File size: 13,797 Bytes
1f6b229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73275aa
 
1f6b229
 
7ad352d
1f6b229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ba8eb0
1f67a8d
 
 
 
1f6b229
 
 
 
 
4193f56
baf0034
f3ae8be
 
8ba8eb0
1f6b229
22e9235
72cc820
 
a6cf672
72cc820
a6cf672
 
72cc820
1f6b229
 
 
 
 
 
 
 
 
 
 
 
f3ae8be
 
1f6b229
 
 
bbff295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f6b229
 
 
 
 
 
491aaba
1f6b229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6608571
1f6b229
 
 
f3ae8be
8486faa
8b9c46e
 
 
1f6b229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0cd89e
 
18b72c2
3c5bd4c
b0cd89e
3c5bd4c
73275aa
 
 
 
 
 
 
 
 
 
 
 
1f6b229
 
 
 
 
73275aa
1f6b229
 
 
73275aa
 
 
 
 
 
 
 
1f6b229
 
 
 
73275aa
1f6b229
 
 
 
 
 
 
 
 
f3ae8be
491aaba
73275aa
22e9235
18b72c2
73275aa
 
 
1f6b229
 
f3ae8be
 
1f6b229
 
8ba8eb0
1f6b229
 
7ad352d
1f6b229
96863db
18b72c2
1f6b229
18b72c2
bbff295
8942231
 
7ad352d
a11428c
a6cf672
 
 
 
a11428c
7ad352d
 
 
 
 
 
 
 
 
 
 
 
 
 
baf0034
1f6b229
 
491aaba
a11428c
0ad032c
 
 
 
 
 
 
 
a11428c
7ad352d
b670385
 
 
 
 
 
7ad352d
 
491aaba
b670385
 
 
 
 
 
 
 
22e9235
b670385
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""

import csv
import os
from glob import glob

import numpy as np
from PIL import Image
from transformers import LayoutXLMTokenizerFast
import datasets

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "sample": "http://hyperion.bbirke.de/data/docbank/sample_resized.zip",
    "data": {
        'train': 'http://hyperion.bbirke.de/data/geocite/train.zip',
        'test': 'http://hyperion.bbirke.de/data/geocite/test.zip',
    },
}

_FEATURES = datasets.Features(
    {
        "id": datasets.Value("string"),
        "words": datasets.Sequence(datasets.Value("string")),
        "bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
        # "RGBs": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
        # "fonts": datasets.Sequence(datasets.Value("string")),
        #"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
        "original_image": datasets.features.Image(),
        "dataset": datasets.Value("string"),
        #"labels": datasets.Sequence(feature=datasets.Value(dtype='int64'))
        "labels": datasets.Sequence(datasets.features.ClassLabel(
            names=['abstract', 'author', 'caption', 'equation', 'figure', 'footer', 'paragraph',
                   'reference', 'section', 'table', 'title']
            # names=['abstract', 'author', 'caption', 'date', 'equation', 'figure', 'footer', 'list', 'paragraph',
            #        'reference', 'section', 'table', 'title']
        ))
        # These are the features of your dataset like images, labels ...
    }
)


def load_image(image_path, size=None):
    image = Image.open(image_path).convert("RGB")
    w, h = image.size
    if size is not None:
        # resize image
        image = image.resize((size, size))
        image = np.asarray(image)
        image = image[:, :, ::-1]  # flip color channels from RGB to BGR
        image = image.transpose(2, 0, 1)  # move channels to first dimension
    return image, (w, h)


# def normalize_bbox(bbox, size):
#     return [
#         int(1000 * int(bbox[0]) / size[0]),
#         int(1000 * int(bbox[1]) / size[1]),
#         int(1000 * int(bbox[2]) / size[0]),
#         int(1000 * int(bbox[3]) / size[1]),
#     ]
#
#
# def simplify_bbox(bbox):
#     return [
#         min(bbox[0::2]),
#         min(bbox[1::2]),
#         max(bbox[2::2]),
#         max(bbox[3::2]),
#     ]
#
#
# def merge_bbox(bbox_list):
#     x0, y0, x1, y1 = list(zip(*bbox_list))
#     return [min(x0), min(y0), max(x1), max(y1)]


