zhangfz
commited on
Commit
·
db22f07
1
Parent(s):
c33c288
update
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- logs_svd_gated/mode_13_param_gated_seed_41/config.json +25 -0
- logs_svd_gated/mode_13_param_gated_seed_41/training_log_53ddf4cc-e033-4acf-bc2d-5f9f5c822ce1.txt +0 -0
- logs_svd_gated/mode_13_param_gated_seed_41/training_log_d270cd1a-a1f4-441e-a235-1836f2598c11.txt +1760 -0
- logs_svd_gated/mode_13_param_gated_seed_42/config.json +25 -0
- logs_svd_gated/mode_13_param_gated_seed_42/training_log_29ca794e-db48-4228-89b9-294e22f93633.txt +0 -0
- logs_svd_gated/mode_13_param_gated_seed_43/config.json +25 -0
- logs_svd_gated/mode_13_param_gated_seed_43/training_log_9ef1b43c-d8df-464d-9246-7f66cf8bbaee.txt +0 -0
- logs_svd_gated/mode_13_param_gated_seed_44/config.json +25 -0
- logs_svd_gated/mode_13_param_gated_seed_44/training_log_46d4e9f2-2b76-454e-bfe1-cd91263cd3ea.txt +0 -0
- logs_svd_gated/mode_13_param_gated_seed_45/config.json +25 -0
- logs_svd_gated/mode_13_param_gated_seed_45/training_log_78f20870-5eda-4682-aced-8cedd91a0415.txt +0 -0
- logs_svd_gated/mode_13_param_gated_seed_46/config.json +25 -0
- logs_svd_gated/mode_13_param_gated_seed_46/training_log_f15d7967-d463-4726-99a0-e07de412ca4e.txt +0 -0
- logs_svd_gated/mode_13_param_gated_seed_47/config.json +25 -0
- logs_svd_gated/mode_13_param_gated_seed_47/training_log_3f513c1c-b909-494f-92a7-f9975950351b.txt +0 -0
- logs_svd_gated/mode_13_param_gated_seed_48/config.json +25 -0
- logs_svd_gated/mode_13_param_gated_seed_48/training_log_1d32ef1a-6c9c-42b2-8a59-62ddd2143fab.txt +0 -0
- logs_svd_gated/mode_13_param_gated_seed_49/config.json +25 -0
- logs_svd_gated/mode_13_param_gated_seed_49/training_log_1531a5c8-fb60-4f63-ad76-0f25f42b48db.txt +0 -0
- logs_svd_gated/mode_13_param_gated_seed_50/config.json +25 -0
- logs_svd_gated/mode_13_param_gated_seed_50/training_log_f5f8623b-17fe-4271-a358-8cb57ae238a1.txt +0 -0
- logs_svd_gated/mode_14_param_gated_seed_41/config.json +25 -0
- logs_svd_gated/mode_14_param_gated_seed_41/training_log_3a060110-ad46-4bb9-9bfc-220548766993.txt +0 -0
- logs_svd_gated/mode_14_param_gated_seed_42/config.json +25 -0
- logs_svd_gated/mode_14_param_gated_seed_42/training_log_3c8ef23e-8e99-4dfb-af73-28cde593d61e.txt +0 -0
- logs_svd_gated/mode_14_param_gated_seed_43/config.json +25 -0
- logs_svd_gated/mode_14_param_gated_seed_43/training_log_1c163800-35b0-4389-b3a7-5f103382de01.txt +0 -0
- logs_svd_gated/mode_14_param_gated_seed_44/config.json +25 -0
- logs_svd_gated/mode_14_param_gated_seed_44/training_log_b3f636bf-aaae-4f63-84ba-14c79a0fac04.txt +0 -0
- logs_svd_gated/mode_14_param_gated_seed_45/config.json +25 -0
- logs_svd_gated/mode_14_param_gated_seed_45/training_log_45ff64f4-c3fe-4a27-b43d-8b30681d5861.txt +0 -0
- logs_svd_gated/mode_14_param_gated_seed_46/config.json +25 -0
- logs_svd_gated/mode_14_param_gated_seed_46/training_log_f81cb117-3729-42b6-a4bf-001b4dc1d990.txt +0 -0
- logs_svd_gated/mode_14_param_gated_seed_47/config.json +25 -0
- logs_svd_gated/mode_14_param_gated_seed_47/training_log_7633ecfb-e90e-4d78-8c06-563f8c802dee.txt +0 -0
- logs_svd_gated/mode_14_param_gated_seed_48/config.json +25 -0
- logs_svd_gated/mode_14_param_gated_seed_48/training_log_add87a33-be2f-4e3e-afdf-d3bf661e7185.txt +0 -0
- logs_svd_gated/mode_14_param_gated_seed_49/config.json +25 -0
- logs_svd_gated/mode_14_param_gated_seed_49/training_log_a67ed87a-addb-45e9-9122-746d6f16e641.txt +0 -0
- logs_svd_gated/mode_14_param_gated_seed_50/config.json +25 -0
- logs_svd_gated/mode_14_param_gated_seed_50/training_log_20edc821-54ac-4e8f-8176-8387c86d21f5.txt +0 -0
- logs_svd_gated/mode_15_param_gated_seed_41/config.json +25 -0
- logs_svd_gated/mode_15_param_gated_seed_41/training_log_f146521e-11b7-47c0-93e1-af861941cb9b.txt +0 -0
- logs_svd_gated/mode_15_param_gated_seed_42/config.json +25 -0
- logs_svd_gated/mode_15_param_gated_seed_42/training_log_1501a628-3a92-4eec-9378-5faa95a74a96.txt +0 -0
- logs_svd_gated/mode_15_param_gated_seed_43/config.json +25 -0
- logs_svd_gated/mode_15_param_gated_seed_43/training_log_e0218743-5660-4687-92f9-454060288cb7.txt +0 -0
- logs_svd_gated/mode_15_param_gated_seed_44/config.json +25 -0
- logs_svd_gated/mode_15_param_gated_seed_44/training_log_4acb41e0-2540-49e6-8cc2-39b68527f0d1.txt +0 -0
- logs_svd_gated/mode_15_param_gated_seed_45/config.json +25 -0
logs_svd_gated/mode_13_param_gated_seed_41/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 41,
|
| 5 |
+
"optimizer_mode": 13,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "53ddf4cc-e033-4acf-bc2d-5f9f5c822ce1",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_13_param_gated_seed_41/training_log_53ddf4cc-e033-4acf-bc2d-5f9f5c822ce1.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_13_param_gated_seed_41/training_log_d270cd1a-a1f4-441e-a235-1836f2598c11.txt
ADDED
|
@@ -0,0 +1,1760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: --- Script Start: Thu Sep 4 15:58:23 2025 ---
|
| 2 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: --- Script Start: Thu Sep 4 15:58:23 2025 ---
|
| 3 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: Parsed CLI args: Namespace(unet=False, seed=41, optimizer_mode=13, model_parameterization='gated', adam_lr=0.05, muon_lr=0.05, base_dir='logs_svd_gated')
|
| 4 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: Parsed CLI args: Namespace(unet=False, seed=41, optimizer_mode=13, model_parameterization='gated', adam_lr=0.05, muon_lr=0.05, base_dir='logs_svd_gated')
|
| 5 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: Hyperparameters: Hyperparameters()
|
| 6 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: Hyperparameters: Hyperparameters()
|
| 7 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: Using fixed seed: 41
|
| 8 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: Using fixed seed: 41
|
| 9 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: Run directory: logs_svd_gated/mode_13_param_gated_seed_41
|
| 10 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: Run directory: logs_svd_gated/mode_13_param_gated_seed_41
|
| 11 |
+
[2025-09-04 15:58:23] [Rank 0] import os
|
| 12 |
+
import sys
|
| 13 |
+
with open(sys.argv[0]) as f:
|
| 14 |
+
code = f.read() # read the code of this file ASAP, for logging
|
| 15 |
+
import uuid
|
| 16 |
+
import time
|
| 17 |
+
import copy
|
| 18 |
+
import glob
|
| 19 |
+
from dataclasses import dataclass, asdict
|
| 20 |
+
from functools import lru_cache
|
| 21 |
+
from pathlib import Path
|
| 22 |
+
import argparse # Keep argparse for --unet and potentially --optimizer_mode
|
| 23 |
+
import json
|
| 24 |
+
import random
|
| 25 |
+
import numpy as np
|
| 26 |
+
|
| 27 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 28 |
+
import torch
|
| 29 |
+
torch.empty(1, device="cuda", requires_grad=True).backward() # prevents a bug on some systems
|
| 30 |
+
from torch import Tensor, nn
|
| 31 |
+
import torch.nn.functional as F
|
| 32 |
+
import torch.distributed as dist
|
| 33 |
+
# use of FlexAttention contributed by @KoszarskyB
|
| 34 |
+
from torch.nn.attention.flex_attention import BlockMask, flex_attention
|
| 35 |
+
sys.path.append("/home/aiops/zhangfz/MUON_theory/modded-nanogpt") # Already present
|
| 36 |
+
from optimizers.MUON_new import Muon
|
| 37 |
+
from utils.float_compute import mm_op, backward as mm_backward_custom, setup_context as mm_setup_context_custom # Renamed
|
| 38 |
+
|
| 39 |
+
#from kn_util.utils import setup_debugpy
|
| 40 |
+
#torch._inductor.config.coordinate_descent_tuning = True
|
| 41 |
+
|
| 42 |
+
# -----------------------------------------------------------------------------
|
| 43 |
+
|
| 44 |
+
mm_op.register_autograd(mm_backward_custom, setup_context=mm_setup_context_custom) # Use renamed imports
|
| 45 |
+
|
| 46 |
+
# -----------------------------------------------------------------------------
|
| 47 |
+
# Seeding Function
|
| 48 |
+
def set_seed(seed):
|
| 49 |
+
random.seed(seed)
|
| 50 |
+
np.random.seed(seed)
|
| 51 |
+
torch.manual_seed(seed)
|
| 52 |
+
if torch.cuda.is_available():
|
| 53 |
+
torch.cuda.manual_seed_all(seed)
|
| 54 |
+
print(f"PRINT: Set seed to {seed}", flush=True) # Print immediately for all ranks
|
| 55 |
+
|
| 56 |
+
# -----------------------------------------------------------------------------
|
| 57 |
+
# Our own simple Distributed Data Loader (KEEP AS IS)
|
| 58 |
+
def _load_data_shard(file: Path):
|
| 59 |
+
header = torch.from_file(str(file), False, 256, dtype=torch.int32)
|
| 60 |
+
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
|
| 61 |
+
assert header[1] == 1, "unsupported version"
|
| 62 |
+
num_tokens = int(header[2])
|
| 63 |
+
with file.open("rb", buffering=0) as f:
|
| 64 |
+
tokens = torch.empty(num_tokens, dtype=torch.uint16, pin_memory=True)
|
| 65 |
+
f.seek(256 * 4)
|
| 66 |
+
nbytes = f.readinto(tokens.numpy())
|
| 67 |
+
assert nbytes == 2 * num_tokens, "number of tokens read does not match header"
|
| 68 |
+
return tokens
|
| 69 |
+
|
| 70 |
+
def distributed_data_generator(filename_pattern: str, batch_size: int, rank : int, world_size : int):
|
| 71 |
+
files = [Path(file) for file in sorted(glob.glob(filename_pattern))]
|
| 72 |
+
assert batch_size % world_size == 0
|
| 73 |
+
local_batch_size = batch_size // world_size
|
| 74 |
+
file_iter = iter(files) # use itertools.cycle(files) instead if you want to do multi-epoch training
|
| 75 |
+
tokens, pos = _load_data_shard(next(file_iter)), 0
|
| 76 |
+
while True:
|
| 77 |
+
if pos + batch_size + 1 >= len(tokens):
|
| 78 |
+
tokens, pos = _load_data_shard(next(file_iter)), 0
|
| 79 |
+
buf = tokens[pos + rank * local_batch_size:][:local_batch_size + 1]
|
| 80 |
+
inputs = buf[:-1].to(device="cuda", dtype=torch.int32, non_blocking=True) # no sync on host side;
|
| 81 |
+
targets = buf[1:].to(device="cuda", dtype=torch.int64, non_blocking=True) # H2D in another stream isn't helpful.
|
| 82 |
+
pos += batch_size
|
| 83 |
+
yield inputs, targets
|
| 84 |
+
|
| 85 |
+
# ---- ADD: spectral metrics helper right after calculate_svd_entropy ----
|
| 86 |
+
def calculate_svd_metrics(matrix: torch.Tensor, *, topk: int = 10):
|
| 87 |
+
"""
|
| 88 |
+
Returns dict with:
|
| 89 |
+
- entropy_norm: normalized SVD entropy (same normalization as your function)
|
| 90 |
+
- erank: effective rank = exp(Shannon entropy of p)
|
| 91 |
+
- topk_energy: sum of top-k p_i (energy fraction in the top-k singular values)
|
| 92 |
+
- q75_q25: ratio of 75th to 25th percentile of eigenvalues (sigma^2)
|
| 93 |
+
"""
|
| 94 |
+
with torch.no_grad():
|
| 95 |
+
s = torch.linalg.svdvals(matrix.detach().to('cpu', torch.float32))
|
| 96 |
+
s = s[s > 1e-9]
|
| 97 |
+
n = s.numel()
|
| 98 |
+
if n == 0:
|
| 99 |
+
return dict(entropy_norm=0.0, erank=0.0, topk_energy=0.0, q75_q25=float('inf'))
|
| 100 |
+
|
| 101 |
+
s2 = s * s
|
| 102 |
+
S2_sum = float(torch.sum(s2))
|
| 103 |
+
if S2_sum == 0.0:
|
| 104 |
+
return dict(entropy_norm=0.0, erank=0.0, topk_energy=0.0, q75_q25=float('inf'))
|
| 105 |
+
|
| 106 |
+
p = s2 / S2_sum # energy distribution
|
| 107 |
+
# Shannon entropy H (natural log)
|
| 108 |
+
H = float(torch.sum(torch.special.entr(p)))
|
| 109 |
+
entropy_norm = H / np.log(max(n, 2)) # same normalization as your SVD entropy
|
| 110 |
+
erank = float(np.exp(H))
|
| 111 |
+
|
| 112 |
+
k = min(topk, n)
|
| 113 |
+
topk_energy = float(torch.topk(p, k).values.sum())
|
| 114 |
+
|
| 115 |
+
# eigenvalues = s^2, use quantiles on s^2
|
| 116 |
+
q25 = float(torch.quantile(s2, 0.25))
|
| 117 |
+
q75 = float(torch.quantile(s2, 0.75))
|
| 118 |
+
q75_q25 = (q75 / q25) if q25 > 0 else float('inf')
|
| 119 |
+
|
| 120 |
+
return dict(
|
| 121 |
+
entropy_norm=entropy_norm,
|
| 122 |
+
erank=erank,
|
| 123 |
+
topk_energy=topk_energy,
|
| 124 |
+
q75_q25=q75_q25,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# -----------------------------------------------------------------------------
|
| 129 |
+
# int main
|
| 130 |
+
parser = argparse.ArgumentParser(description="NanoGPT Training Script with Muon")
|
| 131 |
+
parser.add_argument("--unet", action="store_true", help="Use U-net architecture")
|
| 132 |
+
parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility")
|
| 133 |
+
# --- MODIFICATION: Add optimizer_mode as a CLI argument ---
|
| 134 |
+
parser.add_argument("--optimizer_mode", type=int, default=0,
|
| 135 |
+
help="Defines how Muon is applied. "
|
| 136 |
+
"0: Muon(All Hidden Attn+MLP - original); "
|
| 137 |
+
"1: Muon(QK Attn)/Adam(VO Attn,MLP); "
|
| 138 |
+
"2: Muon(VO Attn)/Adam(QK Attn,MLP); "
|
| 139 |
+
"3: Muon(All Attn)/Adam(MLP); "
|
| 140 |
+
"4: Muon(MLP)/Adam(All Attn)"
|
| 141 |
+
"5: All Adam (No Muon, all applicable matrices to Adam)."
|
| 142 |
+
"6: Muon(W_2 MLP)/Adam(attn, W_1 MLP)."
|
| 143 |
+
"7: Muon(VO Attn, MLP)/Adam(QK Attn)."
|
| 144 |
+
"8: Muon(VO Attn, W_2 MLP)/Adam(QK Attn, W_1 MLP)."
|
| 145 |
+
"11: Muon(W_1)/Adam(O Attn, QK Attn)."
