kartoun commited on
Commit
5b4daa9
·
verified ·
1 Parent(s): 018ac69

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -5
README.md CHANGED
@@ -1,5 +1,84 @@
1
- ---
2
- license: other
3
- license_name: commercial
4
- license_link: LICENSE
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: commercial
4
+ license_link: LICENSE
5
+ ---
6
+ # DBbun — Synthetic Scalp EEG (10–20 @ 250 Hz)
7
+
8
+ ## Overview
9
+ DBbun EEG is a professionally generated collection of synthetic scalp EEG recordings that replicate the structure and statistical properties of real clinical EEG while remaining fully privacy-safe.
10
+
11
+ Each file contains multi-channel 10–20 EEG sampled at 250 Hz, with per-second seizure labels and optional TCP (bipolar) differential channels.
12
+ The dataset enables research and commercial development in seizure detection, artifact rejection, biosignal modeling, and algorithm benchmarking, without any regulatory or privacy restrictions.
13
+
14
+ All content is synthetically generated and contains no patient or institutional data.
15
+
16
+ ---
17
+
18
+ ## Dataset Composition
19
+
20
+ ### Splits
21
+ | Split | Records | Duration | Purpose |
22
+ |:------|:--------:|:---------:|:--------|
23
+ | train/ | 200 | approximately 200 hours | Model training |
24
+ | valid/ | 25 | approximately 25 hours | Hyperparameter tuning |
25
+ | test/ | 25 | approximately 25 hours | Evaluation |
26
+
27
+ Each split includes:
28
+ - `patient_XXXXXX.npz` — EEG waveform and label arrays
29
+ - `patient_XXXXXX_events.json` — seizure interval metadata
30
+ - `metadata.csv` — session-level descriptors
31
+
32
+ ### File contents
33
+ | Key | Type | Shape | Description |
34
+ |:----|:-----|:------|:------------|
35
+ | `eeg` | float32 | [n_channels, n_samples] | Scalp EEG waveforms (10–20 layout ± TCP montage) |
36
+ | `sr` | int | — | Sampling rate (250 Hz) |
37
+ | `channels` | list[str] | [n_channels] | Channel names |
38
+ | `labels_sec` | uint8 | [seconds] | 0 = non-ictal, 1 = ictal |
39
+
40
+ ---
41
+
42
+ ## Validation and Quality Assurance
43
+
44
+ ### Quantitative validation
45
+ Descriptive realism metrics were computed using the included notebook `DBbun_EEG_Validation.ipynb`, which summarizes power ratios, durations, and seizure prevalence.
46
+ Results are saved in `validation/realism_report.md`.
47
+
48
+ Key findings:
49
+ | Metric | Mean | Std | Description |
50
+ |:--------|-----:|----:|:------------|
51
+ | Alpha ratio | 0.496 | 0.020 | Balanced 8–13 Hz band typical of resting EEG |
52
+ | Delta ratio | 0.428 | 0.021 | Realistic low-frequency power |
53
+ | Channels | 38 | 0 | 20 raw + 18 TCP differential channels |
54
+ | Duration (s) | 3469 | 514 | Approximately 58 minutes per record |
55
+ | Seizure fraction | 0.0126 | 0.012 | Approximately 1.3% ictal content |
56
+
57
+ Validation confirmed:
58
+ - Stable 10–20 montage structure
59
+ - Physiologically plausible alpha/delta ratios and amplitudes
60
+ - Realistic seizure sparsity and variability
61
+ - Clean baselines without abnormal drift
62
+ - Consistent metadata across all splits
63
+
64
+ ### Visual previews
65
+ Representative 10-second EEG windows were exported as `previews/*.png`.
66
+ Each shows realistic amplitude, rhythmic composition, and spectral balance.
67
+
68
+ ---
69
+
70
+ ## How to Use
71
+
72
+ ### Load one record
73
+ ```python
74
+ import numpy as np
75
+
76
+ z = np.load("data/train/patient_000001.npz")
77
+ eeg = z["eeg"]
78
+ sr = int(z["sr"])
79
+ channels = [c.decode() if isinstance(c, bytes) else c for c in z["channels"]]
80
+ labels = z["labels_sec"]
81
+
82
+ print("Channels:", len(channels))
83
+ print("Shape:", eeg.shape)
84
+ print("Duration (s):", eeg.shape[1] / sr)