File size: 8,603 Bytes
dd86161
 
 
 
 
 
 
 
 
6931ebb
9822e1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6931ebb
9822e1d
6931ebb
9822e1d
 
 
 
6931ebb
 
9822e1d
 
 
 
 
 
6931ebb
9822e1d
6931ebb
9822e1d
6931ebb
9822e1d
 
 
 
6931ebb
 
9822e1d
 
 
 
 
 
6931ebb
9822e1d
6931ebb
9822e1d
6931ebb
9822e1d
 
 
 
6931ebb
 
dd86161
26ea4c4
 
 
 
 
 
46966de
26ea4c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
---
configs:
- config_name: ner
  data_files: ner.parquet
  default: true
- config_name: el
  data_files: el.parquet
- config_name: re
  data_files: re.parquet
  
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100<n<1K
source_datasets:
- original
task_categories:
- text-classification
- token-classification
task_ids:
- named-entity-recognition
- entity-linking-classification
- multi-class-classification
pretty_name: Text2Tech Curated Documents
tags:
- structure-prediction
- technology
- relation extraction
- entity linking
- named entity recognition

dataset_info:
- config_name: ner
  features:
  - name: docid
    dtype: string
  - name: tokens
    dtype: string
  - name: ner_tags
    dtype: string
  splits:
  - name: train
    num_bytes: 917085
    num_examples: 135
  download_size: 190248
  dataset_size: 917085

- config_name: el
  features:
  - name: docid
    dtype: string
  - name: tokens
    dtype: string
  - name: ner_tags
    dtype: string
  - name: entity_mentions
    dtype: string
  splits:
  - name: train
    num_bytes: 1807601
    num_examples: 135
  download_size: 345738
  dataset_size: 1807601

- config_name: re
  features:
  - name: docid
    dtype: string
  - name: tokens
    dtype: string
  - name: ner_tags
    dtype: string
  - name: relations
    dtype: string
  splits:
  - name: train
    num_bytes: 1095051
    num_examples: 135
  download_size: 210872
  dataset_size: 1095051
---
# Dataset Card for Text2Tech Curated Documents

## Dataset Summary

This dataset is the result of converting a UIMA CAS 0.4 JSON export from the Inception annotation tool into a simplified format suitable for Natural Language Processing tasks. Specifically, it provides configurations for Named Entity Recognition (NER), Entity Linking (EL), and Relation Extraction (RE).

The conversion process utilized the `dkpro-cassis` library to load the original annotations and `spaCy` for tokenization. The final dataset is structured similarly to the DFKI-SLT/mobie dataset to ensure compatibility.

This version of the dataset loader provides configurations for:

* **Named Entity Recognition (ner)**: NER tags use spaCy's BILUO tagging scheme.
* **Entity Linking (el)**: Entity mentions are linked to external knowledge bases.
* **Relation Extraction (re)**: Relations between entities are annotated.

## Supported Tasks and Leaderboards

* **Tasks**: Named Entity Recognition, Entity Linking, Relation Extraction
* **Leaderboards**: More Information Needed

## Languages

The text in the dataset is in English.

## Dataset Structure

### Data Instances

#### ner

An example of 'train' looks as follows.

```json
{
  "docid": "138",
  "tokens": [
    "\"",
    "Samsung",
    "takes",
    "aim",
    "at",
    "blood",
    "pressure",
    "monitoring",
    "with",
    "the",
    "Galaxy",
    "Watch",
    "Active",
    "..."
  ],
  "ner_tags": [
    0,
    1,
    0,
    0,
    0,
    2,
    3,
    4,
    0,
    0,
    5,
    6,
    7,
    "..."
  ]
}
```

#### el

An example of 'train' looks as follows.

```json
{
  "docid": "138",
  "tokens": [
      "\"",
      "Samsung",
      "takes",
      "aim",
      "at",
      "blood",
      "pressure",
      "monitoring",
      "with",
      "the",
      "Galaxy",
      "Watch",
      "Active",
       "..."
  ],
    "ner_tags": [
      0,
      1,
      0,
      0,
      0,
      2,
      3,
      4,
      0,
      0,
      5,
      6,
      7,
      "..."
],

  "entity_mentions": [
    {
      "text": "Samsung",
      "start": 1,
      "end": 2,
      "char_start": 1,
      "char_end": 8,
      "type": 0,
      "entity_id": "http://www.wikidata.org/entity/Q124989916"
    },
    "..."
  ]
}
```