|
| 146 |
+
)
|
| 147 |
+
parser.add_argument("--model_parameterization", type=str, default="whole",choices=["whole","qkvo", "norope", "gated"])
|
| 148 |
+
parser.add_argument("--adam_lr", type=float, default=0.008, help="Learning rate for Adam matrices")
|
| 149 |
+
parser.add_argument("--muon_lr", type=float, default=0.05, help="Learning rate for Muon matrices")
|
| 150 |
+
parser.add_argument("--base_dir", type=str, default="logs_all_0821/gated", help="Base directory for logs")
|
| 151 |
+
exp_args = parser.parse_args()
|
| 152 |
+
set_seed(exp_args.seed)
|
| 153 |
+
|
| 154 |
+
# --- MODIFICATION: Import correct GPT model based on --unet flag ---
|
| 155 |
+
if exp_args.unet:
|
| 156 |
+
print("Using U-net architecture")
|
| 157 |
+
from models.nano_GPT_unet import GPT
|
| 158 |
+
elif exp_args.model_parameterization == "qkvo":
|
| 159 |
+
print("Using architecture (models.nano_gpt_qkvo) with CausalSelfAttention having q_w, k_w, v_w")
|
| 160 |
+
# This MUST be the nano_GPT.py file where CausalSelfAttention has q_w, k_w, v_w
|
| 161 |
+
|
| 162 |
+
from models.nano_GPT_qkvo import GPT
|
| 163 |
+
|
| 164 |
+
elif exp_args.model_parameterization == "norope":
|
| 165 |
+
print("Using architecture (models.nano_GPT_norope) with CausalSelfAttention having q_w, k_w, v_w")
|
| 166 |
+
from models.nano_GPT_norope import GPT
|
| 167 |
+
|
| 168 |
+
elif exp_args.model_parameterization == "gated":
|
| 169 |
+
print("Using architecture (models.nano_GPT_gated) with CausalSelfAttention having q_w, k_w, v_w")
|
| 170 |
+
from models.nano_GPT_gated import GPT
|
| 171 |
+
|
| 172 |
+
elif exp_args.model_parameterization == "whole":
|
| 173 |
+
print("Using original architecture")
|
| 174 |
+
from models.nano_GPT import GPT
|
| 175 |
+
|
| 176 |
+
@dataclass
|
| 177 |
+
class Hyperparameters:
|
| 178 |
+
# data
|
| 179 |
+
|
| 180 |
+
#train_files = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin"
|
| 181 |
+
#val_files = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin"
|
| 182 |
+
train_files = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin"
|
| 183 |
+
val_files = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin"
|
| 184 |
+
val_tokens = 1966080
|
| 185 |
+
#val_tokens = 10485760
|
| 186 |
+
train_seq_len = 12*1024
|
| 187 |
+
val_seq_len = 4*16*1024
|
| 188 |
+
#train_seq_len = 48*1024 # FlexAttention sequence length
|
| 189 |
+
#train_seq_len = 12*1024 # FlexAttention sequence length
|
| 190 |
+
#val_seq_len = 4*64*1024 # FlexAttention sequence length for validation
|
| 191 |
+
|
| 192 |
+
# optimization
|
| 193 |
+
num_iterations = 10000 #1770 # Original: 1770
|
| 194 |
+
cooldown_frac = 0.4
|
| 195 |
+
# architecture
|
| 196 |
+
|
| 197 |
+
vocab_size = 50257
|
| 198 |
+
|
| 199 |
+
# evaluation and logging
|
| 200 |
+
val_loss_every = 200 # Original: 125
|
| 201 |
+
save_checkpoint = False
|
| 202 |
+
args = Hyperparameters()
|
| 203 |
+
|
| 204 |
+
# DDP setup (KEEP AS IS, but ensure rank and world_size are correctly used)
|
| 205 |
+
rank = int(os.environ.get("RANK", 0))
|
| 206 |
+
local_rank = int(os.environ.get("LOCAL_RANK", 0)) # Used for device setting
|
| 207 |
+
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
| 208 |
+
|
| 209 |
+
# print(f"[Rank {rank}] Global Rank: {rank}, Local Rank: {local_rank}, World Size: {world_size}", flush=True) # Debug
|
| 210 |
+
|
| 211 |
+
assert torch.cuda.is_available()
|
| 212 |
+
device = torch.device("cuda", local_rank) # Use local_rank for device
|
| 213 |
+
torch.cuda.set_device(device)
|
| 214 |
+
|
| 215 |
+
if not dist.is_initialized(): # Ensure DDP is initialized only once
|
| 216 |
+
dist.init_process_group(backend="nccl", rank=rank, world_size=world_size) # Pass rank and world_size
|
| 217 |
+
dist.barrier()
|
| 218 |
+
master_process = (rank == 0)
|
| 219 |
+
|
| 220 |
+
# Logging setup (KEEP AS IS, but maybe add optimizer_mode to filename)
|
| 221 |
+
logfile = None
|
| 222 |
+
# --- MODIFICATION: Add optimizer_mode to log file name and specify new dir ---
|
| 223 |
+
#log_dir = "modded-nanogpt/logs_detailed_attn_minimal_changes"
|
| 224 |
+
#if master_process:
|
| 225 |
+
# run_id = uuid.uuid4()
|
| 226 |
+
# os.makedirs(log_dir, exist_ok=True) # Create new log directory
|
| 227 |
+
# logfile = f"{log_dir}/exp_mode_{exp_args.optimizer_mode}_param_{exp_args.model_parameterization}_{run_id}.txt"
|
| 228 |
+
# print(f"Logging to: {logfile}")
|
| 229 |
+
|
| 230 |
+
logfile = None
|
| 231 |
+
run_dir_path_str = None
|
| 232 |
+
|
| 233 |
+
base_log_dir = Path(exp_args.base_dir)
|
| 234 |
+
|
| 235 |
+
if master_process:
|
| 236 |
+
# Set seed again specifically for master process for operations like dir creation, config saving
|
| 237 |
+
set_seed(exp_args.seed)
|
| 238 |
+
|
| 239 |
+
# Construct folder name based on config and seed
|
| 240 |
+
run_folder_name = f"mode_{exp_args.optimizer_mode}_param_{exp_args.model_parameterization}_seed_{exp_args.seed}"
|
| 241 |
+
run_dir_path = base_log_dir / run_folder_name
|
| 242 |
+
run_dir_path.mkdir(parents=True, exist_ok=True)
|
| 243 |
+
run_dir_path_str = str(run_dir_path)
|
| 244 |
+
|
| 245 |
+
run_uuid = uuid.uuid4()
|
| 246 |
+
logfile = run_dir_path / f"training_log_{run_uuid}.txt"
|
| 247 |
+
print(f"Logging to: {logfile}")
|
| 248 |
+
|
| 249 |
+
# Save configuration
|
| 250 |
+
config_to_save = {
|
| 251 |
+
"cli_args": vars(exp_args),
|
| 252 |
+
"hyperparameters": {k: v for k, v in args.__class__.__dict__.items() if not k.startswith('__') and not callable(v)},
|
| 253 |
+
"run_uuid_for_log": str(run_uuid),
|
| 254 |
+
"script_code_logged_at_start": True
|
| 255 |
+
}
|
| 256 |
+
config_file_path = run_dir_path / "config.json"
|
| 257 |
+
with open(config_file_path, "w") as f:
|
| 258 |
+
json.dump(config_to_save, f, indent=4)
|
| 259 |
+
print(f"Saved configuration to: {config_file_path}")
|
| 260 |
+
|
| 261 |
+
def print0(s, console=False):
|
| 262 |
+
if master_process:
|
| 263 |
+
# Add timestamp and rank for better log readability
|
| 264 |
+
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
| 265 |
+
log_message = f"[{timestamp}] [Rank {rank}] {s}"
|
| 266 |
+
|
| 267 |
+
# Print to console if requested or if it's a specific "PRINT:" message
|
| 268 |
+
if console or s.startswith("PRINT:"):
|
| 269 |
+
actual_s = s[6:] if s.startswith("PRINT:") else s
|
| 270 |
+
print(actual_s) # Print to stdout for master process
|
| 271 |
+
|
| 272 |
+
if logfile:
|
| 273 |
+
with open(logfile, "a") as f:
|
| 274 |
+
f.write(log_message + "\n")
|
| 275 |
+
|
| 276 |
+
with open(logfile, "a") as f:
|
| 277 |
+
f.write(log_message + "\n")
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
print0(f"PRINT: --- Script Start: {time.ctime()} ---", console=True)
|
| 281 |
+
print0(f"PRINT: Parsed CLI args: {exp_args}", console=True)
|
| 282 |
+
print0(f"PRINT: Hyperparameters: {args}", console=True)
|
| 283 |
+
print0(f"PRINT: Using fixed seed: {exp_args.seed}", console=True)
|
| 284 |
+
if master_process:
|
| 285 |
+
print0(f"PRINT: Run directory: {run_dir_path_str}", console=True)
|
| 286 |
+
print0(code) # Log the code
|
| 287 |
+
# ... (other initial logs)
|
| 288 |
+
|
| 289 |
+
########################################
|
| 290 |
+
# Construct model and optimizer #
|
| 291 |
+
########################################
|
| 292 |
+
print0("PRINT: Constructing model...", console=True)
|
| 293 |
+
model: nn.Module = GPT(vocab_size=args.vocab_size, num_layers=12, num_heads=6, model_dim=768,
|
| 294 |
+
max_seq_len=max(args.train_seq_len, args.val_seq_len)).cuda()
|
| 295 |
+
for m in model.modules():
|
| 296 |
+
if isinstance(m, nn.Embedding):
|
| 297 |
+
m.bfloat16()
|
| 298 |
+
print0("PRINT: Broadcasting model parameters...", console=True)
|
| 299 |
+
for param in model.parameters():
|
| 300 |
+
dist.broadcast(param.detach(), 0)
|
| 301 |
+
print0("PRINT: Model constructed and broadcasted.", console=True)
|
| 302 |
+
|
| 303 |
+
# --- START MODIFIED PARAMETER COLLECTION AND OPTIMIZER SETUP ---
|
| 304 |
+
if exp_args.model_parameterization == "qkvo" or exp_args.model_parameterization == "norope":
|
| 305 |
+
print0("PRINT: Collecting parameters for optimizers...", console=True)
|
| 306 |
+
head_params = [model.lm_head.weight]
|
| 307 |
+
embed_params = [model.embed.weight] + [ve.weight for ve in model.value_embeds]
|
| 308 |
+
|
| 309 |
+
# Granular collection for attention and MLP parts
|
| 310 |
+
attn_q_params = []
|
| 311 |
+
attn_k_params = []
|
| 312 |
+
attn_v_params = []
|
| 313 |
+
attn_o_params = [] # W_O from c_proj
|
| 314 |
+
mlp_fc_params = []
|
| 315 |
+
mlp_proj_params = []
|
| 316 |
+
|
| 317 |
+
for block_module in model.blocks:
|
| 318 |
+
if block_module.attn is not None:
|
| 319 |
+
# These attributes (q_w, k_w, v_w) MUST exist in your CausalSelfAttention class
|
| 320 |
+
if hasattr(block_module.attn, 'q_w'): attn_q_params.append(block_module.attn.q_w)
|
| 321 |
+
else: print0(f"PRINT: Warning: q_w not found in attn module of a block.", console=True)
|
| 322 |
+
if hasattr(block_module.attn, 'k_w'): attn_k_params.append(block_module.attn.k_w)
|
| 323 |
+
else: print0(f"PRINT: Warning: k_w not found in attn module of a block.", console=True)
|
| 324 |
+
if hasattr(block_module.attn, 'v_w'): attn_v_params.append(block_module.attn.v_w)
|
| 325 |
+
else: print0(f"PRINT: Warning: v_w not found in attn module of a block.", console=True)
|
| 326 |
+
attn_o_params.append(block_module.attn.c_proj.weight)
|
| 327 |
+
if block_module.mlp is not None:
|
| 328 |
+
mlp_fc_params.append(block_module.mlp.c_fc.weight)
|
| 329 |
+
mlp_proj_params.append(block_module.mlp.c_proj.weight)
|
| 330 |
+
|
| 331 |
+
# Combine into logical groups for experiments
|
| 332 |
+
attn_qk_group = attn_q_params + attn_k_params
|
| 333 |
+
attn_vo_group = attn_v_params + attn_o_params
|
| 334 |
+
all_attn_matrices = attn_qk_group + attn_vo_group
|
| 335 |
+
mlp_w1_group = mlp_fc_params
|
| 336 |
+
mlp_w2_group = mlp_proj_params
|
| 337 |
+
all_mlp_matrices = mlp_fc_params + mlp_proj_params
|
| 338 |
+
|
| 339 |
+
# Scalar parameters (all others not explicitly grouped as matrices)
|
| 340 |
+
matrix_params_for_scalar_check = set(head_params + embed_params + all_attn_matrices + all_mlp_matrices)
|
| 341 |
+
scalar_params = [p for n, p in model.named_parameters() if p not in matrix_params_for_scalar_check]
|
| 342 |
+
for p_scalar in scalar_params: # Sanity check
|
| 343 |
+
if p_scalar.ndim >=2:
|
| 344 |
+
print0(f"PRINT: Warning - Parameter {p_scalar.shape} ended up in scalar_params but has ndim >= 2. Check grouping.", console=True)
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
# Determine parameter distribution based on optimizer_mode
|
| 348 |
+
muon_params_target_list = []
|
| 349 |
+
adam_matrix_target_list = [] # Matrices that Adam will handle specifically
|
| 350 |
+
adam_matrix_lr = exp_args.adam_lr # LR for matrices if Adam handles them (can be tuned)
|
| 351 |
+
|
| 352 |
+
current_optimizer_mode = exp_args.optimizer_mode
|
| 353 |
+
print0(f"PRINT: Configuring optimizers for EXPERIMENT_MODE = {current_optimizer_mode}", console=True)
|
| 354 |
+
|
| 355 |
+
if current_optimizer_mode == 0: # Original behavior: Muon on all "hidden_matrix_params"
|
| 356 |
+
print0(f"PRINT: Mode 0: Muon on ALL Attention (QKVO) and ALL MLP matrices.", console=True)
|
| 357 |
+
muon_params_target_list = all_attn_matrices + all_mlp_matrices
|
| 358 |
+
# Adam handles embeds, head, scalars by default. No extra matrices for Adam here.
|
| 359 |
+
elif current_optimizer_mode == 1: # Muon on QK, Adam on VO and MLP
|
| 360 |
+
print0(f"PRINT: Mode 1: Muon on QK Attn. Adam on VO Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 361 |
+
muon_params_target_list = attn_qk_group
|
| 362 |
+
adam_matrix_target_list = attn_vo_group + all_mlp_matrices
|
| 363 |
+
elif current_optimizer_mode == 2: # Muon on VO, Adam on QK and MLP
|
| 364 |
+
print0(f"PRINT: Mode 2: Muon on VO Attn. Adam on QK Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 365 |
+
muon_params_target_list = attn_vo_group
|
| 366 |
+
adam_matrix_target_list = attn_qk_group + all_mlp_matrices
|
| 367 |
+
elif current_optimizer_mode == 3: # Muon on All Attn (QKVO), Adam on MLP
|
| 368 |
+
print0(f"PRINT: Mode 3: Muon on ALL Attn (QKVO). Adam on MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 369 |
+
muon_params_target_list = all_attn_matrices
|
| 370 |
+
adam_matrix_target_list = all_mlp_matrices
|
| 371 |
+
elif current_optimizer_mode == 4: # Muon on MLP, Adam on All Attn (QKVO)
|
| 372 |
+
print0(f"PRINT: Mode 4: Muon on MLP. Adam on ALL Attn (QKVO) (Adam LR: {adam_matrix_lr}).", console=True)
|
| 373 |
+
muon_params_target_list = all_mlp_matrices
|
| 374 |
+
adam_matrix_target_list = all_attn_matrices
|
| 375 |
+
elif current_optimizer_mode == 5: # NEW MODE 5 - All Adam
|
| 376 |
+
print0(f"PRINT: Mode 5: All Adam. All Attn and MLP matrices to Adam (Adam LR: {adam_matrix_lr}).", console=True)
|
| 377 |
+
muon_params_target_list = []
|
| 378 |
+
adam_matrix_target_list = all_attn_matrices + all_mlp_matrices # All matrices to Adam
|
| 379 |
+
elif current_optimizer_mode == 6: # Muon on W_2 MLP, Adam on attn, W_1 MLP
|
| 380 |
+
print0(f"PRINT: Mode 6: Muon on W_2 MLP. Adam on attn, W_1 MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 381 |
+
muon_params_target_list = mlp_w2_group
|
| 382 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w1_group
|
| 383 |
+
elif current_optimizer_mode == 7: # Muon on VO Attn, MLP, Adam on QK Attn
|
| 384 |
+
print0(f"PRINT: Mode 7: Muon on VO Attn, MLP. Adam on QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 385 |
+
muon_params_target_list = attn_vo_group + all_mlp_matrices
|
| 386 |
+
adam_matrix_target_list = attn_qk_group
|
| 387 |
+
elif current_optimizer_mode == 8: # Muon on VO Attn, W_2 MLP, Adam on QK Attn, W_1 MLP
|
| 388 |
+
print0(f"PRINT: Mode 8: Muon on VO Attn, W_2 MLP. Adam on QK Attn, W_1 MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 389 |
+
muon_params_target_list = attn_vo_group + mlp_w2_group
|
| 390 |
+
adam_matrix_target_list = attn_qk_group + mlp_w1_group
|
| 391 |
+
elif current_optimizer_mode == 9: # Muon on V Attn, MLP
|
| 392 |
+
print0(f"PRINT: Mode 9: Muon on V Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 393 |
+
muon_params_target_list = attn_v_params + all_mlp_matrices
|
| 394 |
+
adam_matrix_target_list = attn_o_params + attn_qk_group
|
| 395 |
+
elif current_optimizer_mode == 10: # Muon on O Attn, MLP
|
| 396 |
+
print0(f"PRINT: Mode 10: Muon on O Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 397 |
+
muon_params_target_list = attn_o_params + all_mlp_matrices
|
| 398 |
+
adam_matrix_target_list = attn_v_params + attn_qk_group
|
| 399 |
+
elif current_optimizer_mode == 11: # Muon on W_1, Adam on O Attn, QK Attn
|
| 400 |
+
print0(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 401 |
+
muon_params_target_list = mlp_w1_group
|
| 402 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w2_group
|
| 403 |
+
elif current_optimizer_mode == 12: # Muon on W_1, VO, Adam on others
|
| 404 |
+
print0(f"PRINT: Mode 12: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 405 |
+
muon_params_target_list = attn_vo_group + mlp_w1_group
|
| 406 |
+
adam_matrix_target_list = attn_qk_group + mlp_w2_group
|
| 407 |
+
elif current_optimizer_mode == 13:
|
| 408 |
+
print0(f"PRINT: Mode 13: Muon on W_2, W_O. Adam on V Attn, QK Attn, W_1 (Adam LR: {adam_matrix_lr}).", console=True)
|
| 409 |
+
muon_params_target_list = attn_o_params + mlp_w2_group
|
| 410 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params + mlp_w1_group
|
| 411 |
+
elif current_optimizer_mode == 14:
|
| 412 |
+
print0(f"PRINT: Mode 14: Muon on W_O. Adam on V Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 413 |
+
muon_params_target_list = attn_o_params
|
| 414 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params +all_mlp_matrices
|
| 415 |
+
elif current_optimizer_mode == 15:
|
| 416 |
+
print0(f"PRINT: Mode 15: Muon on W_V. Adam on O Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 417 |
