File size: 10,909 Bytes
335fde2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
924f6f2
 
aff572a
335fde2
 
 
 
 
924f6f2
aff572a
 
924f6f2
bf4e708
924f6f2
335fde2
 
89480ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335fde2
 
 
 
 
 
 
 
 
 
 
 
 
4a9d950
335fde2
 
89480ab
 
 
 
 
335fde2
 
 
89480ab
 
 
335fde2
 
 
 
89480ab
 
 
 
 
335fde2
ef3433a
335fde2
89480ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5364118
bf4e708
 
 
89480ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5364118
89480ab
 
 
 
aff572a
89480ab
aff572a
89480ab
 
 
 
 
 
5364118
89480ab
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pip install xmltodict

import random
from pathlib import Path
from itertools import product
from dataclasses import dataclass
from typing import Dict, List, Tuple

import xmltodict
import numpy as np

import datasets
from filelock import FileLock

_CITATION = """\
@article{10.1093/jamia/ocv037,
    author = {Kors, Jan A and Clematide, Simon and Akhondi,
    Saber A and van Mulligen, Erik M and Rebholz-Schuhmann, Dietrich},
    title = "{A multilingual gold-standard corpus for biomedical concept recognition: the Mantra GSC}",
    journal = {Journal of the American Medical Informatics Association},
    volume = {22},
    number = {5},
    pages = {948-956},
    year = {2015},
    month = {05},
    abstract = "{Objective To create a multilingual gold-standard corpus for biomedical concept recognition.Materials
    and methods We selected text units from different parallel corpora (Medline abstract titles, drug labels,
    biomedical patent claims) in English, French, German, Spanish, and Dutch. Three annotators per language
    independently annotated the biomedical concepts, based on a subset of the Unified Medical Language System and
    covering a wide range of semantic groups. To reduce the annotation workload, automatically generated
    preannotations were provided. Individual annotations were automatically harmonized and then adjudicated, and
    cross-language consistency checks were carried out to arrive at the final annotations.Results The number of final
    annotations was 5530. Inter-annotator agreement scores indicate good agreement (median F-score 0.79), and are
    similar to those between individual annotators and the gold standard. The automatically generated harmonized
    annotation set for each language performed equally well as the best annotator for that language.Discussion The use
    of automatic preannotations, harmonized annotations, and parallel corpora helped to keep the manual annotation
    efforts manageable. The inter-annotator agreement scores provide a reference standard for gauging the performance
    of automatic annotation techniques.Conclusion To our knowledge, this is the first gold-standard corpus for
    biomedical concept recognition in languages other than English. Other distinguishing features are the wide variety
    of semantic groups that are being covered, and the diversity of text genres that were annotated.}",
    issn = {1067-5027},
    doi = {10.1093/jamia/ocv037},
    url = {https://doi.org/10.1093/jamia/ocv037},
    eprint = {https://academic.oup.com/jamia/article-pdf/22/5/948/34146393/ocv037.pdf},
}
"""

_DESCRIPTION = """\
We selected text units from different parallel corpora (Medline abstract titles, drug labels, biomedical patent claims)
in English, French, German, Spanish, and Dutch. Three annotators per language independently annotated the biomedical
concepts, based on a subset of the Unified Medical Language System and covering a wide range of semantic groups.
"""

_HOMEPAGE = "https://biosemantics.erasmusmc.nl/index.php/resources/mantra-gsc"

_LICENSE = "CC_BY_4p0"

_URL = "https://huggingface.co/datasets/DrBenchmark/MANTRAGSC/resolve/main/GSC-v1.1.zip"

_LANGUAGES_2 = {
    "es": "Spanish",
    "fr": "French",
    "de": "German",
    "nl": "Dutch",
    "en": "English",
}

_DATASET_TYPES = {
    "emea": "EMEA",
    "medline": "Medline",
    "patents": "Patent",
}

@dataclass
class DrBenchmarkConfig(datasets.BuilderConfig):
    name: str = None
    version: datasets.Version = None
    description: str = None
    schema: str = None
    subset_id: str = None

class MANTRAGSC(datasets.GeneratorBasedBuilder):

    SOURCE_VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = []

    for language, dataset_type in product(_LANGUAGES_2, _DATASET_TYPES):

        if dataset_type == "patents" and language in ["nl", "es"]:
            continue

        BUILDER_CONFIGS.append(
            DrBenchmarkConfig(
                name=f"{language}_{dataset_type}",
                version=SOURCE_VERSION,
                description=f"Mantra GSC {_LANGUAGES_2[language]} {_DATASET_TYPES[dataset_type]} source schema",
                schema="source",
                subset_id=f"{language}_{_DATASET_TYPES[dataset_type]}",
            )
        )

