Datasets:

Modalities:
Image
Text
Formats:
arrow
Languages:
English
ArXiv:
Tags:
image
Libraries:
Datasets
License:
Fhrozen commited on
Commit
3de1f15
·
1 Parent(s): d647559

add make code

Browse files
Files changed (1) hide show
  1. make_openimages.py +121 -0
make_openimages.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pandas as pd
4
+ from concurrent.futures import ThreadPoolExecutor
5
+ from tqdm import tqdm
6
+
7
+ from datasets import Dataset, load_dataset, Image
8
+ import boto3
9
+
10
+
11
+ def load_jsonl(file_path):
12
+ """
13
+ Loads a JSONL file and returns a list of Python dictionaries.
14
+ Each dictionary represents a JSON object from a line in the file.
15
+ """
16
+ data = []
17
+ with open(file_path, 'r', encoding='utf-8') as f:
18
+ for line in f:
19
+ try:
20
+ # Parse each line as a JSON object
21
+ json_object = json.loads(line.strip())
22
+ data.append(json_object)
23
+ except json.JSONDecodeError as e:
24
+ print(f"Error decoding JSON on line: {line.strip()} - {e}")
25
+ return data
26
+
27
+
28
+ s3 = boto3.client('s3')
29
+
30
+
31
+ def download_file(image_id, split):
32
+ bucket_name = "open-images-dataset"
33
+ object_key = f"{split}/{image_id}.jpg"
34
+ store_name = f"./open_images/images_files/{split}/{image_id}.jpg"
35
+ if os.path.exists(store_name):
36
+ return
37
+
38
+ try:
39
+ s3.download_file(bucket_name, object_key, store_name)
40
+ except KeyboardInterrupt:
41
+ raise
42
+ except:
43
+ print(f"Error getting {bucket_name}")
44
+
45
+ return
46
+
47
+
48
+ def download_split(split):
49
+ workdir = "./open_images"
50
+
51
+ annot_file = os.path.join(workdir, f"{split}-images-with-rotation.csv")
52
+ df = pd.read_csv(annot_file)
53
+ df = pd.DataFrame(df)
54
+ os.makedirs(os.path.join(workdir, "images_files", split), exist_ok=True)
55
+
56
+ # Prepare list of image IDs for multithreading
57
+ image_ids = df["ImageID"].tolist()
58
+
59
+ # Use ThreadPoolExecutor with 6 threads and tqdm for progress
60
+ with ThreadPoolExecutor(max_workers=6) as executor:
61
+ try:
62
+ # Submit all download tasks
63
+ futures = [executor.submit(download_file, image_id, split) for image_id in image_ids]
64
+
65
+ # Use tqdm to show progress
66
+ for future in tqdm(futures, desc=f"Downloading {split} images", unit="image"):
67
+ future.result() # Wait for completion and handle any exceptions
68
+ except KeyboardInterrupt:
69
+ print("\nKeyboardInterrupt received. Shutting down threads...")
70
+ # Cancel all pending futures
71
+ for future in futures:
72
+ future.cancel()
73
+ # Shutdown the executor immediately
74
+ executor.shutdown(wait=False, cancel_futures=True)
75
+ print("All threads stopped.")
76
+ raise # Re-raise to exit the program
77
+
78
+ return
79
+
80
+
81
+ def test_dataset():
82
+
83
+ return
84
+
85
+
86
+ def prepare_subset(split):
87
+ workdir = "open_images"
88
+ csv_file = os.path.join(workdir, f"{split}-images-with-rotation.csv")
89
+ df = pd.read_csv(csv_file)
90
+ df = pd.DataFrame(df)
91
+ print(df)
92
+
93
+ narratives = load_jsonl(os.path.join(workdir, "narratives", f"open_images_{split}_captions.jsonl"))
94
+ narratives = {x["image_id"]: x for x in narratives}
95
+
96
+ def gen():
97
+ for _, row in df.iterrows():
98
+ item = {
99
+ "image_id": row["ImageID"],
100
+ "original_url": row["OriginalURL"],
101
+ "license": row["License"],
102
+ "author": row["Author"],
103
+ "caption": row["Title"],
104
+ "image_id": row["ImageID"],
105
+ "image": os.path.join(workdir, "images_files", split, row["ImageID"] + ".jpg"),
106
+ "narrative": narratives[row["ImageID"]]["caption"],
107
+ }
108
+ yield item
109
+
110
+ ds = Dataset.from_generator(gen)
111
+ ds = ds.cast_column("image", Image())
112
+ ds.save_to_disk(f"{workdir}/datasets/data/{split}", max_shard_size="400MB")
113
+ return
114
+
115
+
116
+ if __name__ == "__main__":
117
+ # for split in ["train", "validation", "test"]:
118
+ # download_split(split)
119
+ for split in ["validation"]:
120
+ prepare_subset(split)
121
+ # test_dataset()