+
muon_params_target_list = attn_v_params
|
| 418 |
+
adam_matrix_target_list = attn_qk_group + attn_o_params +all_mlp_matrices
|
| 419 |
+
else:
|
| 420 |
+
raise ValueError(f"Unsupported EXPERIMENT_MODE: {current_optimizer_mode}")
|
| 421 |
+
|
| 422 |
+
# Adam optimizer setup
|
| 423 |
+
adam_param_groups_config = [
|
| 424 |
+
dict(params=head_params, lr=adam_matrix_lr),
|
| 425 |
+
dict(params=embed_params, lr=adam_matrix_lr),
|
| 426 |
+
dict(params=scalar_params, lr=adam_matrix_lr) # Scalar params always go to Adam
|
| 427 |
+
]
|
| 428 |
+
# Add matrices specifically assigned to Adam for this experiment mode
|
| 429 |
+
if adam_matrix_target_list:
|
| 430 |
+
# Ensure adam_matrix_target_list is flat and contains Parameters
|
| 431 |
+
flat_adam_matrices = [p for sublist_or_p in adam_matrix_target_list for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]) if p is not None]
|
| 432 |
+
if flat_adam_matrices: # Only add group if there are params
|
| 433 |
+
adam_param_groups_config.append(dict(params=flat_adam_matrices, lr=adam_matrix_lr))
|
| 434 |
+
|
| 435 |
+
# Filter out any Adam groups that might be empty (e.g., if scalar_params was empty)
|
| 436 |
+
adam_param_groups_config = [g for g in adam_param_groups_config if g['params']]
|
| 437 |
+
optimizer1 = torch.optim.Adam(adam_param_groups_config, betas=(0.8, 0.95), eps=1e-10, fused=True)
|
| 438 |
+
optimizers = [optimizer1] # Start with Adam
|
| 439 |
+
|
| 440 |
+
# Muon optimizer setup
|
| 441 |
+
if muon_params_target_list:
|
| 442 |
+
# Ensure muon_params_target_list is flat, unique, and contains Parameters
|
| 443 |
+
flat_unique_muon_params = []
|
| 444 |
+
seen_muon_ids = set()
|
| 445 |
+
for sublist_or_p in muon_params_target_list:
|
| 446 |
+
for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]):
|
| 447 |
+
if p is not None and id(p) not in seen_muon_ids:
|
| 448 |
+
flat_unique_muon_params.append(p)
|
| 449 |
+
seen_muon_ids.add(id(p))
|
| 450 |
+
|
| 451 |
+
if flat_unique_muon_params: # Only create Muon if it has parameters
|
| 452 |
+
optimizer2 = Muon(flat_unique_muon_params, lr=exp_args.muon_lr, momentum=0.95, weight_decay=0.0) # Pass nesterov, ns_steps
|
| 453 |
+
optimizers.append(optimizer2)
|
| 454 |
+
else:
|
| 455 |
+
print0("PRINT: Muon optimizer not created as its target parameter list was empty.", console=True)
|
| 456 |
+
optimizer2 = None # Explicitly set to None if not created
|
| 457 |
+
else:
|
| 458 |
+
print0("PRINT: Muon optimizer not created as muon_params_target_list was empty (e.g. mode where Adam handles all matrices).", console=True)
|
| 459 |
+
optimizer2 = None # Explicitly set to None
|
| 460 |
+
|
| 461 |
+
print0(f"PRINT: Optimizers configured. Total optimizers: {len(optimizers)}", console=True)
|
| 462 |
+
if optimizer2:
|
| 463 |
+
print0(f"PRINT: Muon optimizer is active with {len(flat_unique_muon_params)} parameters.", console=True)
|
| 464 |
+
# --- END MODIFIED PARAMETER COLLECTION AND OPTIMIZER SETUP ---
|
| 465 |
+
elif exp_args.model_parameterization == "gated" :
|
| 466 |
+
print0("PRINT: Collecting parameters for optimizers...", console=True)
|
| 467 |
+
head_params = [model.lm_head.weight]
|
| 468 |
+
embed_params = [model.embed.weight] + [ve.weight for ve in model.value_embeds]
|
| 469 |
+
|
| 470 |
+
# Granular collection for attention and MLP parts
|
| 471 |
+
attn_q_params = []
|
| 472 |
+
attn_k_params = []
|
| 473 |
+
attn_v_params = []
|
| 474 |
+
attn_o_params = [] # W_O from c_proj
|
| 475 |
+
mlp_fc_params = []
|
| 476 |
+
mlp_proj_params = []
|
| 477 |
+
mlp_up_params = []
|
| 478 |
+
|
| 479 |
+
for block_module in model.blocks:
|
| 480 |
+
if block_module.attn is not None:
|
| 481 |
+
# These attributes (q_w, k_w, v_w) MUST exist in your CausalSelfAttention class
|
| 482 |
+
if hasattr(block_module.attn, 'q_w'): attn_q_params.append(block_module.attn.q_w)
|
| 483 |
+
else: print0(f"PRINT: Warning: q_w not found in attn module of a block.", console=True)
|
| 484 |
+
if hasattr(block_module.attn, 'k_w'): attn_k_params.append(block_module.attn.k_w)
|
| 485 |
+
else: print0(f"PRINT: Warning: k_w not found in attn module of a block.", console=True)
|
| 486 |
+
if hasattr(block_module.attn, 'v_w'): attn_v_params.append(block_module.attn.v_w)
|
| 487 |
+
else: print0(f"PRINT: Warning: v_w not found in attn module of a block.", console=True)
|
| 488 |
+
attn_o_params.append(block_module.attn.c_proj.weight)
|
| 489 |
+
if block_module.mlp is not None:
|
| 490 |
+
mlp_fc_params.append(block_module.mlp.c_fc.weight)
|
| 491 |
+
mlp_proj_params.append(block_module.mlp.c_proj.weight)
|
| 492 |
+
mlp_up_params.append(block_module.mlp.c_up.weight)
|
| 493 |
+
|
| 494 |
+
# Combine into logical groups for experiments
|
| 495 |
+
attn_qk_group = attn_q_params + attn_k_params
|
| 496 |
+
attn_vo_group = attn_v_params + attn_o_params
|
| 497 |
+
all_attn_matrices = attn_qk_group + attn_vo_group
|
| 498 |
+
mlp_w1_group = mlp_fc_params + mlp_up_params
|
| 499 |
+
mlp_w2_group = mlp_proj_params
|
| 500 |
+
all_mlp_matrices = mlp_fc_params + mlp_proj_params+ mlp_up_params
|
| 501 |
+
|
| 502 |
+
# Scalar parameters (all others not explicitly grouped as matrices)
|
| 503 |
+
matrix_params_for_scalar_check = set(head_params + embed_params + all_attn_matrices + all_mlp_matrices)
|
| 504 |
+
scalar_params = [p for n, p in model.named_parameters() if p not in matrix_params_for_scalar_check]
|
| 505 |
+
for p_scalar in scalar_params: # Sanity check
|
| 506 |
+
if p_scalar.ndim >=2:
|
| 507 |
+
print0(f"PRINT: Warning - Parameter {p_scalar.shape} ended up in scalar_params but has ndim >= 2. Check grouping.", console=True)
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
# Determine parameter distribution based on optimizer_mode
|
| 511 |
+
muon_params_target_list = []
|
| 512 |
+
adam_matrix_target_list = [] # Matrices that Adam will handle specifically
|
| 513 |
+
adam_matrix_lr = exp_args.adam_lr # LR for matrices if Adam handles them (can be tuned)
|
| 514 |
+
|
| 515 |
+
current_optimizer_mode = exp_args.optimizer_mode
|
| 516 |
+
print0(f"PRINT: Configuring optimizers for EXPERIMENT_MODE = {current_optimizer_mode}", console=True)
|
| 517 |
+
|
| 518 |
+
if current_optimizer_mode == 0: # Original behavior: Muon on all "hidden_matrix_params"
|
| 519 |
+
print0(f"PRINT: Mode 0: Muon on ALL Attention (QKVO) and ALL MLP matrices.", console=True)
|
| 520 |
+
muon_params_target_list = all_attn_matrices + all_mlp_matrices
|
| 521 |
+
# Adam handles embeds, head, scalars by default. No extra matrices for Adam here.
|
| 522 |
+
elif current_optimizer_mode == 1: # Muon on QK, Adam on VO and MLP
|
| 523 |
+
print0(f"PRINT: Mode 1: Muon on QK Attn. Adam on VO Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 524 |
+
muon_params_target_list = attn_qk_group
|
| 525 |
+
adam_matrix_target_list = attn_vo_group + all_mlp_matrices
|
| 526 |
+
elif current_optimizer_mode == 2: # Muon on VO, Adam on QK and MLP
|
| 527 |
+
print0(f"PRINT: Mode 2: Muon on VO Attn. Adam on QK Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 528 |
+
muon_params_target_list = attn_vo_group
|
| 529 |
+
adam_matrix_target_list = attn_qk_group + all_mlp_matrices
|
| 530 |
+
elif current_optimizer_mode == 3: # Muon on All Attn (QKVO), Adam on MLP
|
| 531 |
+
print0(f"PRINT: Mode 3: Muon on ALL Attn (QKVO). Adam on MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 532 |
+
muon_params_target_list = all_attn_matrices
|
| 533 |
+
adam_matrix_target_list = all_mlp_matrices
|
| 534 |
+
elif current_optimizer_mode == 4: # Muon on MLP, Adam on All Attn (QKVO)
|
| 535 |
+
print0(f"PRINT: Mode 4: Muon on MLP. Adam on ALL Attn (QKVO) (Adam LR: {adam_matrix_lr}).", console=True)
|
| 536 |
+
muon_params_target_list = all_mlp_matrices
|
| 537 |
+
adam_matrix_target_list = all_attn_matrices
|
| 538 |
+
elif current_optimizer_mode == 5: # NEW MODE 5 - All Adam
|
| 539 |
+
print0(f"PRINT: Mode 5: All Adam. All Attn and MLP matrices to Adam (Adam LR: {adam_matrix_lr}).", console=True)
|
| 540 |
+
muon_params_target_list = []
|
| 541 |
+
adam_matrix_target_list = all_attn_matrices + all_mlp_matrices # All matrices to Adam
|
| 542 |
+
elif current_optimizer_mode == 6: # Muon on W_2 MLP, Adam on attn, W_1 MLP
|
| 543 |
+
print0(f"PRINT: Mode 6: Muon on W_2 MLP. Adam on attn, W_1 MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 544 |
+
muon_params_target_list = mlp_w2_group
|
| 545 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w1_group
|
| 546 |
+
elif current_optimizer_mode == 7: # Muon on VO Attn, MLP, Adam on QK Attn
|
| 547 |
+
print0(f"PRINT: Mode 7: Muon on VO Attn, MLP. Adam on QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 548 |
+
muon_params_target_list = attn_vo_group + all_mlp_matrices
|
| 549 |
+
adam_matrix_target_list = attn_qk_group
|
| 550 |
+
elif current_optimizer_mode == 8: # Muon on VO Attn, W_2 MLP, Adam on QK Attn, W_1 MLP
|
| 551 |
+
print0(f"PRINT: Mode 8: Muon on VO Attn, W_2 MLP. Adam on QK Attn, W_1 MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 552 |
+
muon_params_target_list = attn_vo_group + mlp_w2_group
|
| 553 |
+
adam_matrix_target_list = attn_qk_group + mlp_w1_group
|
| 554 |
+
elif current_optimizer_mode == 9: # Muon on V Attn, MLP
|
| 555 |
+
print0(f"PRINT: Mode 9: Muon on V Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 556 |
+
muon_params_target_list = attn_v_params + all_mlp_matrices
|
| 557 |
+
adam_matrix_target_list = attn_o_params + attn_qk_group
|
| 558 |
+
elif current_optimizer_mode == 10: # Muon on O Attn, MLP
|
| 559 |
+
print0(f"PRINT: Mode 10: Muon on O Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 560 |
+
muon_params_target_list = attn_o_params + all_mlp_matrices
|
| 561 |
+
adam_matrix_target_list = attn_v_params + attn_qk_group
|
| 562 |
+
elif current_optimizer_mode == 11: # Muon on W_1, Adam on O Attn, QK Attn
|
| 563 |
+
print0(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 564 |
+
muon_params_target_list = mlp_w1_group
|
| 565 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w2_group
|
| 566 |
+
elif current_optimizer_mode == 12: # Muon on W_1, VO, Adam on others
|
| 567 |
+
print0(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 568 |
+
muon_params_target_list = attn_vo_group + mlp_w1_group
|
| 569 |
+
adam_matrix_target_list = attn_qk_group + mlp_w2_group
|
| 570 |
+
else:
|
| 571 |
+
raise ValueError(f"Unsupported EXPERIMENT_MODE: {current_optimizer_mode}")
|
| 572 |
+
|
| 573 |
+
# Adam optimizer setup
|
| 574 |
+
adam_param_groups_config = [
|
| 575 |
+
dict(params=head_params, lr=adam_matrix_lr),
|
| 576 |
+
dict(params=embed_params, lr=adam_matrix_lr),
|
| 577 |
+
dict(params=scalar_params, lr=adam_matrix_lr) # Scalar params always go to Adam
|
| 578 |
+
]
|
| 579 |
+
# Add matrices specifically assigned to Adam for this experiment mode
|
| 580 |
+
if adam_matrix_target_list:
|
| 581 |
+
# Ensure adam_matrix_target_list is flat and contains Parameters
|
| 582 |
+
flat_adam_matrices = [p for sublist_or_p in adam_matrix_target_list for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]) if p is not None]
|
| 583 |
+
if flat_adam_matrices: # Only add group if there are params
|
| 584 |
+
adam_param_groups_config.append(dict(params=flat_adam_matrices, lr=adam_matrix_lr))
|
| 585 |
+
|
| 586 |
+
# Filter out any Adam groups that might be empty (e.g., if scalar_params was empty)
|
| 587 |
+
adam_param_groups_config = [g for g in adam_param_groups_config if g['params']]
|
| 588 |
+
optimizer1 = torch.optim.Adam(adam_param_groups_config, betas=(0.8, 0.95), eps=1e-10, fused=True)
|
| 589 |
+
optimizers = [optimizer1] # Start with Adam
|
| 590 |
+
|
| 591 |
+
# Muon optimizer setup
|
| 592 |
+
if muon_params_target_list:
|
| 593 |
+
# Ensure muon_params_target_list is flat, unique, and contains Parameters
|
| 594 |
+
flat_unique_muon_params = []
|
| 595 |
+
seen_muon_ids = set()
|
| 596 |
+
for sublist_or_p in muon_params_target_list:
|
| 597 |
+
for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]):
|
| 598 |
+
if p is not None and id(p) not in seen_muon_ids:
|
| 599 |
+
flat_unique_muon_params.append(p)
|
| 600 |
+
seen_muon_ids.add(id(p))
|
| 601 |
+
|
| 602 |
+
if flat_unique_muon_params: # Only create Muon if it has parameters
|
| 603 |
+
optimizer2 = Muon(flat_unique_muon_params, lr=exp_args.muon_lr, momentum=0.95, weight_decay=0.0)
|
| 604 |
+
optimizers.append(optimizer2)
|
| 605 |
+
else:
|
| 606 |
+
print0("PRINT: Muon optimizer not created as its target parameter list was empty.", console=True)
|
| 607 |
+
optimizer2 = None # Explicitly set to None if not created
|
| 608 |
+
else:
|
| 609 |
+
print0("PRINT: Muon optimizer not created as muon_params_target_list was empty (e.g. mode where Adam handles all matrices).", console=True)
|
| 610 |
+
optimizer2 = None # Explicitly set to None
|
| 611 |
+
|
| 612 |
+
print0(f"PRINT: Optimizers configured. Total optimizers: {len(optimizers)}", console=True)
|
| 613 |
+
if optimizer2:
|
| 614 |
+
print0(f"PRINT: Muon optimizer is active with {len(flat_unique_muon_params)} parameters.", console=True)
|
| 615 |
+
# --- END MODIFIED PARAMETER COLLECTION AND OPTIMIZER SETUP ---
|
| 616 |
+
elif exp_args.model_parameterization == "whole":
|
| 617 |
+
hidden_matrix_params = [p for n, p in model.blocks.named_parameters() if p.ndim >= 2 and "embed" not in n]
|
| 618 |
+
embed_params = [p for n, p in model.named_parameters() if "embed" in n]
|
| 619 |
+
scalar_params = [p for p in model.parameters() if p.ndim < 2]
|
| 620 |
+
head_params = [model.lm_head.weight]
|
| 621 |
+
|
| 622 |
+
# init the optimizer(s)
|
| 623 |
+
adam_params = [dict(params=head_params, lr=0.22), dict(params=embed_params, lr=0.6), dict(params=scalar_params, lr=0.04)]
|
| 624 |
+
# small adam epsilon by @YouJiacheng. this is an alternate method of fixing the world_size dependence
|
| 625 |
+
# discovered by @fernbear.bsky.social https://x.com/hi_tysam/status/1879692937589875094
|
| 626 |
+
optimizer1 = torch.optim.Adam(adam_params, betas=(0.8, 0.95), eps=1e-10, fused=True)
|
| 627 |
+
optimizer2 = Muon(hidden_matrix_params, lr=0.05, momentum=0.95, rank=rank, world_size=world_size)
|
| 628 |
+
optimizers = [optimizer1, optimizer2]
|
| 629 |
+
|
| 630 |
+
for opt in optimizers:
|
| 631 |
+
for group in opt.param_groups:
|
| 632 |
+
group["initial_lr"] = group["lr"]
|
| 633 |
+
|
| 634 |
+
# learning rate schedule: stable then decay (KEEP AS IS, but check assert)
|
| 635 |
+
def get_lr(step: int):
|
| 636 |
+
x = step / args.num_iterations # progress in training
|
| 637 |
+
# assert 0 <= x < 1 # Original assert, might fail on last step if step == num_iterations
|
| 638 |
+
# --- MODIFICATION: Adjust assert for LR schedule ---
|
| 639 |
+
if not (0 <= x <= 1): # Allow x=1 for the last step
|
| 640 |
+
x = min(max(x, 0.0), 1.0) # Clamp x if step goes beyond num_iterations
|
| 641 |
+
# print0(f"LR schedule x = {x:.4f} (step={step}) was clamped.", console=False) # Optional log
|
| 642 |
+
|
| 643 |
+
if x < 1 - args.cooldown_frac:
|
| 644 |
+
return 1.0
|
| 645 |
+
else:
|
| 646 |
+
# Ensure cooldown_frac is not zero to avoid division by zero
|
| 647 |
+
w = (1 - x) / max(args.cooldown_frac, 1e-9)
|
| 648 |
+
return w * 1.0 + (1 - w) * 0.1
|
| 649 |
+
|
| 650 |
+
# attention window size schedule (KEEP AS IS)
|
| 651 |
+
def next_multiple_of_n(v: float | int, *, n: int):
|
| 652 |
+
return next(x for x in range(n, int(v) + 1 + n, n) if x >= v)
|
| 653 |
+
@lru_cache(1)
|
| 654 |
+
def get_window_size_blocks_helper(window_size: int):
|
| 655 |
+
return torch.tensor(window_size // 128, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
|
| 656 |
+
def get_window_size_blocks(step: int):
|
| 657 |
+
x = step / args.num_iterations # progress in training
|
| 658 |
+
# --- MODIFICATION: Adjust assert for window size schedule ---
|
| 659 |
+
if not (0 <= x <= 1):
|
| 660 |
+
x = min(max(x, 0.0), 1.0) # Clamp x
|
| 661 |
+
|
| 662 |
+
# Ensure window_size is at least 128
|
