcher from transformers import T5Tokenizer, T5ForConditionalGeneration from transformers.utils import logging as hf_logging hf_logging.set_verbosity_error() MODEL_DIR = "t5-viet-qg-finetuned" DATA_PATH = "30ktrain.json" tokenizer = T5Tokenizer.from_pretrained(MODEL_DIR) model = T5ForConditionalGeneration.from_pretrained(MODEL_DIR) def find_best_match_from_context(user_context, squad_data): best_score, best_entry = 0.0, None ui = user_context.lower() for article in squad_data.get("data", []): context_title = article.get("title", "") score_title = SequenceMatcher(None, ui, context_title.lower()).ratio() for paragraph in article.get("paragraphs", []): context = paragraph.get("context", "") for qa in paragraph.get("qas", []): answers = qa.get("answers", []) if not answers: continue answer_text = answers[0].get("text", "").strip() question_text = qa.get("question", "").strip() score = score_title if score > best_score: best_score = score best_entry = (context, answer_text, question_text) return best_entry def _near_duplicate(q, seen, thr=0.90): for s in seen: if SequenceMatcher(None, q, s).ratio() >= thr: return True return False def generate_questions(user_context, total_questions=20, batch_size=10, top_k=60, top_p=0.95, temperature=0.9, max_input_len=512, max_new_tokens=64): with open(DATA_PATH, "r", encoding="utf-8") as f: squad_data = json.load(f) best_entry = find_best_match_from_context(user_context, squad_data) if best_entry is None: print("Không tìm thấy dữ liệu phù hợp trong file JSON.") return context, answer, _ = best_entry input_text = f"answer: {answer}\ncontext: {context}\nquestion:" inputs = tokenizer( input_text, return_tensors="pt", truncation=True, max_length=max_input_len ) unique_questions = [] remaining = total_questions while remaining > 0: n = min(batch_size, remaining) outputs = model.generate( **inputs, do_sample=True, top_k=top_k, top_p=top_p, temperature=temperature, max_new_tokens=max_new_tokens, num_return_sequences=n, no_repeat_ngram_size=3, repetition_penalty=1.12 ) for out in outputs: q = tokenizer.decode(out, skip_special_tokens=True).strip() if len(q) < 5: continue if not _near_duplicate(q, unique_questions, thr=0.90): unique_questions.append(q) remaining = total_questions - len(unique_questions) if remaining <= 0: break unique_questions = unique_questions[:total_questions] print("Các câu hỏi mới được sinh ra:") for i, q in enumerate(unique_questions, 1): if not q.endswith("?"): q += "?" print(f"{i}. {q}") if __name__ == "__main__": user_context = input("\nNhập đoạn văn bản:\n ").strip() raw_n = input("\nNhập vào số lượng câu hỏi bạn cần:").strip() if raw_n == "": total_questions = 20 else: try: total_questions = int(raw_n) except ValueError: print("Giá trị không hợp lệ. Dùng mặc định 20.") total_questions = 20 if total_questions < 1: total_questions = 1 if total_questions > 200: total_questions = 200 batch_size = 20 if total_questions >= 30 else min(20, total_questions) print("\nĐang phân tích dữ liệu...\n") generate_questions( user_context=user_context, total_questions=total_questions, batch_size=batch_size, top_k=60, top_p=0.95, temperature=0.9, max_input_len=512, max_new_tokens=64 )