#### re

An example of 'train' looks as follows.

```json
{
  "docid": "138",
  "tokens": [
    "\"",
    "Samsung",
    "takes",
    "aim",
    "at",
    "blood",
    "pressure",
    "monitoring",
    "with",
    "the",
    "Galaxy",
    "Watch",
    "Active",
    "..."
  ],
  "ner_tags": [
    0,
    1,
    0,
    0,
    0,
    2,
    3,
    4,
    0,
    0,
    5,
    6,
    7,
    "..."
  ],
  "relations": [
    {
      "id": "138-0",
      "head_start": 706,
      "head_end": 708,
      "head_type": 2,
      "tail_start": 706,
      "tail_end": 708,
      "tail_type": 2,
      "type": 0
    },
    "..."
  ]
}
```

### Data Fields

#### ner

* `docid`: A `string` feature representing the document identifier.
* `tokens`: A `list` of `string` features representing the tokens in the document.
* `ner_tags`: A `list` of classification labels using spaCy's BILUO tagging scheme. The mapping from ID to tag is as follows:

**BILUO Tagging Scheme:**
- **B-** (Begin): First token of a multi-token entity
- **I-** (Inside): Inner tokens of a multi-token entity  
- **L-** (Last): Final token of a multi-token entity
- **U-** (Unit): Single token entity
- **O** (Outside): Non-entity token

```json
{
  "O": 0,
  "U-Organization": 1,
  "B-Method": 2,
  "I-Method": 3,
  "L-Method": 4,
  "B-Technological System": 5,
  "I-Technological System": 6,
  "L-Technological System": 7,
  "U-Technological System": 8,
  "U-Method": 9,
  "B-Material": 10,
  "L-Material": 11,
  "I-Material": 12,
  "B-Organization": 13,
  "L-Organization": 14,
  "I-Organization": 15,
  "U-Material": 16,
  "B-Technical Field": 17,
  "L-Technical Field": 18,
  "I-Technical Field": 19,
  "U-Technical Field": 20
}
```

#### el

* `docid`: A `string` feature representing the document identifier.
* `tokens`: A `list` of `string` features representing the tokens in the document.
* `entity_mentions`: A `list` of `struct` features containing:
   * `text`: a `string` feature.
   * `start`: token offset start, a `int32` feature.
   * `end`: token offset end, a `int32` feature.
   * `char_start`: character offset start, a `int32` feature.
   * `char_end`: character offset end, a `int32` feature.
   * `type`: a classification label. The mapping from ID to entity type is as follows:

```json
{
  "Organization": 0,
  "Method": 1,
  "Technological System": 2,
  "Material": 3,
  "Technical Field": 4
}
```

   * `entity_id`: a `string` feature representing the entity identifier from a knowledge base.

#### re

* `docid`: A `string` feature representing the document identifier.
* `tokens`: A `list` of `string` features representing the tokens in the document.
* `ner_tags`: A `list` of classification labels, corresponding to the NER task.
* `relations`: A `list` of `struct` features containing:
   * `id`: a `string` feature representing the relation identifier.
   * `head_start`: token offset start of the head entity, an `int32` feature.
   * `head_end`: token offset end of the head entity, an `int32` feature.
   * `head_type`: a classification label for the head entity type.
   * `tail_start`: token offset start of the tail entity, an `int32` feature.
   * `tail_end`: token offset end of the tail entity, an `int32` feature.
   * `tail_type`: a classification label for the tail entity type.
   * `type`: a classification label for the relation type. The mapping from ID to relation type is as follows:

```json
{
  "ts:executes": 0,
  "org:develops_or_provides": 1,
  "ts:contains": 2,
  "ts:made_of": 3,
  "ts:uses": 4,
  "ts:supports": 5,
  "met:employs": 6,
  "met:processes": 7,
  "mat:transformed_to": 8,
  "org:collaborates": 9,
  "met:creates": 10,
  "met:applied_to": 11,
  "ts:processes": 12
}
```

### Data Splits

Please add information about your data splits here. For example:

  * **train**: X samples
  * **validation**: Y samples
  * **test**: Z samples

## Dataset Creation

The dataset was created by converting JSON files exported from the Inception annotation tool. The `inception_converter.py` script was used to process these files. This script uses the `dkpro-cassis` library to load the UIMA CAS JSON data and `spaCy` for tokenization and creating BIO tags for the NER task. The data was then split into three separate files for NER, EL, and RE tasks.

## Considerations for Using the Data

### Social Impact of Dataset

More Information Needed

### Discussion of Biases

More Information Needed

### Other Known Limitations

More Information Needed

## Additional Information

### Dataset Curators

Amir Safari

### Licensing Information

Please specify the license for this dataset.

### Citation Information

Please provide a BibTeX citation for your dataset.

```bibtex
  author    = {Amir Safari},
  title     = {Text2Tech Curated Documents},
  year      = {2025},
  publisher = {Hugging Face}
}
```