| 663 |
+
window_size = max(128, next_multiple_of_n(1728 * x, n=128))
|
| 664 |
+
return get_window_size_blocks_helper(window_size)
|
| 665 |
+
|
| 666 |
+
print0("PRINT: Compiling model with TorchInductor...", console=True)
|
| 667 |
+
# Use 'model' for compilation, not 'model_compiled' before it's defined
|
| 668 |
+
model_compiled: nn.Module = torch.compile(model, dynamic=False, mode="max-autotune")
|
| 669 |
+
print0("PRINT: Model compilation complete.", console=True)
|
| 670 |
+
|
| 671 |
+
########################################
|
| 672 |
+
# Warmup kernels #
|
| 673 |
+
########################################
|
| 674 |
+
print0("PRINT: Starting warmup...", console=True)
|
| 675 |
+
warmup_steps = 10
|
| 676 |
+
initial_state = dict(model=copy.deepcopy(model_compiled.state_dict()), # Use model_compiled
|
| 677 |
+
optimizers=[copy.deepcopy(opt.state_dict()) for opt in optimizers])
|
| 678 |
+
for i in range(warmup_steps):
|
| 679 |
+
# print0(f"Warmup step {i+1}/{warmup_steps}", console=False) # Less verbose
|
| 680 |
+
inputs = targets = torch.randint(0, args.vocab_size, size=(args.train_seq_len,), device="cuda")
|
| 681 |
+
loss = model_compiled(inputs.to(torch.int32), targets, get_window_size_blocks(0)) # Use model_compiled
|
| 682 |
+
loss.backward()
|
| 683 |
+
for param in model_compiled.parameters(): # Use model_compiled
|
| 684 |
+
if param.grad is not None:
|
| 685 |
+
dist.all_reduce(param.grad, op=dist.ReduceOp.AVG)
|
| 686 |
+
for opt in optimizers:
|
| 687 |
+
opt.step()
|
| 688 |
+
model_compiled.zero_grad(set_to_none=True) # Use model_compiled
|
| 689 |
+
model_compiled.load_state_dict(initial_state["model"]) # Use model_compiled
|
| 690 |
+
for opt, opt_state in zip(optimizers, initial_state["optimizers"]):
|
| 691 |
+
opt.load_state_dict(opt_state)
|
| 692 |
+
del initial_state
|
| 693 |
+
print0("PRINT: Warmup complete.", console=True)
|
| 694 |
+
torch.cuda.synchronize()
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
params_to_analyze = []
|
| 698 |
+
|
| 699 |
+
if exp_args.model_parameterization == "whole":
|
| 700 |
+
params_to_analyze = [p for p in hidden_matrix_params if p.requires_grad]
|
| 701 |
+
elif exp_args.model_parameterization == "qkvo" or exp_args.model_parameterization == "gated":
|
| 702 |
+
params_to_analyze = all_attn_matrices + all_mlp_matrices
|
| 703 |
+
matrix_groups_for_svd = {}
|
| 704 |
+
if master_process:
|
| 705 |
+
matrix_groups_for_svd = {
|
| 706 |
+
"attn_qk": attn_qk_group,
|
| 707 |
+
"attn_vo": attn_vo_group,
|
| 708 |
+
"mlp_w1": mlp_w1_group,
|
| 709 |
+
"mlp_w2": mlp_proj_params
|
| 710 |
+
}
|
| 711 |
+
|
| 712 |
+
|
| 713 |
+
|
| 714 |
+
########################################
|
| 715 |
+
# Training and validation #
|
| 716 |
+
########################################
|
| 717 |
+
print0("PRINT: Starting training...", console=True)
|
| 718 |
+
train_loader = distributed_data_generator(args.train_files, world_size * args.train_seq_len, rank, world_size)
|
| 719 |
+
training_time_ms = 0
|
| 720 |
+
torch.cuda.synchronize()
|
| 721 |
+
t0 = time.perf_counter()
|
| 722 |
+
train_steps = args.num_iterations
|
| 723 |
+
|
| 724 |
+
for step in range(train_steps + 1): # Loop up to num_iterations (inclusive for final validation)
|
| 725 |
+
last_step = (step == train_steps)
|
| 726 |
+
|
| 727 |
+
# --------------- VALIDATION SECTION -----------------
|
| 728 |
+
# Validate at step 0 (after warmup), at specified intervals, and at the very last step
|
| 729 |
+
if step == 0 or last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0):
|
| 730 |
+
torch.cuda.synchronize()
|
| 731 |
+
# Add time from previous segment only if t0 was set (i.e., not the first validation at step 0)
|
| 732 |
+
if step > 0 : # For step 0, t0 hasn't started a training segment yet
|
| 733 |
+
current_run_time = 1000 * (time.perf_counter() - t0)
|
| 734 |
+
training_time_ms += current_run_time
|
| 735 |
+
|
| 736 |
+
model_compiled.eval() # Use model_compiled
|
| 737 |
+
val_batch_size = world_size * args.val_seq_len
|
| 738 |
+
# Ensure val_tokens is divisible by val_batch_size, or handle remainder
|
| 739 |
+
if args.val_tokens % val_batch_size != 0:
|
| 740 |
+
print0(f"PRINT: Warning: val_tokens ({args.val_tokens}) not perfectly divisible by val_batch_size ({val_batch_size}). Some tokens might be missed.", console=True)
|
| 741 |
+
val_num_steps = args.val_tokens // val_batch_size
|
| 742 |
+
|
| 743 |
+
val_loader = distributed_data_generator(args.val_files, val_batch_size, rank, world_size)
|
| 744 |
+
val_loss_sum = torch.zeros(1, device=device) # Accumulate loss on device
|
| 745 |
+
actual_val_steps = 0
|
| 746 |
+
with torch.no_grad():
|
| 747 |
+
for val_i in range(val_num_steps):
|
| 748 |
+
try:
|
| 749 |
+
inputs, targets = next(val_loader)
|
| 750 |
+
loss_val = model_compiled(inputs, targets, get_window_size_blocks(step)) # Use model_compiled
|
| 751 |
+
val_loss_sum += loss_val
|
| 752 |
+
actual_val_steps += 1
|
| 753 |
+
except StopIteration:
|
| 754 |
+
print0(f"PRINT: Validation data loader for '{args.val_files}' exhausted early at val_step {val_i+1}/{val_num_steps}.", console=True)
|
| 755 |
+
break # Stop if data runs out
|
| 756 |
+
|
| 757 |
+
if actual_val_steps > 0:
|
| 758 |
+
val_loss_avg = val_loss_sum / actual_val_steps
|
| 759 |
+
else: # Handle case where no validation steps were run (e.g., val_tokens too small or data loader issue)
|
| 760 |
+
val_loss_avg = torch.tensor(float('nan'), device=device)
|
| 761 |
+
print0(f"PRINT: Warning: No validation steps were completed. val_loss is NaN.", console=True)
|
| 762 |
+
|
| 763 |
+
del val_loader # Clean up
|
| 764 |
+
dist.all_reduce(val_loss_avg, op=dist.ReduceOp.AVG) # Reduce average loss
|
| 765 |
+
|
| 766 |
+
svd_log_str = ""
|
| 767 |
+
if master_process and 'matrix_groups_for_svd' in locals() and matrix_groups_for_svd:
|
| 768 |
+
TOPK = 10
|
| 769 |
+
svd_results_by_category = {}
|
| 770 |
+
|
| 771 |
+
with torch.no_grad():
|
| 772 |
+
# per-category metrics (average over matrices in the group)
|
| 773 |
+
for name, group_params in matrix_groups_for_svd.items():
|
| 774 |
+
if not group_params:
|
| 775 |
+
continue
|
| 776 |
+
mets = [calculate_svd_metrics(p, topk=TOPK) for p in group_params]
|
| 777 |
+
if mets:
|
| 778 |
+
avg_entropy = float(np.mean([m['entropy_norm'] for m in mets]))
|
| 779 |
+
avg_erank = float(np.mean([m['erank'] for m in mets]))
|
| 780 |
+
avg_topkE = float(np.mean([m['topk_energy'] for m in mets]))
|
| 781 |
+
avg_qratio = float(np.mean([m['q75_q25'] for m in mets]))
|
| 782 |
+
svd_results_by_category[name] = dict(
|
| 783 |
+
entropy=avg_entropy, erank=avg_erank, topkE=avg_topkE, q75_q25=avg_qratio
|
| 784 |
+
)
|
| 785 |
+
|
| 786 |
+
# VO product as another category
|
| 787 |
+
vo_mets = []
|
| 788 |
+
num_layers = len(attn_v_params)
|
| 789 |
+
for i in range(num_layers):
|
| 790 |
+
w_v = attn_v_params[i]
|
| 791 |
+
w_o = attn_o_params[i]
|
| 792 |
+
w_ov_product = torch.matmul(w_o, w_v)
|
| 793 |
+
vo_mets.append(calculate_svd_metrics(w_ov_product, topk=TOPK))
|
| 794 |
+
if vo_mets:
|
| 795 |
+
svd_results_by_category['vo_prod'] = dict(
|
| 796 |
+
entropy=float(np.mean([m['entropy_norm'] for m in vo_mets])),
|
| 797 |
+
erank=float(np.mean([m['erank'] for m in vo_mets])),
|
| 798 |
+
topkE=float(np.mean([m['topk_energy'] for m in vo_mets])),
|
| 799 |
+
q75_q25=float(np.mean([m['q75_q25'] for m in vo_mets])),
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
# format logging string (append metrics after entropy)
|
| 803 |
+
svd_log_parts = []
|
| 804 |
+
for name, vals in svd_results_by_category.items():
|
| 805 |
+
svd_log_parts.append(
|
| 806 |
+
f"{name}:H={vals['entropy']:.4f},top{TOPK}E={vals['topkE']:.2f},eRank={vals['erank']:.1f},q75/q25={vals['q75_q25']:.2f}"
|
| 807 |
+
)
|
| 808 |
+
svd_log_str = " ".join(svd_log_parts)
|
| 809 |
+
|
| 810 |
+
|
| 811 |
+
# For step 0, training_time_ms is 0. For subsequent steps, it's cumulative.
|
| 812 |
+
avg_step_time = training_time_ms / max(step, 1) if step > 0 else 0
|
| 813 |
+
print0(f"PRINT: step:{step}/{train_steps} val_loss:{val_loss_avg.item():.4f} svd_entropy: {svd_log_str} train_time:{training_time_ms:.0f}ms step_avg:{avg_step_time:.2f}ms", console=True)
|
| 814 |
+
|
| 815 |
+
model_compiled.train() # Switch back to train mode
|
| 816 |
+
torch.cuda.synchronize()
|
| 817 |
+
t0 = time.perf_counter() # Reset timer for the next training segment
|
| 818 |
+
|
| 819 |
+
if last_step:
|
| 820 |
+
if master_process and args.save_checkpoint:
|
| 821 |
+
if run_dir_path_str: # Ensure run_dir_path_str is set by master process
|
| 822 |
+
checkpoint_parent_dir = Path(run_dir_path_str) / "checkpoints"
|
| 823 |
+
checkpoint_parent_dir.mkdir(parents=True, exist_ok=True) # Create checkpoints subdir
|
| 824 |
+
checkpoint_path = checkpoint_parent_dir / f"state_step{step:06d}.pt"
|
| 825 |
+
log_checkpoint = dict(step=step, code=code, model=model_compiled.state_dict(), # Use model_compiled
|
| 826 |
+
optimizers=[opt.state_dict() for opt in optimizers])
|
| 827 |
+
torch.save(log_checkpoint, str(checkpoint_path)) # Convert Path to str for torch.save
|
| 828 |
+
print0(f"PRINT: Saved checkpoint to {checkpoint_path}", console=True)
|
| 829 |
+
else:
|
| 830 |
+
print0("PRINT: Warning - run_dir_path_str not set, cannot save checkpoint.", console=True)
|
| 831 |
+
break
|
| 832 |
+
|
| 833 |
+
# --------------- TRAINING SECTION -----------------
|
| 834 |
+
try:
|
| 835 |
+
inputs, targets = next(train_loader)
|
| 836 |
+
except StopIteration:
|
| 837 |
+
print0(f"PRINT: Training data loader for '{args.train_files}' exhausted. Ending training early at step {step}.", console=True)
|
| 838 |
+
break # End if data runs out
|
| 839 |
+
|
| 840 |
+
loss_train = model_compiled(inputs, targets, get_window_size_blocks(step)) # Use model_compiled
|
| 841 |
+
loss_train.backward()
|
| 842 |
+
|
| 843 |
+
for param in model_compiled.parameters(): # Use model_compiled
|
| 844 |
+
if param.grad is not None: # Check if grad exists
|
| 845 |
+
dist.all_reduce(param.grad, op=dist.ReduceOp.AVG)
|
| 846 |
+
|
| 847 |
+
current_lr_val = get_lr(step)
|
| 848 |
+
for opt in optimizers:
|
| 849 |
+
for group in opt.param_groups:
|
| 850 |
+
group["lr"] = group["initial_lr"] * current_lr_val
|
| 851 |
+
|
| 852 |
+
# --- MODIFICATION: Muon momentum warmup only if optimizer2 (Muon) exists ---
|
| 853 |
+
if optimizer2 is not None: # Check if Muon optimizer was created
|
| 854 |
+
for group in optimizer2.param_groups:
|
| 855 |
+
frac = min(step / 300, 1) # momentum warmup for muon
|
| 856 |
+
group["momentum"] = (1 - frac) * 0.85 + frac * 0.95
|
| 857 |
+
|
| 858 |
+
for opt in optimizers:
|
| 859 |
+
opt.step()
|
| 860 |
+
|
| 861 |
+
model_compiled.zero_grad(set_to_none=True) # Use model_compiled
|
| 862 |
+
|
| 863 |
+
# Logging (less frequent for training steps)
|
| 864 |
+
if step > 0 and (step % 20 == 0 or step == train_steps -1) : # Avoid logging at step 0 before first val
|
| 865 |
+
# This time is for the current segment since last validation / t0 reset
|
| 866 |
+
current_segment_time_ms = 1000 * (time.perf_counter() - t0)
|
| 867 |
+
# approx_training_time_ms is the total cumulative time
|
| 868 |
+
approx_total_training_time_ms = training_time_ms + current_segment_time_ms
|
| 869 |
+
|
| 870 |
+
total_tokens_in_batch = args.train_seq_len * world_size
|
| 871 |
+
train_loss_per_token = loss_train.item() / total_tokens_in_batch if total_tokens_in_batch > 0 else loss_train.item()
|
| 872 |
+
|
| 873 |
+
print0(f"step:{step+1}/{train_steps} train_time:{approx_total_training_time_ms:.0f}ms step_avg:{approx_total_training_time_ms/max(1, step + 1):.2f}ms", console=True) # Log to console too
|
| 874 |
+
|
| 875 |
+
print0(f"PRINT: --- Training Finished: {time.ctime()} ---", console=True)
|
| 876 |
+
print0(f"PRINT: Peak memory allocated: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB "
|
| 877 |
+
f"reserved: {torch.cuda.max_memory_reserved() // 1024 // 1024} MiB", console=True)
|
| 878 |
+
|
| 879 |
+
if dist.is_initialized():
|
| 880 |
+
dist.destroy_process_group()
|
| 881 |
+
[2025-09-04 15:58:23] [Rank 0] import os
|
| 882 |
+
import sys
|
| 883 |
+
with open(sys.argv[0]) as f:
|
| 884 |
+
code = f.read() # read the code of this file ASAP, for logging
|
| 885 |
+
import uuid
|
| 886 |
+
import time
|
| 887 |
+
import copy
|
| 888 |
+
import glob
|
| 889 |
+
from dataclasses import dataclass, asdict
|
| 890 |
+
from functools import lru_cache
|
| 891 |
+
from pathlib import Path
|
| 892 |
+
import argparse # Keep argparse for --unet and potentially --optimizer_mode
|
| 893 |
+
import json
|
| 894 |
+
import random
|
| 895 |
+
import numpy as np
|
| 896 |
+
|
| 897 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 898 |
+
import torch
|
| 899 |
+
torch.empty(1, device="cuda", requires_grad=True).backward() # prevents a bug on some systems
|
| 900 |
+
from torch import Tensor, nn
|
| 901 |
+
import torch.nn.functional as F
|
| 902 |
+
import torch.distributed as dist
|
| 903 |
+
# use of FlexAttention contributed by @KoszarskyB
|
| 904 |
+
from torch.nn.attention.flex_attention import BlockMask, flex_attention
|
| 905 |
+
sys.path.append("/home/aiops/zhangfz/MUON_theory/modded-nanogpt") # Already present
|
| 906 |
+
from optimizers.MUON_new import Muon
|
| 907 |
+
from utils.float_compute import mm_op, backward as mm_backward_custom, setup_context as mm_setup_context_custom # Renamed
|
| 908 |
+
|
| 909 |
+
#from kn_util.utils import setup_debugpy
|
| 910 |
+
#torch._inductor.config.coordinate_descent_tuning = True
|
| 911 |
+
|
| 912 |
+
# -----------------------------------------------------------------------------
|
| 913 |
+
|
| 914 |
+
mm_op.register_autograd(mm_backward_custom, setup_context=mm_setup_context_custom) # Use renamed imports
|
| 915 |
+
|
| 916 |
+
# -----------------------------------------------------------------------------
|
| 917 |
+
# Seeding Function
|
| 918 |
+
def set_seed(seed):
|
| 919 |
+
random.seed(seed)
|
| 920 |
+
np.random.seed(seed)
|
| 921 |
+
torch.manual_seed(seed)
|
| 922 |
+
if torch.cuda.is_available():
|
| 923 |
+
torch.cuda.manual_seed_all(seed)
|
| 924 |
+
print(f"PRINT: Set seed to {seed}", flush=True) # Print immediately for all ranks
|
| 925 |
+
|
| 926 |
+
# -----------------------------------------------------------------------------
|
| 927 |
+
# Our own simple Distributed Data Loader (KEEP AS IS)
|
| 928 |
+
def _load_data_shard(file: Path):
|
| 929 |
+
header = torch.from_file(str(file), False, 256, dtype=torch.int32)
|
| 930 |
+
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
|
| 931 |
+
assert header[1] == 1, "unsupported version"
|
| 932 |
+
num_tokens = int(header[2])
|
| 933 |
+
with file.open("rb", buffering=0) as f:
|
| 934 |
+
tokens = torch.empty(num_tokens, dtype=torch.uint16, pin_memory=True)
|
| 935 |
+
f.seek(256 * 4)
|
| 936 |
+
nbytes = f.readinto(tokens.numpy())
|
| 937 |
+
assert nbytes == 2 * num_tokens, "number of tokens read does not match header"
|
| 938 |
+
return tokens
|
| 939 |
+
|
| 940 |
+
def distributed_data_generator(filename_pattern: str, batch_size: int, rank : int, world_size : int):
|
| 941 |
+
files = [Path(file) for file in sorted(glob.glob(filename_pattern))]
|
| 942 |
+
assert batch_size % world_size == 0
|
| 943 |
+
local_batch_size = batch_size // world_size
|
| 944 |
+
file_iter = iter(files) # use itertools.cycle(files) instead if you want to do multi-epoch training
|
| 945 |
+
tokens, pos = _load_data_shard(next(file_iter)), 0
|
| 946 |
+
while True:
|
| 947 |
+
if pos + batch_size + 1 >= len(tokens):
|
| 948 |
+
tokens, pos = _load_data_shard(next(file_iter)), 0
|
| 949 |
+
buf = tokens[pos + rank * local_batch_size:][:local_batch_size + 1]
|
| 950 |
+
inputs = buf[:-1].to(device="cuda", dtype=torch.int32, non_blocking=True) # no sync on host side;
|
| 951 |
+
targets = buf[1:].to(device="cuda", dtype=torch.int64, non_blocking=True) # H2D in another stream isn't helpful.