    DEFAULT_CONFIG_NAME = "fr_medline"

    def _info(self):

        if self.config.name.find("emea") != -1:
            names = ['B-ANAT', 'I-ANAT', 'I-PHEN', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-DEVI', 'O', 'B-PHYS', 'I-DEVI', 'B-OBJC', 'I-DISO', 'B-PHEN', 'I-LIVB', 'B-DISO', 'B-LIVB', 'B-CHEM', 'I-PROC']
        elif self.config.name.find("medline") != -1:
            names = ['B-ANAT', 'I-ANAT', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-GEOG', 'B-DEVI', 'O', 'B-PHYS', 'I-LIVB', 'B-OBJC', 'I-DISO', 'I-DEVI', 'B-PHEN', 'B-DISO', 'B-LIVB', 'B-CHEM', 'I-PROC']
        elif self.config.name.find("patents") != -1:
            names = ['B-ANAT', 'I-ANAT', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-DEVI', 'O', 'I-LIVB', 'B-OBJC', 'I-DISO', 'B-PHEN', 'I-PROC', 'B-DISO', 'I-DEVI', 'B-LIVB', 'B-CHEM', 'B-PHYS']

        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "tokens": [datasets.Value("string")],
                "ner_tags": datasets.Sequence(
                    datasets.features.ClassLabel(
                        names = names,
                    )
                ),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        language, dataset_type = self.config.name.split("_")

        # Fixes concurrency issues when extracting files after download has ended
        # cf. https://github.com/huggingface/datasets/issues/4661#issuecomment-2792885416
        with FileLock(Path(datasets.config.HF_CACHE_HOME) / "tmp_MANTRAGSC.lock"):
            data_dir = dl_manager.download_and_extract(_URL)
        data_dir = Path(data_dir) / "GSC-v1.1" / f"{_DATASET_TYPES[dataset_type]}_GSC_{language}_man.xml"

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, data_dir, split):

        with open(data_dir) as fd:
            doc = xmltodict.parse(fd.read())

        all_res = []

        for d in doc["Corpus"]["document"]:

            if type(d["unit"]) != type(list()):
                d["unit"] = [d["unit"]]

            for u in d["unit"]:

                text = u["text"]

                if "e" in u.keys():

                    if type(u["e"]) != type(list()):
                        u["e"] = [u["e"]]

                    tags = [{
                        "label": current["@grp"].upper(),
                        "offset_start": int(current["@offset"]),
                        "offset_end": int(current["@offset"]) + int(current["@len"]),
                    } for current in u["e"]]

                else:
                    tags = []

                _tokens = text.split(" ")
                tokens = []
                for i, t in enumerate(_tokens):

                    concat = " ".join(_tokens[0:i+1])

                    offset_start = len(concat) - len(t)
                    offset_end = len(concat)

                    tokens.append({
                        "token": t,
                        "offset_start": offset_start,
                        "offset_end": offset_end,
                    })

                ner_tags = [["O", 0] for o in tokens]

                for tag in tags:

                    cpt = 0

                    for idx, token in enumerate(tokens):

                        rtok = range(token["offset_start"], token["offset_end"]+1)
                        rtag = range(tag["offset_start"], tag["offset_end"]+1)

                        # Check if the ranges are overlapping
                        if bool(set(rtok) & set(rtag)):

                            # if ner_tags[idx] != "O" and ner_tags[idx] != tag['label']:
                            #   print(f"{token} - currently: {ner_tags[idx]} - after: {tag['label']}")

                            if ner_tags[idx][0] == "O":
                                cpt += 1
                                ner_tags[idx][0] = tag["label"]
                                ner_tags[idx][1] = cpt

                for i in range(len(ner_tags)):

                    tag = ner_tags[i][0]

                    if tag == "O":
                        continue
                    elif tag != "O" and ner_tags[i][1] == 1:
                        ner_tags[i][0] = "B-" + tag
                    elif tag != "O" and ner_tags[i][1] != 1:
                        ner_tags[i][0] = "I-" + tag

                obj = {
                    "id": u["@id"],
                    "tokens": [t["token"] for t in tokens],
                    "ner_tags": [n[0] for n in ner_tags],
                }

                all_res.append(obj)

        ids = [r["id"] for r in all_res]

        random.seed(4)
        random.shuffle(ids)
        random.shuffle(ids)
        random.shuffle(ids)

        train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)])

        if split == "train":
            allowed_ids = list(train)
        elif split == "validation":
            allowed_ids = list(validation)
        elif split == "test":
            allowed_ids = list(test)

        for r in all_res:
            identifier = r["id"]
            if identifier in allowed_ids:
                yield identifier, r