|
| 952 |
+
pos += batch_size
|
| 953 |
+
yield inputs, targets
|
| 954 |
+
|
| 955 |
+
# ---- ADD: spectral metrics helper right after calculate_svd_entropy ----
|
| 956 |
+
def calculate_svd_metrics(matrix: torch.Tensor, *, topk: int = 10):
|
| 957 |
+
"""
|
| 958 |
+
Returns dict with:
|
| 959 |
+
- entropy_norm: normalized SVD entropy (same normalization as your function)
|
| 960 |
+
- erank: effective rank = exp(Shannon entropy of p)
|
| 961 |
+
- topk_energy: sum of top-k p_i (energy fraction in the top-k singular values)
|
| 962 |
+
- q75_q25: ratio of 75th to 25th percentile of eigenvalues (sigma^2)
|
| 963 |
+
"""
|
| 964 |
+
with torch.no_grad():
|
| 965 |
+
s = torch.linalg.svdvals(matrix.detach().to('cpu', torch.float32))
|
| 966 |
+
s = s[s > 1e-9]
|
| 967 |
+
n = s.numel()
|
| 968 |
+
if n == 0:
|
| 969 |
+
return dict(entropy_norm=0.0, erank=0.0, topk_energy=0.0, q75_q25=float('inf'))
|
| 970 |
+
|
| 971 |
+
s2 = s * s
|
| 972 |
+
S2_sum = float(torch.sum(s2))
|
| 973 |
+
if S2_sum == 0.0:
|
| 974 |
+
return dict(entropy_norm=0.0, erank=0.0, topk_energy=0.0, q75_q25=float('inf'))
|
| 975 |
+
|
| 976 |
+
p = s2 / S2_sum # energy distribution
|
| 977 |
+
# Shannon entropy H (natural log)
|
| 978 |
+
H = float(torch.sum(torch.special.entr(p)))
|
| 979 |
+
entropy_norm = H / np.log(max(n, 2)) # same normalization as your SVD entropy
|
| 980 |
+
erank = float(np.exp(H))
|
| 981 |
+
|
| 982 |
+
k = min(topk, n)
|
| 983 |
+
topk_energy = float(torch.topk(p, k).values.sum())
|
| 984 |
+
|
| 985 |
+
# eigenvalues = s^2, use quantiles on s^2
|
| 986 |
+
q25 = float(torch.quantile(s2, 0.25))
|
| 987 |
+
q75 = float(torch.quantile(s2, 0.75))
|
| 988 |
+
q75_q25 = (q75 / q25) if q25 > 0 else float('inf')
|
| 989 |
+
|
| 990 |
+
return dict(
|
| 991 |
+
entropy_norm=entropy_norm,
|
| 992 |
+
erank=erank,
|
| 993 |
+
topk_energy=topk_energy,
|
| 994 |
+
q75_q25=q75_q25,
|
| 995 |
+
)
|
| 996 |
+
|
| 997 |
+
|
| 998 |
+
# -----------------------------------------------------------------------------
|
| 999 |
+
# int main
|
| 1000 |
+
parser = argparse.ArgumentParser(description="NanoGPT Training Script with Muon")
|
| 1001 |
+
parser.add_argument("--unet", action="store_true", help="Use U-net architecture")
|
| 1002 |
+
parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility")
|
| 1003 |
+
# --- MODIFICATION: Add optimizer_mode as a CLI argument ---
|
| 1004 |
+
parser.add_argument("--optimizer_mode", type=int, default=0,
|
| 1005 |
+
help="Defines how Muon is applied. "
|
| 1006 |
+
"0: Muon(All Hidden Attn+MLP - original); "
|
| 1007 |
+
"1: Muon(QK Attn)/Adam(VO Attn,MLP); "
|
| 1008 |
+
"2: Muon(VO Attn)/Adam(QK Attn,MLP); "
|
| 1009 |
+
"3: Muon(All Attn)/Adam(MLP); "
|
| 1010 |
+
"4: Muon(MLP)/Adam(All Attn)"
|
| 1011 |
+
"5: All Adam (No Muon, all applicable matrices to Adam)."
|
| 1012 |
+
"6: Muon(W_2 MLP)/Adam(attn, W_1 MLP)."
|
| 1013 |
+
"7: Muon(VO Attn, MLP)/Adam(QK Attn)."
|
| 1014 |
+
"8: Muon(VO Attn, W_2 MLP)/Adam(QK Attn, W_1 MLP)."
|
| 1015 |
+
"11: Muon(W_1)/Adam(O Attn, QK Attn)."
|
| 1016 |
+
)
|
| 1017 |
+
parser.add_argument("--model_parameterization", type=str, default="whole",choices=["whole","qkvo", "norope", "gated"])
|
| 1018 |
+
parser.add_argument("--adam_lr", type=float, default=0.008, help="Learning rate for Adam matrices")
|
| 1019 |
+
parser.add_argument("--muon_lr", type=float, default=0.05, help="Learning rate for Muon matrices")
|
| 1020 |
+
parser.add_argument("--base_dir", type=str, default="logs_all_0821/gated", help="Base directory for logs")
|
| 1021 |
+
exp_args = parser.parse_args()
|
| 1022 |
+
set_seed(exp_args.seed)
|
| 1023 |
+
|
| 1024 |
+
# --- MODIFICATION: Import correct GPT model based on --unet flag ---
|
| 1025 |
+
if exp_args.unet:
|
| 1026 |
+
print("Using U-net architecture")
|
| 1027 |
+
from models.nano_GPT_unet import GPT
|
| 1028 |
+
elif exp_args.model_parameterization == "qkvo":
|
| 1029 |
+
print("Using architecture (models.nano_gpt_qkvo) with CausalSelfAttention having q_w, k_w, v_w")
|
| 1030 |
+
# This MUST be the nano_GPT.py file where CausalSelfAttention has q_w, k_w, v_w
|
| 1031 |
+
|
| 1032 |
+
from models.nano_GPT_qkvo import GPT
|
| 1033 |
+
|
| 1034 |
+
elif exp_args.model_parameterization == "norope":
|
| 1035 |
+
print("Using architecture (models.nano_GPT_norope) with CausalSelfAttention having q_w, k_w, v_w")
|
| 1036 |
+
from models.nano_GPT_norope import GPT
|
| 1037 |
+
|
| 1038 |
+
elif exp_args.model_parameterization == "gated":
|
| 1039 |
+
print("Using architecture (models.nano_GPT_gated) with CausalSelfAttention having q_w, k_w, v_w")
|
| 1040 |
+
from models.nano_GPT_gated import GPT
|
| 1041 |
+
|
| 1042 |
+
elif exp_args.model_parameterization == "whole":
|
| 1043 |
+
print("Using original architecture")
|
| 1044 |
+
from models.nano_GPT import GPT
|
| 1045 |
+
|
| 1046 |
+
@dataclass
|
| 1047 |
+
class Hyperparameters:
|
| 1048 |
+
# data
|
| 1049 |
+
|
| 1050 |
+
#train_files = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin"
|
| 1051 |
+
#val_files = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin"
|
| 1052 |
+
train_files = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin"
|
| 1053 |
+
val_files = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin"
|
| 1054 |
+
val_tokens = 1966080
|
| 1055 |
+
#val_tokens = 10485760
|
| 1056 |
+
train_seq_len = 12*1024
|
| 1057 |
+
val_seq_len = 4*16*1024
|
| 1058 |
+
#train_seq_len = 48*1024 # FlexAttention sequence length
|
| 1059 |
+
#train_seq_len = 12*1024 # FlexAttention sequence length
|
| 1060 |
+
#val_seq_len = 4*64*1024 # FlexAttention sequence length for validation
|
| 1061 |
+
|
| 1062 |
+
# optimization
|
| 1063 |
+
num_iterations = 10000 #1770 # Original: 1770
|
| 1064 |
+
cooldown_frac = 0.4
|
| 1065 |
+
# architecture
|
| 1066 |
+
|
| 1067 |
+
vocab_size = 50257
|
| 1068 |
+
|
| 1069 |
+
# evaluation and logging
|
| 1070 |
+
val_loss_every = 200 # Original: 125
|
| 1071 |
+
save_checkpoint = False
|
| 1072 |
+
args = Hyperparameters()
|
| 1073 |
+
|
| 1074 |
+
# DDP setup (KEEP AS IS, but ensure rank and world_size are correctly used)
|
| 1075 |
+
rank = int(os.environ.get("RANK", 0))
|
| 1076 |
+
local_rank = int(os.environ.get("LOCAL_RANK", 0)) # Used for device setting
|
| 1077 |
+
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
| 1078 |
+
|
| 1079 |
+
# print(f"[Rank {rank}] Global Rank: {rank}, Local Rank: {local_rank}, World Size: {world_size}", flush=True) # Debug
|
| 1080 |
+
|
| 1081 |
+
assert torch.cuda.is_available()
|
| 1082 |
+
device = torch.device("cuda", local_rank) # Use local_rank for device
|
| 1083 |
+
torch.cuda.set_device(device)
|
| 1084 |
+
|
| 1085 |
+
if not dist.is_initialized(): # Ensure DDP is initialized only once
|
| 1086 |
+
dist.init_process_group(backend="nccl", rank=rank, world_size=world_size) # Pass rank and world_size
|
| 1087 |
+
dist.barrier()
|
| 1088 |
+
master_process = (rank == 0)
|
| 1089 |
+
|
| 1090 |
+
# Logging setup (KEEP AS IS, but maybe add optimizer_mode to filename)
|
| 1091 |
+
logfile = None
|
| 1092 |
+
# --- MODIFICATION: Add optimizer_mode to log file name and specify new dir ---
|
| 1093 |
+
#log_dir = "modded-nanogpt/logs_detailed_attn_minimal_changes"
|
| 1094 |
+
#if master_process:
|
| 1095 |
+
# run_id = uuid.uuid4()
|
| 1096 |
+
# os.makedirs(log_dir, exist_ok=True) # Create new log directory
|
| 1097 |
+
# logfile = f"{log_dir}/exp_mode_{exp_args.optimizer_mode}_param_{exp_args.model_parameterization}_{run_id}.txt"
|
| 1098 |
+
# print(f"Logging to: {logfile}")
|
| 1099 |
+
|
| 1100 |
+
logfile = None
|
| 1101 |
+
run_dir_path_str = None
|
| 1102 |
+
|
| 1103 |
+
base_log_dir = Path(exp_args.base_dir)
|
| 1104 |
+
|
| 1105 |
+
if master_process:
|
| 1106 |
+
# Set seed again specifically for master process for operations like dir creation, config saving
|
| 1107 |
+
set_seed(exp_args.seed)
|
| 1108 |
+
|
| 1109 |
+
# Construct folder name based on config and seed
|
| 1110 |
+
run_folder_name = f"mode_{exp_args.optimizer_mode}_param_{exp_args.model_parameterization}_seed_{exp_args.seed}"
|
| 1111 |
+
run_dir_path = base_log_dir / run_folder_name
|
| 1112 |
+
run_dir_path.mkdir(parents=True, exist_ok=True)
|
| 1113 |
+
run_dir_path_str = str(run_dir_path)
|
| 1114 |
+
|
| 1115 |
+
run_uuid = uuid.uuid4()
|
| 1116 |
+
logfile = run_dir_path / f"training_log_{run_uuid}.txt"
|
| 1117 |
+
print(f"Logging to: {logfile}")
|
| 1118 |
+
|
| 1119 |
+
# Save configuration
|
| 1120 |
+
config_to_save = {
|
| 1121 |
+
"cli_args": vars(exp_args),
|
| 1122 |
+
"hyperparameters": {k: v for k, v in args.__class__.__dict__.items() if not k.startswith('__') and not callable(v)},
|
| 1123 |
+
"run_uuid_for_log": str(run_uuid),
|
| 1124 |
+
"script_code_logged_at_start": True
|
| 1125 |
+
}
|
| 1126 |
+
config_file_path = run_dir_path / "config.json"
|
| 1127 |
+
with open(config_file_path, "w") as f:
|
| 1128 |
+
json.dump(config_to_save, f, indent=4)
|
| 1129 |
+
print(f"Saved configuration to: {config_file_path}")
|
| 1130 |
+
|
| 1131 |
+
def print0(s, console=False):
|
| 1132 |
+
if master_process:
|
| 1133 |
+
# Add timestamp and rank for better log readability
|
| 1134 |
+
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
| 1135 |
+
log_message = f"[{timestamp}] [Rank {rank}] {s}"
|
| 1136 |
+
|
| 1137 |
+
# Print to console if requested or if it's a specific "PRINT:" message
|
| 1138 |
+
if console or s.startswith("PRINT:"):
|
| 1139 |
+
actual_s = s[6:] if s.startswith("PRINT:") else s
|
| 1140 |
+
print(actual_s) # Print to stdout for master process
|
| 1141 |
+
|
| 1142 |
+
if logfile:
|
| 1143 |
+
with open(logfile, "a") as f:
|
| 1144 |
+
f.write(log_message + "\n")
|
| 1145 |
+
|
| 1146 |
+
with open(logfile, "a") as f:
|
| 1147 |
+
f.write(log_message + "\n")
|
| 1148 |
+
|
| 1149 |
+
|
| 1150 |
+
print0(f"PRINT: --- Script Start: {time.ctime()} ---", console=True)
|
| 1151 |
+
print0(f"PRINT: Parsed CLI args: {exp_args}", console=True)
|
| 1152 |
+
print0(f"PRINT: Hyperparameters: {args}", console=True)
|
| 1153 |
+
print0(f"PRINT: Using fixed seed: {exp_args.seed}", console=True)
|
| 1154 |
+
if master_process:
|
| 1155 |
+
print0(f"PRINT: Run directory: {run_dir_path_str}", console=True)
|
| 1156 |
+
print0(code) # Log the code
|
| 1157 |
+
# ... (other initial logs)
|
| 1158 |
+
|
| 1159 |
+
########################################
|
| 1160 |
+
# Construct model and optimizer #
|
| 1161 |
+
########################################
|
| 1162 |
+
print0("PRINT: Constructing model...", console=True)
|
| 1163 |
+
model: nn.Module = GPT(vocab_size=args.vocab_size, num_layers=12, num_heads=6, model_dim=768,
|
| 1164 |
+
max_seq_len=max(args.train_seq_len, args.val_seq_len)).cuda()
|
| 1165 |
+
for m in model.modules():
|
| 1166 |
+
if isinstance(m, nn.Embedding):
|
| 1167 |
+
m.bfloat16()
|
| 1168 |
+
print0("PRINT: Broadcasting model parameters...", console=True)
|
| 1169 |
+
for param in model.parameters():
|
| 1170 |
+
dist.broadcast(param.detach(), 0)
|
| 1171 |
+
print0("PRINT: Model constructed and broadcasted.", console=True)
|
| 1172 |
+
|
| 1173 |
+
# --- START MODIFIED PARAMETER COLLECTION AND OPTIMIZER SETUP ---
|
| 1174 |
+
if exp_args.model_parameterization == "qkvo" or exp_args.model_parameterization == "norope":
|
| 1175 |
+
print0("PRINT: Collecting parameters for optimizers...", console=True)
|
| 1176 |
+
head_params = [model.lm_head.weight]
|
| 1177 |
+
embed_params = [model.embed.weight] + [ve.weight for ve in model.value_embeds]
|
| 1178 |
+
|
| 1179 |
+
# Granular collection for attention and MLP parts
|
| 1180 |
+
attn_q_params = []
|
| 1181 |
+
attn_k_params = []
|
| 1182 |
+
attn_v_params = []
|
| 1183 |
+
attn_o_params = [] # W_O from c_proj
|
| 1184 |
+
mlp_fc_params = []
|
| 1185 |
+
mlp_proj_params = []
|
| 1186 |
+
|
| 1187 |
+
for block_module in model.blocks:
|
| 1188 |
+
if block_module.attn is not None:
|
| 1189 |
+
# These attributes (q_w, k_w, v_w) MUST exist in your CausalSelfAttention class
|
| 1190 |
+
if hasattr(block_module.attn, 'q_w'): attn_q_params.append(block_module.attn.q_w)
|
| 1191 |
+
else: print0(f"PRINT: Warning: q_w not found in attn module of a block.", console=True)
|
| 1192 |
+
if hasattr(block_module.attn, 'k_w'): attn_k_params.append(block_module.attn.k_w)
|
| 1193 |
+
else: print0(f"PRINT: Warning: k_w not found in attn module of a block.", console=True)
|
| 1194 |
+
if hasattr(block_module.attn, 'v_w'): attn_v_params.append(block_module.attn.v_w)
|
| 1195 |
+
else: print0(f"PRINT: Warning: v_w not found in attn module of a block.", console=True)
|
| 1196 |
+
attn_o_params.append(block_module.attn.c_proj.weight)
|
| 1197 |
+
if block_module.mlp is not None:
|
| 1198 |
+
mlp_fc_params.append(block_module.mlp.c_fc.weight)
|
| 1199 |
+
mlp_proj_params.append(block_module.mlp.c_proj.weight)
|
| 1200 |
+
|
| 1201 |
+
# Combine into logical groups for experiments
|
| 1202 |
+
attn_qk_group = attn_q_params + attn_k_params
|
| 1203 |
+
attn_vo_group = attn_v_params + attn_o_params
|
| 1204 |
+
all_attn_matrices = attn_qk_group + attn_vo_group
|
| 1205 |
+
mlp_w1_group = mlp_fc_params
|
| 1206 |
+
mlp_w2_group = mlp_proj_params
|
| 1207 |
+
all_mlp_matrices = mlp_fc_params + mlp_proj_params
|
| 1208 |
+
|
| 1209 |
+
# Scalar parameters (all others not explicitly grouped as matrices)
|
| 1210 |
+
matrix_params_for_scalar_check = set(head_params + embed_params + all_attn_matrices + all_mlp_matrices)
|
| 1211 |
+
scalar_params = [p for n, p in model.named_parameters() if p not in matrix_params_for_scalar_check]
|
| 1212 |
+
for p_scalar in scalar_params: # Sanity check
|
| 1213 |
+
if p_scalar.ndim >=2:
|
| 1214 |
+
print0(f"PRINT: Warning - Parameter {p_scalar.shape} ended up in scalar_params but has ndim >= 2. Check grouping.", console=True)
|
| 1215 |
+
|
| 1216 |
+
|
| 1217 |
+
# Determine parameter distribution based on optimizer_mode
|
| 1218 |
+
muon_params_target_list = []
|
| 1219 |
+
adam_matrix_target_list = [] # Matrices that Adam will handle specifically
|
| 1220 |
+
adam_matrix_lr = exp_args.adam_lr # LR for matrices if Adam handles them (can be tuned)
|
| 1221 |
+
|
| 1222 |
+
current_optimizer_mode = exp_args.optimizer_mode
|
| 1223 |
+
print0(f"PRINT: Configuring optimizers for EXPERIMENT_MODE = {current_optimizer_mode}", console=True)
|
| 1224 |
+
|
| 1225 |
+
if current_optimizer_mode == 0: # Original behavior: Muon on all "hidden_matrix_params"
|
| 1226 |
+
print0(f"PRINT: Mode 0: Muon on ALL Attention (QKVO) and ALL MLP matrices.", console=True)
|
| 1227 |
+
muon_params_target_list = all_attn_matrices + all_mlp_matrices
|
| 1228 |
+
# Adam handles embeds, head, scalars by default. No extra matrices for Adam here.
|
| 1229 |
+
elif current_optimizer_mode == 1: # Muon on QK, Adam on VO and MLP
|
| 1230 |
+
print0(f"PRINT: Mode 1: Muon on QK Attn. Adam on VO Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1231 |
+
muon_params_target_list = attn_qk_group
|
| 1232 |
+
adam_matrix_target_list = attn_vo_group + all_mlp_matrices
|
| 1233 |
+
elif current_optimizer_mode == 2: # Muon on VO, Adam on QK and MLP
|
| 1234 |
+
print0(f"PRINT: Mode 2: Muon on VO Attn. Adam on QK Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1235 |
+
muon_params_target_list = attn_vo_group
|
| 1236 |
+
adam_matrix_target_list = attn_qk_group + all_mlp_matrices
|
| 1237 |
+
elif current_optimizer_mode == 3: # Muon on All Attn (QKVO), Adam on MLP
|
| 1238 |
+
print0(f"PRINT: Mode 3: Muon on ALL Attn (QKVO). Adam on MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1239 |
+
muon_params_target_list = all_attn_matrices
|
| 1240 |
+
adam_matrix_target_list = all_mlp_matrices
|
| 1241 |
+
elif current_optimizer_mode == 4: # Muon on MLP, Adam on All Attn (QKVO)
|
| 1242 |
+
print0(f"PRINT: Mode 4: Muon on MLP. Adam on ALL Attn (QKVO) (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1243 |
+
muon_params_target_list = all_mlp_matrices
|
| 1244 |
+
adam_matrix_target_list = all_attn_matrices
|
| 1245 |
+
elif current_optimizer_mode == 5: # NEW MODE 5 - All Adam
|
| 1246 |
+
print0(f"PRINT: Mode 5: All Adam. All Attn and MLP matrices to Adam (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1247 |
+
muon_params_target_list = []
|
| 1248 |
+
adam_matrix_target_list = all_attn_matrices + all_mlp_matrices # All matrices to Adam
|
| 1249 |
+
elif current_optimizer_mode == 6: # Muon on W_2 MLP, Adam on attn, W_1 MLP
|
| 1250 |
+
print0(f"PRINT: Mode 6: Muon on W_2 MLP. Adam on attn, W_1 MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1251 |
+
muon_params_target_list = mlp_w2_group
|
| 1252 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w1_group
|
| 1253 |
+
elif current_optimizer_mode == 7: # Muon on VO Attn, MLP, Adam on QK Attn
|
| 1254 |
+
print0(f"PRINT: Mode 7: Muon on VO Attn, MLP. Adam on QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1255 |
+
muon_params_target_list = attn_vo_group + all_mlp_matrices
|
| 1256 |
+
adam_matrix_target_list = attn_qk_group
|
| 1257 |
+
elif current_optimizer_mode == 8: # Muon on VO Attn, W_2 MLP, Adam on QK Attn, W_1 MLP
|
| 1258 |
+
print0(f"PRINT: Mode 8: Muon on VO Attn, W_2 MLP. Adam on QK Attn, W_1 MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1259 |
+
muon_params_target_list = attn_vo_group + mlp_w2_group
|
| 1260 |
+
adam_matrix_target_list = attn_qk_group + mlp_w1_group
|
| 1261 |
+
elif current_optimizer_mode == 9: # Muon on V Attn, MLP
|
| 1262 |
+
print0(f"PRINT: Mode 9: Muon on V Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1263 |
+
muon_params_target_list = attn_v_params + all_mlp_matrices
|
| 1264 |
+
adam_matrix_target_list = attn_o_params + attn_qk_group
|
| 1265 |
+
elif current_optimizer_mode == 10: # Muon on O Attn, MLP
|
| 1266 |
+
print0(f"PRINT: Mode 10: Muon on O Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1267 |
+
muon_params_target_list = attn_o_params + all_mlp_matrices
|
| 1268 |
+
adam_matrix_target_list = attn_v_params + attn_qk_group
|
| 1269 |
+
elif current_optimizer_mode == 11: # Muon on W_1, Adam on O Attn, QK Attn
|
| 1270 |
+
print0(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1271 |
+
muon_params_target_list = mlp_w1_group
|
| 1272 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w2_group
|
| 1273 |
+
elif current_optimizer_mode == 12: # Muon on W_1, VO, Adam on others
|
| 1274 |
+
print0(f"PRINT: Mode 12: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1275 |
+
muon_params_target_list = attn_vo_group + mlp_w1_group
|
| 1276 |
+
adam_matrix_target_list = attn_qk_group + mlp_w2_group
|
| 1277 |
+
elif current_optimizer_mode == 13:
|
| 1278 |
+
print0(f"PRINT: Mode 13: Muon on W_2, W_O. Adam on V Attn, QK Attn, W_1 (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1279 |
+
muon_params_target_list = attn_o_params + mlp_w2_group
|
| 1280 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params + mlp_w1_group
|
| 1281 |
+
elif current_optimizer_mode == 14:
|
| 1282 |
+
print0(f"PRINT: Mode 14: Muon on W_O. Adam on V Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1283 |
+
muon_params_target_list = attn_o_params
|
| 1284 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params +all_mlp_matrices
|
| 1285 |
+
elif current_optimizer_mode == 15:
|
| 1286 |
+
print0(f"PRINT: Mode 15: Muon on W_V. Adam on O Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1287 |
+
muon_params_target_list = attn_v_params
|
| 1288 |
+
adam_matrix_target_list = attn_qk_group + attn_o_params +all_mlp_matrices
|
| 1289 |
+
else:
|
| 1290 |
+
raise ValueError(f"Unsupported EXPERIMENT_MODE: {current_optimizer_mode}")
|
| 1291 |
+
|
| 1292 |
+
# Adam optimizer setup
|
| 1293 |
+
adam_param_groups_config = [
|
| 1294 |
+
dict(params=head_params, lr=adam_matrix_lr),
|
| 1295 |
+
dict(params=embed_params, lr=adam_matrix_lr),
|
| 1296 |
+
dict(params=scalar_params, lr=adam_matrix_lr) # Scalar params always go to Adam
|
| 1297 |
+
]
|
| 1298 |
+
# Add matrices specifically assigned to Adam for this experiment mode
|
| 1299 |
+
if adam_matrix_target_list:
|
| 1300 |
+
# Ensure adam_matrix_target_list is flat and contains Parameters
|
| 1301 |
+
flat_adam_matrices = [p for sublist_or_p in adam_matrix_target_list for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]) if p is not None]
|
| 1302 |
+
if flat_adam_matrices: # Only add group if there are params
|
| 1303 |
+
adam_param_groups_config.append(dict(params=flat_adam_matrices, lr=adam_matrix_lr))
|
| 1304 |
+
|
| 1305 |
+
# Filter out any Adam groups that might be empty (e.g., if scalar_params was empty)
|
| 1306 |
+
adam_param_groups_config = [g for g in adam_param_groups_config if g['params']]
|
| 1307 |
+
optimizer1 = torch.optim.Adam(adam_param_groups_config, betas=(0.8, 0.95), eps=1e-10, fused=True)
|
| 1308 |
+
optimizers = [optimizer1] # Start with Adam
|
| 1309 |
+
|
| 1310 |
+
# Muon optimizer setup
|
| 1311 |
+
if muon_params_target_list:
|
| 1312 |
+
# Ensure muon_params_target_list is flat, unique, and contains Parameters
|
| 1313 |
+
flat_unique_muon_params = []
|
| 1314 |
+
seen_muon_ids = set()
|
| 1315 |
+
for sublist_or_p in muon_params_target_list:
|
| 1316 |
+
for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]):
|
| 1317 |
+
if p is not None and id(p) not in seen_muon_ids:
|
| 1318 |
+
flat_unique_muon_params.append(p)
|
| 1319 |
+
seen_muon_ids.add(id(p))
|
| 1320 |
+
|
| 1321 |
+
if flat_unique_muon_params: # Only create Muon if it has parameters
|
| 1322 |
+
optimizer2 = Muon(flat_unique_muon_params, lr=exp_args.muon_lr, momentum=0.95, weight_decay=0.0) # Pass nesterov, ns_steps
|
| 1323 |
+
optimizers.append(optimizer2)
|
| 1324 |
+
else:
|
| 1325 |
+
print0("PRINT: Muon optimizer not created as its target parameter list was empty.", console=True)
|
| 1326 |
+
optimizer2 = None # Explicitly set to None if not created
|
| 1327 |
+
else:
|
| 1328 |
+
print0("PRINT: Muon optimizer not created as muon_params_target_list was empty (e.g. mode where Adam handles all matrices).", console=True)
|
| 1329 |
+
optimizer2 = None # Explicitly set to None
|
| 1330 |
+
|
| 1331 |
+
print0(f"PRINT: Optimizers configured. Total optimizers: {len(optimizers)}", console=True)
|
| 1332 |
+
if optimizer2:
|
| 1333 |
+
print0(f"PRINT: Muon optimizer is active with {len(flat_unique_muon_params)} parameters.", console=True)
|
| 1334 |
+
# --- END MODIFIED PARAMETER COLLECTION AND OPTIMIZER SETUP ---
|
| 1335 |
+
elif exp_args.model_parameterization == "gated" :
|
| 1336 |
+
print0("PRINT: Collecting parameters for optimizers...", console=True)
|
| 1337 |
+
head_params = [model.lm_head.weight]
|
| 1338 |
+
embed_params = [model.embed.weight] + [ve.weight for ve in model.value_embeds]
|
| 1339 |
+
|
| 1340 |
+
# Granular collection for attention and MLP parts
|
| 1341 |
+
attn_q_params = []
|
| 1342 |
+
attn_k_params = []
|
| 1343 |
+
attn_v_params = []
|
| 1344 |
+
attn_o_params = [] # W_O from c_proj
|
| 1345 |
+
mlp_fc_params = []
|
| 1346 |
+
mlp_proj_params = []
|
| 1347 |
+
mlp_up_params = []
|
| 1348 |
+
|
| 1349 |
+
for block_module in model.blocks:
|
| 1350 |
+
if block_module.attn is not None:
|
| 1351 |
+
# These attributes (q_w, k_w, v_w) MUST exist in your CausalSelfAttention class
|
| 1352 |
+
if hasattr(block_module.attn, 'q_w'): attn_q_params.append(block_module.attn.q_w)
|
| 1353 |
+
else: print0(f"PRINT: Warning: q_w not found in attn module of a block.", console=True)
|
| 1354 |
+
if hasattr(block_module.attn, 'k_w'): attn_k_params.append(block_module.attn.k_w)
|
| 1355 |
+
else: print0(f"PRINT: Warning: k_w not found in attn module of a block.", console=True)
|
| 1356 |
+
if hasattr(block_module.attn, 'v_w'): attn_v_params.append(block_module.attn.v_w)
|
| 1357 |
+
else: print0(f"PRINT: Warning: v_w not found in attn module of a block.", console=True)
|
| 1358 |
+
attn_o_params.append(block_module.attn.c_proj.weight)
|
| 1359 |
+
if block_module.mlp is not None:
|
| 1360 |
+
mlp_fc_params.append(block_module.mlp.c_fc.weight)
|
| 1361 |
+
mlp_proj_params.append(block_module.mlp.c_proj.weight)
|
| 1362 |
+
mlp_up_params.append(block_module.mlp.c_up.weight)
|
| 1363 |
+
|
| 1364 |
+
# Combine into logical groups for experiments
|
| 1365 |
+
attn_qk_group = attn_q_params + attn_k_params
|
| 1366 |
+
attn_vo_group = attn_v_params + attn_o_params
|
| 1367 |
+
all_attn_matrices = attn_qk_group + attn_vo_group
|
| 1368 |
+
mlp_w1_group = mlp_fc_params + mlp_up_params
|
| 1369 |
+
mlp_w2_group = mlp_proj_params
|
| 1370 |
+
all_mlp_matrices = mlp_fc_params + mlp_proj_params+ mlp_up_params
|
| 1371 |
+
|
| 1372 |
+
# Scalar parameters (all others not explicitly grouped as matrices)
|
| 1373 |
+
matrix_params_for_scalar_check = set(head_params + embed_params + all_attn_matrices + all_mlp_matrices)
|
| 1374 |
+
scalar_params = [p for n, p in model.named_parameters() if p not in matrix_params_for_scalar_check]
|
| 1375 |
+
for p_scalar in scalar_params: # Sanity check
|
| 1376 |
+
if p_scalar.ndim >=2:
|
| 1377 |
+
print0(f"PRINT: Warning - Parameter {p_scalar.shape} ended up in scalar_params but has ndim >= 2. Check grouping.", console=True)
|
| 1378 |
+
|
| 1379 |
+
|
| 1380 |
+
# Determine parameter distribution based on optimizer_mode
|
| 1381 |
+
muon_params_target_list = []
|
| 1382 |
+
adam_matrix_target_list = [] # Matrices that Adam will handle specifically
|
| 1383 |
+
adam_matrix_lr = exp_args.adam_lr # LR for matrices if Adam handles them (can be tuned)
|
| 1384 |
+
|
| 1385 |
+
current_optimizer_mode = exp_args.optimizer_mode
|
| 1386 |
+
print0(f"PRINT: Configuring optimizers for EXPERIMENT_MODE = {current_optimizer_mode}", console=True)
|
| 1387 |
+
|
| 1388 |
+
if current_optimizer_mode == 0: # Original behavior: Muon on all "hidden_matrix_params"
|
| 1389 |
+
print0(f"PRINT: Mode 0: Muon on ALL Attention (QKVO) and ALL MLP matrices.", console=True)
|
| 1390 |
+
muon_params_target_list = all_attn_matrices + all_mlp_matrices
|
| 1391 |
+
# Adam handles embeds, head, scalars by default. No extra matrices for Adam here.
|
| 1392 |
+
elif current_optimizer_mode == 1: # Muon on QK, Adam on VO and MLP
|
| 1393 |
+
print0(f"PRINT: Mode 1: Muon on QK Attn. Adam on VO Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1394 |
+
muon_params_target_list = attn_qk_group
|
| 1395 |
+
adam_matrix_target_list = attn_vo_group + all_mlp_matrices
|
| 1396 |
+
elif current_optimizer_mode == 2: # Muon on VO, Adam on QK and MLP
|
| 1397 |
+
print0(f"PRINT: Mode 2: Muon on VO Attn. Adam on QK Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1398 |
+
muon_params_target_list = attn_vo_group
|
| 1399 |
+
adam_matrix_target_list = attn_qk_group + all_mlp_matrices
|
| 1400 |
+
elif current_optimizer_mode == 3: # Muon on All Attn (QKVO), Adam on MLP
|
| 1401 |
+
print0(f"PRINT: Mode 3: Muon on ALL Attn (QKVO). Adam on MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1402 |
+
muon_params_target_list = all_attn_matrices
|
| 1403 |
+
adam_matrix_target_list = all_mlp_matrices
|
| 1404 |
+
elif current_optimizer_mode == 4: # Muon on MLP, Adam on All Attn (QKVO)
|
| 1405 |
+
print0(f"PRINT: Mode 4: Muon on MLP. Adam on ALL Attn (QKVO) (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1406 |
+
muon_params_target_list = all_mlp_matrices
|
| 1407 |
+
adam_matrix_target_list = all_attn_matrices
|
| 1408 |
+
elif current_optimizer_mode == 5: # NEW MODE 5 - All Adam
|
| 1409 |
+
print0(f"PRINT: Mode 5: All Adam. All Attn and MLP matrices to Adam (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1410 |
+
muon_params_target_list = []
|
| 1411 |
+
adam_matrix_target_list = all_attn_matrices + all_mlp_matrices # All matrices to Adam
|
| 1412 |
+
elif current_optimizer_mode == 6: # Muon on W_2 MLP, Adam on attn, W_1 MLP
|
| 1413 |
+
print0(f"PRINT: Mode 6: Muon on W_2 MLP. Adam on attn, W_1 MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1414 |
+
muon_params_target_list = mlp_w2_group
|
| 1415 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w1_group
|
| 1416 |
+
elif current_optimizer_mode == 7: # Muon on VO Attn, MLP, Adam on QK Attn
|
| 1417 |
+
print0(f"PRINT: Mode 7: Muon on VO Attn, MLP. Adam on QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1418 |
+
muon_params_target_list = attn_vo_group + all_mlp_matrices
|
| 1419 |
+
adam_matrix_target_list = attn_qk_group
|
| 1420 |
+
elif current_optimizer_mode == 8: # Muon on VO Attn, W_2 MLP, Adam on QK Attn, W_1 MLP
|
| 1421 |
+
print0(f"PRINT: Mode 8: Muon on VO Attn, W_2 MLP. Adam on QK Attn, W_1 MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1422 |
+
muon_params_target_list = attn_vo_group + mlp_w2_group
|
| 1423 |
+
adam_matrix_target_list = attn_qk_group + mlp_w1_group
|
| 1424 |
+
elif current_optimizer_mode == 9: # Muon on V Attn, MLP
|
| 1425 |
+
print0(f"PRINT: Mode 9: Muon on V Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1426 |
+
muon_params_target_list = attn_v_params + all_mlp_matrices
|
| 1427 |
+
adam_matrix_target_list = attn_o_params + attn_qk_group
|
| 1428 |
+
elif current_optimizer_mode == 10: # Muon on O Attn, MLP
|
| 1429 |
+
print0(f"PRINT: Mode 10: Muon on O Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1430 |
+
muon_params_target_list = attn_o_params + all_mlp_matrices
|
| 1431 |
+
adam_matrix_target_list = attn_v_params + attn_qk_group
|
| 1432 |
+
elif current_optimizer_mode == 11: # Muon on W_1, Adam on O Attn, QK Attn
|
| 1433 |
+
print0(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1434 |
+
muon_params_target_list = mlp_w1_group
|
| 1435 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w2_group
|
| 1436 |
+
elif current_optimizer_mode == 12: # Muon on W_1, VO, Adam on others
|
| 1437 |
+
print0(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).", console=True)
|
| 1438 |
+
muon_params_target_list = attn_vo_group + mlp_w1_group
|
| 1439 |
+
adam_matrix_target_list = attn_qk_group + mlp_w2_group
|
| 1440 |
+
else:
|
| 1441 |
+
raise ValueError(f"Unsupported EXPERIMENT_MODE: {current_optimizer_mode}")
|
| 1442 |
+
|
| 1443 |
+
# Adam optimizer setup
|
| 1444 |
+
adam_param_groups_config = [
|
| 1445 |
+
dict(params=head_params, lr=adam_matrix_lr),
|
| 1446 |
+
dict(params=embed_params, lr=adam_matrix_lr),
|
| 1447 |
+
dict(params=scalar_params, lr=adam_matrix_lr) # Scalar params always go to Adam
|
| 1448 |
+
]
|
| 1449 |
+
# Add matrices specifically assigned to Adam for this experiment mode
|
| 1450 |
+
if adam_matrix_target_list:
|
| 1451 |
+
# Ensure adam_matrix_target_list is flat and contains Parameters
|
| 1452 |
+
flat_adam_matrices = [p for sublist_or_p in adam_matrix_target_list for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]) if p is not None]
|
| 1453 |
+
if flat_adam_matrices: # Only add group if there are params
|
| 1454 |
+
adam_param_groups_config.append(dict(params=flat_adam_matrices, lr=adam_matrix_lr))
|
| 1455 |
+
|
| 1456 |
+
# Filter out any Adam groups that might be empty (e.g., if scalar_params was empty)
|
| 1457 |
+
adam_param_groups_config = [g for g in adam_param_groups_config if g['params']]
|
| 1458 |
+
optimizer1 = torch.optim.Adam(adam_param_groups_config, betas=(0.8, 0.95), eps=1e-10, fused=True)
|
| 1459 |
+
optimizers = [optimizer1] # Start with Adam
|
| 1460 |
+
|
| 1461 |
+
# Muon optimizer setup
|
| 1462 |
+
if muon_params_target_list:
|
| 1463 |
+
# Ensure muon_params_target_list is flat, unique, and contains Parameters
|
| 1464 |
+
flat_unique_muon_params = []
|
| 1465 |
+
seen_muon_ids = set()
|
| 1466 |
+
for sublist_or_p in muon_params_target_list:
|
| 1467 |
+
for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]):
|
| 1468 |
+
if p is not None and id(p) not in seen_muon_ids:
|
| 1469 |
+
flat_unique_muon_params.append(p)
|
| 1470 |
+
seen_muon_ids.add(id(p))
|
| 1471 |
+
|
| 1472 |
+
if flat_unique_muon_params: # Only create Muon if it has parameters
|
| 1473 |
+
optimizer2 = Muon(flat_unique_muon_params, lr=exp_args.muon_lr, momentum=0.95, weight_decay=0.0)
|
| 1474 |
+
optimizers.append(optimizer2)
|
| 1475 |
+
else:
|
| 1476 |
+
print0("PRINT: Muon optimizer not created as its target parameter list was empty.", console=True)
|
| 1477 |
+
optimizer2 = None # Explicitly set to None if not created
|
| 1478 |
+
else:
|
| 1479 |
+
print0("PRINT: Muon optimizer not created as muon_params_target_list was empty (e.g. mode where Adam handles all matrices).", console=True)
|
| 1480 |
+
optimizer2 = None # Explicitly set to None
|
| 1481 |
+
|
| 1482 |
+
print0(f"PRINT: Optimizers configured. Total optimizers: {len(optimizers)}", console=True)
|
| 1483 |
+
if optimizer2:
|
| 1484 |
+
print0(f"PRINT: Muon optimizer is active with {len(flat_unique_muon_params)} parameters.", console=True)
|
| 1485 |
+
# --- END MODIFIED PARAMETER COLLECTION AND OPTIMIZER SETUP ---
|
| 1486 |
+
elif exp_args.model_parameterization == "whole":
|
| 1487 |
+
hidden_matrix_params = [p for n, p in model.blocks.named_parameters() if p.ndim >= 2 and "embed" not in n]
|
| 1488 |
+
embed_params = [p for n, p in model.named_parameters() if "embed" in n]
|
| 1489 |
+
scalar_params = [p for p in model.parameters() if p.ndim < 2]
|
| 1490 |
+
head_params = [model.lm_head.weight]
|
| 1491 |
+
|
| 1492 |
+
# init the optimizer(s)
|
| 1493 |
+
adam_params = [dict(params=head_params, lr=0.22), dict(params=embed_params, lr=0.6), dict(params=scalar_params, lr=0.04)]
|
| 1494 |
+
# small adam epsilon by @YouJiacheng. this is an alternate method of fixing the world_size dependence
|
| 1495 |
+
# discovered by @fernbear.bsky.social https://x.com/hi_tysam/status/1879692937589875094
|
| 1496 |
+
optimizer1 = torch.optim.Adam(adam_params, betas=(0.8, 0.95), eps=1e-10, fused=True)
|
| 1497 |
+
optimizer2 = Muon(hidden_matrix_params, lr=0.05, momentum=0.95, rank=rank, world_size=world_size)
|
| 1498 |
+
optimizers = [optimizer1, optimizer2]
|
| 1499 |
+
|
| 1500 |
+
for opt in optimizers:
|
| 1501 |
+
for group in opt.param_groups:
|
| 1502 |
+
group["initial_lr"] = group["lr"]
|
| 1503 |
+
|
| 1504 |
+
# learning rate schedule: stable then decay (KEEP AS IS, but check assert)
|
| 1505 |
+
def get_lr(step: int):
|
| 1506 |
+
x = step / args.num_iterations # progress in training
|
| 1507 |
+
# assert 0 <= x < 1 # Original assert, might fail on last step if step == num_iterations
|
| 1508 |
+
# --- MODIFICATION: Adjust assert for LR schedule ---
|
| 1509 |
+
if not (0 <= x <= 1): # Allow x=1 for the last step
|
| 1510 |
+
x = min(max(x, 0.0), 1.0) # Clamp x if step goes beyond num_iterations
|
| 1511 |
+
# print0(f"LR schedule x = {x:.4f} (step={step}) was clamped.", console=False) # Optional log
|
| 1512 |
+
|
| 1513 |
+
if x < 1 - args.cooldown_frac:
|
| 1514 |
+
return 1.0
|
| 1515 |
+
else:
|
| 1516 |
+
# Ensure cooldown_frac is not zero to avoid division by zero
|
| 1517 |
+
w = (1 - x) / max(args.cooldown_frac, 1e-9)
|
| 1518 |
+
return w * 1.0 + (1 - w) * 0.1
|
| 1519 |
+
|
| 1520 |
+
# attention window size schedule (KEEP AS IS)
|
| 1521 |
+
def next_multiple_of_n(v: float | int, *, n: int):
|
| 1522 |
+
return next(x for x in range(n, int(v) + 1 + n, n) if x >= v)
|
| 1523 |
+
@lru_cache(1)
|
| 1524 |
+
def get_window_size_blocks_helper(window_size: int):
|
| 1525 |
+
return torch.tensor(window_size // 128, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
|
| 1526 |
+
def get_window_size_blocks(step: int):
|
| 1527 |
+
x = step / args.num_iterations # progress in training
|
| 1528 |
+
# --- MODIFICATION: Adjust assert for window size schedule ---
|
| 1529 |
+
if not (0 <= x <= 1):
|
| 1530 |
+
x = min(max(x, 0.0), 1.0) # Clamp x
|
| 1531 |
+
|
| 1532 |
+
# Ensure window_size is at least 128
|
| 1533 |
+
window_size = max(128, next_multiple_of_n(1728 * x, n=128))
|
| 1534 |
+
return get_window_size_blocks_helper(window_size)
|
| 1535 |
+
|
| 1536 |
+
print0("PRINT: Compiling model with TorchInductor...", console=True)
|
| 1537 |
+
# Use 'model' for compilation, not 'model_compiled' before it's defined
|
| 1538 |
+
model_compiled: nn.Module = torch.compile(model, dynamic=False, mode="max-autotune")
|
| 1539 |
+
print0("PRINT: Model compilation complete.", console=True)
|
| 1540 |
+
|
| 1541 |
+
########################################
|
| 1542 |
+
# Warmup kernels #
|
| 1543 |
+
########################################
|
| 1544 |
+
print0("PRINT: Starting warmup...", console=True)
|
| 1545 |
+
warmup_steps = 10
|
| 1546 |
+
initial_state = dict(model=copy.deepcopy(model_compiled.state_dict()), # Use model_compiled
|
| 1547 |
+
optimizers=[copy.deepcopy(opt.state_dict()) for opt in optimizers])
|
| 1548 |
+
for i in range(warmup_steps):
|
| 1549 |
+
# print0(f"Warmup step {i+1}/{warmup_steps}", console=False) # Less verbose
|
| 1550 |
+
inputs = targets = torch.randint(0, args.vocab_size, size=(args.train_seq_len,), device="cuda")
|
| 1551 |
+
loss = model_compiled(inputs.to(torch.int32), targets, get_window_size_blocks(0)) # Use model_compiled
|
| 1552 |
+
loss.backward()
|
| 1553 |
+
for param in model_compiled.parameters(): # Use model_compiled
|
| 1554 |
+
if param.grad is not None:
|
| 1555 |
+
dist.all_reduce(param.grad, op=dist.ReduceOp.AVG)
|
| 1556 |
+
for opt in optimizers:
|
| 1557 |
+
opt.step()
|
| 1558 |
+
model_compiled.zero_grad(set_to_none=True) # Use model_compiled
|
| 1559 |
+
model_compiled.load_state_dict(initial_state["model"]) # Use model_compiled
|
| 1560 |
+
for opt, opt_state in zip(optimizers, initial_state["optimizers"]):
|
| 1561 |
+
opt.load_state_dict(opt_state)
|
| 1562 |
+
del initial_state
|
| 1563 |
+
print0("PRINT: Warmup complete.", console=True)
|
| 1564 |
+
torch.cuda.synchronize()
|
| 1565 |
+
|
| 1566 |
+
|
| 1567 |
+
params_to_analyze = []
|
| 1568 |
+
|
| 1569 |
+
if exp_args.model_parameterization == "whole":
|
| 1570 |
+
params_to_analyze = [p for p in hidden_matrix_params if p.requires_grad]
|
| 1571 |
+
elif exp_args.model_parameterization == "qkvo" or exp_args.model_parameterization == "gated":
|
| 1572 |
+
params_to_analyze = all_attn_matrices + all_mlp_matrices
|
| 1573 |
+
matrix_groups_for_svd = {}
|
| 1574 |
+
if master_process:
|
| 1575 |
+
matrix_groups_for_svd = {
|
| 1576 |
+
"attn_qk": attn_qk_group,
|
| 1577 |
+
"attn_vo": attn_vo_group,
|
| 1578 |
+
"mlp_w1": mlp_w1_group,
|
| 1579 |
+
"mlp_w2": mlp_proj_params
|
| 1580 |
+
}
|
| 1581 |
+
|
| 1582 |
+
|
| 1583 |
+
|
| 1584 |
+
########################################
|
| 1585 |
+
# Training and validation #
|
| 1586 |
+
########################################
|
| 1587 |
+
print0("PRINT: Starting training...", console=True)
|
| 1588 |
+
train_loader = distributed_data_generator(args.train_files, world_size * args.train_seq_len, rank, world_size)
|
| 1589 |
+
training_time_ms = 0
|
| 1590 |
+
torch.cuda.synchronize()
|
| 1591 |
+
t0 = time.perf_counter()
|
| 1592 |
+
train_steps = args.num_iterations
|
| 1593 |
+
|
| 1594 |
+
for step in range(train_steps + 1): # Loop up to num_iterations (inclusive for final validation)
|
| 1595 |
+
last_step = (step == train_steps)
|
| 1596 |
+
|
| 1597 |
+
# --------------- VALIDATION SECTION -----------------
|
| 1598 |
+
# Validate at step 0 (after warmup), at specified intervals, and at the very last step
|
| 1599 |
+
if step == 0 or last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0):
|
| 1600 |
+
torch.cuda.synchronize()
|
| 1601 |
+
# Add time from previous segment only if t0 was set (i.e., not the first validation at step 0)
|
| 1602 |
+
if step > 0 : # For step 0, t0 hasn't started a training segment yet
|
| 1603 |
+
current_run_time = 1000 * (time.perf_counter() - t0)
|
| 1604 |
+
training_time_ms += current_run_time
|
| 1605 |
+
|
| 1606 |
+
model_compiled.eval() # Use model_compiled
|
| 1607 |
+
val_batch_size = world_size * args.val_seq_len
|
| 1608 |
+
# Ensure val_tokens is divisible by val_batch_size, or handle remainder
|
| 1609 |
+
if args.val_tokens % val_batch_size != 0:
|
| 1610 |
+
print0(f"PRINT: Warning: val_tokens ({args.val_tokens}) not perfectly divisible by val_batch_size ({val_batch_size}). Some tokens might be missed.", console=True)
|
| 1611 |
+
val_num_steps = args.val_tokens // val_batch_size
|
| 1612 |
+
|
| 1613 |
+
val_loader = distributed_data_generator(args.val_files, val_batch_size, rank, world_size)
|
| 1614 |
+
val_loss_sum = torch.zeros(1, device=device) # Accumulate loss on device
|
| 1615 |
+
actual_val_steps = 0
|
| 1616 |
+
with torch.no_grad():
|
| 1617 |
+
for val_i in range(val_num_steps):
|
| 1618 |
+
try:
|
| 1619 |
+
inputs, targets = next(val_loader)
|
| 1620 |
+
loss_val = model_compiled(inputs, targets, get_window_size_blocks(step)) # Use model_compiled
|
| 1621 |
+
val_loss_sum += loss_val
|
| 1622 |
+
actual_val_steps += 1
|
| 1623 |
+
except StopIteration:
|
| 1624 |
+
print0(f"PRINT: Validation data loader for '{args.val_files}' exhausted early at val_step {val_i+1}/{val_num_steps}.", console=True)
|
| 1625 |
+
break # Stop if data runs out
|
| 1626 |
+
|
| 1627 |
+
if actual_val_steps > 0:
|
| 1628 |
+
val_loss_avg = val_loss_sum / actual_val_steps
|
| 1629 |
+
else: # Handle case where no validation steps were run (e.g., val_tokens too small or data loader issue)
|
| 1630 |
+
val_loss_avg = torch.tensor(float('nan'), device=device)
|
| 1631 |
+
print0(f"PRINT: Warning: No validation steps were completed. val_loss is NaN.", console=True)
|
| 1632 |
+
|
| 1633 |
+
del val_loader # Clean up
|
| 1634 |
+
dist.all_reduce(val_loss_avg, op=dist.ReduceOp.AVG) # Reduce average loss
|
| 1635 |
+
|
| 1636 |
+
svd_log_str = ""
|
| 1637 |
+
if master_process and 'matrix_groups_for_svd' in locals() and matrix_groups_for_svd:
|
| 1638 |
+
TOPK = 10
|
| 1639 |
+
svd_results_by_category = {}
|
| 1640 |
+
|
| 1641 |
+
with torch.no_grad():
|
| 1642 |
+
# per-category metrics (average over matrices in the group)
|
| 1643 |
+
for name, group_params in matrix_groups_for_svd.items():
|
| 1644 |
+
if not group_params:
|
| 1645 |
+
continue
|
| 1646 |
+
mets = [calculate_svd_metrics(p, topk=TOPK) for p in group_params]
|
| 1647 |
+
if mets:
|
| 1648 |
+
avg_entropy = float(np.mean([m['entropy_norm'] for m in mets]))
|
| 1649 |
+
avg_erank = float(np.mean([m['erank'] for m in mets]))
|
| 1650 |
+
avg_topkE = float(np.mean([m['topk_energy'] for m in mets]))
|
| 1651 |
+
avg_qratio = float(np.mean([m['q75_q25'] for m in mets]))
|
| 1652 |
+
svd_results_by_category[name] = dict(
|
| 1653 |
+
entropy=avg_entropy, erank=avg_erank, topkE=avg_topkE, q75_q25=avg_qratio
|
| 1654 |
+
)
|
| 1655 |
+
|
| 1656 |
+
# VO product as another category
|
| 1657 |
+
vo_mets = []
|
| 1658 |
+
num_layers = len(attn_v_params)
|
| 1659 |
+
for i in range(num_layers):
|
| 1660 |
+
w_v = attn_v_params[i]
|
| 1661 |
+
w_o = attn_o_params[i]
|
| 1662 |
+
w_ov_product = torch.matmul(w_o, w_v)
|
| 1663 |
+
vo_mets.append(calculate_svd_metrics(w_ov_product, topk=TOPK))
|
| 1664 |
+
if vo_mets:
|
| 1665 |
+
svd_results_by_category['vo_prod'] = dict(
|
| 1666 |
+
entropy=float(np.mean([m['entropy_norm'] for m in vo_mets])),
|
| 1667 |
+
erank=float(np.mean([m['erank'] for m in vo_mets])),
|
| 1668 |
+
topkE=float(np.mean([m['topk_energy'] for m in vo_mets])),
|
| 1669 |
+
q75_q25=float(np.mean([m['q75_q25'] for m in vo_mets])),
|
| 1670 |
+
)
|
| 1671 |
+
|
| 1672 |
+
# format logging string (append metrics after entropy)
|
| 1673 |
+
svd_log_parts = []
|
| 1674 |
+
for name, vals in svd_results_by_category.items():
|
| 1675 |
+
svd_log_parts.append(
|
| 1676 |
+
f"{name}:H={vals['entropy']:.4f},top{TOPK}E={vals['topkE']:.2f},eRank={vals['erank']:.1f},q75/q25={vals['q75_q25']:.2f}"
|
| 1677 |
+
)
|
| 1678 |
+
svd_log_str = " ".join(svd_log_parts)
|
| 1679 |
+
|
| 1680 |
+
|
| 1681 |
+
# For step 0, training_time_ms is 0. For subsequent steps, it's cumulative.
|
| 1682 |
+
avg_step_time = training_time_ms / max(step, 1) if step > 0 else 0
|
| 1683 |
+
print0(f"PRINT: step:{step}/{train_steps} val_loss:{val_loss_avg.item():.4f} svd_entropy: {svd_log_str} train_time:{training_time_ms:.0f}ms step_avg:{avg_step_time:.2f}ms", console=True)
|
| 1684 |
+
|
| 1685 |
+
model_compiled.train() # Switch back to train mode
|
| 1686 |
+
torch.cuda.synchronize()
|
| 1687 |
+
t0 = time.perf_counter() # Reset timer for the next training segment
|
| 1688 |
+
|
| 1689 |
+
if last_step:
|
| 1690 |
+
if master_process and args.save_checkpoint:
|
| 1691 |
+
if run_dir_path_str: # Ensure run_dir_path_str is set by master process
|
| 1692 |
+
checkpoint_parent_dir = Path(run_dir_path_str) / "checkpoints"
|
| 1693 |
+
checkpoint_parent_dir.mkdir(parents=True, exist_ok=True) # Create checkpoints subdir
|
| 1694 |
+
checkpoint_path = checkpoint_parent_dir / f"state_step{step:06d}.pt"
|
| 1695 |
+
log_checkpoint = dict(step=step, code=code, model=model_compiled.state_dict(), # Use model_compiled
|
| 1696 |
+
optimizers=[opt.state_dict() for opt in optimizers])
|
| 1697 |
+
torch.save(log_checkpoint, str(checkpoint_path)) # Convert Path to str for torch.save
|
| 1698 |
+
print0(f"PRINT: Saved checkpoint to {checkpoint_path}", console=True)
|
| 1699 |
+
else:
|
| 1700 |
+
print0("PRINT: Warning - run_dir_path_str not set, cannot save checkpoint.", console=True)
|
| 1701 |
+
break
|
| 1702 |
+
|
| 1703 |
+
# --------------- TRAINING SECTION -----------------
|
| 1704 |
+
try:
|
| 1705 |
+
inputs, targets = next(train_loader)
|
| 1706 |
+
except StopIteration:
|
| 1707 |
+
print0(f"PRINT: Training data loader for '{args.train_files}' exhausted. Ending training early at step {step}.", console=True)
|
| 1708 |
+
break # End if data runs out
|
| 1709 |
+
|
| 1710 |
+
loss_train = model_compiled(inputs, targets, get_window_size_blocks(step)) # Use model_compiled
|
| 1711 |
+
loss_train.backward()
|
| 1712 |
+
|
| 1713 |
+
for param in model_compiled.parameters(): # Use model_compiled
|
| 1714 |
+
if param.grad is not None: # Check if grad exists
|
| 1715 |
+
dist.all_reduce(param.grad, op=dist.ReduceOp.AVG)
|
| 1716 |
+
|
| 1717 |
+
current_lr_val = get_lr(step)
|
| 1718 |
+
for opt in optimizers:
|
| 1719 |
+
for group in opt.param_groups:
|
| 1720 |
+
group["lr"] = group["initial_lr"] * current_lr_val
|
| 1721 |
+
|
| 1722 |
+
# --- MODIFICATION: Muon momentum warmup only if optimizer2 (Muon) exists ---
|
| 1723 |
+
if optimizer2 is not None: # Check if Muon optimizer was created
|
| 1724 |
+
for group in optimizer2.param_groups:
|
| 1725 |
+
frac = min(step / 300, 1) # momentum warmup for muon
|
| 1726 |
+
group["momentum"] = (1 - frac) * 0.85 + frac * 0.95
|
| 1727 |
+
|
| 1728 |
+
for opt in optimizers:
|
| 1729 |
+
opt.step()
|
| 1730 |
+
|
| 1731 |
+
model_compiled.zero_grad(set_to_none=True) # Use model_compiled
|
| 1732 |
+
|
| 1733 |
+
# Logging (less frequent for training steps)
|
| 1734 |
+
if step > 0 and (step % 20 == 0 or step == train_steps -1) : # Avoid logging at step 0 before first val
|
| 1735 |
+
# This time is for the current segment since last validation / t0 reset
|
| 1736 |
+
current_segment_time_ms = 1000 * (time.perf_counter() - t0)
|
| 1737 |
+
# approx_training_time_ms is the total cumulative time
|
| 1738 |
+
approx_total_training_time_ms = training_time_ms + current_segment_time_ms
|
| 1739 |
+
|
| 1740 |
+
total_tokens_in_batch = args.train_seq_len * world_size
|
| 1741 |
+
train_loss_per_token = loss_train.item() / total_tokens_in_batch if total_tokens_in_batch > 0 else loss_train.item()
|
| 1742 |
+
|
| 1743 |
+
print0(f"step:{step+1}/{train_steps} train_time:{approx_total_training_time_ms:.0f}ms step_avg:{approx_total_training_time_ms/max(1, step + 1):.2f}ms", console=True) # Log to console too
|
| 1744 |
+
|
| 1745 |
+
print0(f"PRINT: --- Training Finished: {time.ctime()} ---", console=True)
|
| 1746 |
+
print0(f"PRINT: Peak memory allocated: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB "
|
| 1747 |
+
f"reserved: {torch.cuda.max_memory_reserved() // 1024 // 1024} MiB", console=True)
|
| 1748 |
+
|
| 1749 |
+
if dist.is_initialized():
|
| 1750 |
+
dist.destroy_process_group()
|
| 1751 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: Constructing model...
|
| 1752 |
+
[2025-09-04 15:58:23] [Rank 0] PRINT: Constructing model...
|
| 1753 |
+
[2025-09-04 15:58:25] [Rank 0] PRINT: Broadcasting model parameters...
|
| 1754 |
+
[2025-09-04 15:58:25] [Rank 0] PRINT: Broadcasting model parameters...
|
| 1755 |
+
[2025-09-04 15:58:25] [Rank 0] PRINT: Model constructed and broadcasted.
|
| 1756 |
+
[2025-09-04 15:58:25] [Rank 0] PRINT: Model constructed and broadcasted.
|
| 1757 |
+
[2025-09-04 15:58:25] [Rank 0] PRINT: Collecting parameters for optimizers...
|
| 1758 |
+
[2025-09-04 15:58:25] [Rank 0] PRINT: Collecting parameters for optimizers...
|
| 1759 |
+
[2025-09-04 15:58:25] [Rank 0] PRINT: Configuring optimizers for EXPERIMENT_MODE = 13
|
| 1760 |
+
[2025-09-04 15:58:25] [Rank 0] PRINT: Configuring optimizers for EXPERIMENT_MODE = 13
|
logs_svd_gated/mode_13_param_gated_seed_42/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 42,
|
| 5 |
+
"optimizer_mode": 13,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "29ca794e-db48-4228-89b9-294e22f93633",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_13_param_gated_seed_42/training_log_29ca794e-db48-4228-89b9-294e22f93633.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_13_param_gated_seed_43/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 43,
|
| 5 |
+
"optimizer_mode": 13,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "9ef1b43c-d8df-464d-9246-7f66cf8bbaee",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_13_param_gated_seed_43/training_log_9ef1b43c-d8df-464d-9246-7f66cf8bbaee.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_13_param_gated_seed_44/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 44,
|
| 5 |
+
"optimizer_mode": 13,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "46d4e9f2-2b76-454e-bfe1-cd91263cd3ea",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_13_param_gated_seed_44/training_log_46d4e9f2-2b76-454e-bfe1-cd91263cd3ea.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_13_param_gated_seed_45/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 45,
|
| 5 |
+
"optimizer_mode": 13,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "78f20870-5eda-4682-aced-8cedd91a0415",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_13_param_gated_seed_45/training_log_78f20870-5eda-4682-aced-8cedd91a0415.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_13_param_gated_seed_46/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 46,
|
| 5 |
+
"optimizer_mode": 13,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "f15d7967-d463-4726-99a0-e07de412ca4e",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_13_param_gated_seed_46/training_log_f15d7967-d463-4726-99a0-e07de412ca4e.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_13_param_gated_seed_47/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 47,
|
| 5 |
+
"optimizer_mode": 13,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "3f513c1c-b909-494f-92a7-f9975950351b",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_13_param_gated_seed_47/training_log_3f513c1c-b909-494f-92a7-f9975950351b.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_13_param_gated_seed_48/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 48,
|
| 5 |
+
"optimizer_mode": 13,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "1d32ef1a-6c9c-42b2-8a59-62ddd2143fab",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_13_param_gated_seed_48/training_log_1d32ef1a-6c9c-42b2-8a59-62ddd2143fab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_13_param_gated_seed_49/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 49,
|
| 5 |
+
"optimizer_mode": 13,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "1531a5c8-fb60-4f63-ad76-0f25f42b48db",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_13_param_gated_seed_49/training_log_1531a5c8-fb60-4f63-ad76-0f25f42b48db.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_13_param_gated_seed_50/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 50,
|
| 5 |
+
"optimizer_mode": 13,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "f5f8623b-17fe-4271-a358-8cb57ae238a1",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_13_param_gated_seed_50/training_log_f5f8623b-17fe-4271-a358-8cb57ae238a1.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_14_param_gated_seed_41/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 41,
|
| 5 |
+
"optimizer_mode": 14,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "3a060110-ad46-4bb9-9bfc-220548766993",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_14_param_gated_seed_41/training_log_3a060110-ad46-4bb9-9bfc-220548766993.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_14_param_gated_seed_42/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 42,
|
| 5 |
+
"optimizer_mode": 14,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "3c8ef23e-8e99-4dfb-af73-28cde593d61e",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_14_param_gated_seed_42/training_log_3c8ef23e-8e99-4dfb-af73-28cde593d61e.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_14_param_gated_seed_43/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 43,
|
| 5 |
+
"optimizer_mode": 14,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "1c163800-35b0-4389-b3a7-5f103382de01",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_14_param_gated_seed_43/training_log_1c163800-35b0-4389-b3a7-5f103382de01.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_14_param_gated_seed_44/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 44,
|
| 5 |
+
"optimizer_mode": 14,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "b3f636bf-aaae-4f63-84ba-14c79a0fac04",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_14_param_gated_seed_44/training_log_b3f636bf-aaae-4f63-84ba-14c79a0fac04.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_14_param_gated_seed_45/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 45,
|
| 5 |
+
"optimizer_mode": 14,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "45ff64f4-c3fe-4a27-b43d-8b30681d5861",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_14_param_gated_seed_45/training_log_45ff64f4-c3fe-4a27-b43d-8b30681d5861.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_14_param_gated_seed_46/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 46,
|
| 5 |
+
"optimizer_mode": 14,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "f81cb117-3729-42b6-a4bf-001b4dc1d990",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_14_param_gated_seed_46/training_log_f81cb117-3729-42b6-a4bf-001b4dc1d990.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_14_param_gated_seed_47/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 47,
|
| 5 |
+
"optimizer_mode": 14,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "7633ecfb-e90e-4d78-8c06-563f8c802dee",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_14_param_gated_seed_47/training_log_7633ecfb-e90e-4d78-8c06-563f8c802dee.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_14_param_gated_seed_48/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 48,
|
| 5 |
+
"optimizer_mode": 14,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "add87a33-be2f-4e3e-afdf-d3bf661e7185",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_14_param_gated_seed_48/training_log_add87a33-be2f-4e3e-afdf-d3bf661e7185.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_14_param_gated_seed_49/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 49,
|
| 5 |
+
"optimizer_mode": 14,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "a67ed87a-addb-45e9-9122-746d6f16e641",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_14_param_gated_seed_49/training_log_a67ed87a-addb-45e9-9122-746d6f16e641.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_14_param_gated_seed_50/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 50,
|
| 5 |
+
"optimizer_mode": 14,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "20edc821-54ac-4e8f-8176-8387c86d21f5",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_14_param_gated_seed_50/training_log_20edc821-54ac-4e8f-8176-8387c86d21f5.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_15_param_gated_seed_41/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 41,
|
| 5 |
+
"optimizer_mode": 15,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "f146521e-11b7-47c0-93e1-af861941cb9b",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_15_param_gated_seed_41/training_log_f146521e-11b7-47c0-93e1-af861941cb9b.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_15_param_gated_seed_42/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 42,
|
| 5 |
+
"optimizer_mode": 15,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "1501a628-3a92-4eec-9378-5faa95a74a96",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_15_param_gated_seed_42/training_log_1501a628-3a92-4eec-9378-5faa95a74a96.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_15_param_gated_seed_43/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 43,
|
| 5 |
+
"optimizer_mode": 15,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "e0218743-5660-4687-92f9-454060288cb7",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_15_param_gated_seed_43/training_log_e0218743-5660-4687-92f9-454060288cb7.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_15_param_gated_seed_44/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 44,
|
| 5 |
+
"optimizer_mode": 15,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "4acb41e0-2540-49e6-8cc2-39b68527f0d1",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|
logs_svd_gated/mode_15_param_gated_seed_44/training_log_4acb41e0-2540-49e6-8cc2-39b68527f0d1.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_svd_gated/mode_15_param_gated_seed_45/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"unet": false,
|
| 4 |
+
"seed": 45,
|
| 5 |
+
"optimizer_mode": 15,
|
| 6 |
+
"model_parameterization": "gated",
|
| 7 |
+
"adam_lr": 0.05,
|
| 8 |
+
"muon_lr": 0.05,
|
| 9 |
+
"base_dir": "logs_svd_gated"
|
| 10 |
+
},
|
| 11 |
+
"hyperparameters": {
|
| 12 |
+
"train_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 13 |
+
"val_files": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 14 |
+
"val_tokens": 1966080,
|
| 15 |
+
"train_seq_len": 12288,
|
| 16 |
+
"val_seq_len": 65536,
|
| 17 |
+
"num_iterations": 10000,
|
| 18 |
+
"cooldown_frac": 0.4,
|
| 19 |
+
"vocab_size": 50257,
|
| 20 |
+
"val_loss_every": 200,
|
| 21 |
+
"save_checkpoint": false
|
| 22 |
+
},
|
| 23 |
+
"run_uuid_for_log": "43ee740f-19e3-454c-ad13-3a07cef2afcf",
|
| 24 |
+
"script_code_logged_at_start": true
|
| 25 |
+
}
|