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class Docbank(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    CHUNK_SIZE = 512
    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="sample", version=VERSION,
                               description="This part of my dataset covers a first domain"),
        datasets.BuilderConfig(name="data", version=VERSION,
                               description="This part of my dataset covers a second domain"),
    ]

    # DEFAULT_CONFIG_NAME = "small"  # It's not mandatory to have a default configuration. Just use one if it make sense.
    TOKENIZER = LayoutXLMTokenizerFast.from_pretrained("microsoft/layoutxlm-base", only_label_first_subword=False)
    LABELS = ['abstract', 'author', 'caption', 'date', 'equation', 'figure', 'footer', 'list', 'paragraph', 'reference', 'section', 'table', 'title']
    ID2LABEL = {k: v for k, v in enumerate(LABELS)}
    LABEL2ID = {v: k for k, v in enumerate(LABELS)}

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=_FEATURES,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        #print(data_dir)
        train_txts = glob(data_dir['train'] + '/train/txt/*.csv')
        #print(train_txts[0])
        train_data = [(txt, data_dir['train'] + '/train/img/' + os.path.basename(txt)[:-4] + '.jpg') for txt in train_txts]
        test_txts = glob(data_dir['test'] + '/test/txt/*.csv')
        test_data = [(txt, data_dir['test'] + '/test/img/' + os.path.basename(txt)[:-4] + '.jpg') for txt in test_txts]
        # with open(os.path.join(data_dir, "train.csv")) as f:
        #     files_train = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
        #                     'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
        #                    csv.DictReader(f, skipinitialspace=True)]
        # with open(os.path.join(data_dir, "test.csv")) as f:
        #     files_test = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
        #                    'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
        #                   csv.DictReader(f, skipinitialspace=True)]
        # with open(os.path.join(data_dir, "validation.csv")) as f:
        #     files_validation = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
        #                          'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
        #                         csv.DictReader(f, skipinitialspace=True)]
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": train_data,
                    "split": "train",
                },
            ),
            # datasets.SplitGenerator(
            #     name=datasets.Split.VALIDATION,
            #     # These kwargs will be passed to _generate_examples
            #     gen_kwargs={
            #         "filepath": files_validation,
            #         "split": "validation",
            #     },
            # ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": test_data,
                    "split": "test"
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        # print(filepath)
        key = 0
        for f_fp_txt, f_fp_img in filepath:
            dataset = f_fp_txt.split(".")[-2].split("_")[-1]
            #print(f_fp_txt)
            f_id = key
            #f_fp_txt = f['filepath_txt']
            #f_fp_img = f['filepath_img']
            tokens = []
            bboxes = []
            # rgbs = []
            # fonts = []
            labels = []

            #image, size = load_image(f_fp_img, size=224)
            original_image, _ = load_image(f_fp_img)


            try:
                with open(f_fp_txt, encoding='utf-8') as csvfile:
                    reader = csv.DictReader(csvfile, delimiter=',')
                    for row in reader:
                        #print(row)
                        # normalized_bbox = normalize_bbox(row[1:5], size)
                        normalized_bbox = [int(row['x0']), int(row['y0']), int(row['x1']), int(row['y1'])]
                        tokens.append(row['token'])
                        bboxes.append(normalized_bbox)
                        #print(f'Before: {row[9]}')
                        label = row['label']
                        if (label == "list") or (label == "date"):
                            label = "paragraph"
                        labels.append(label)
                        #print(f'After: {row[9]}')
                        # tokenized_input = self.TOKENIZER(
                        #     row[0],
                        #     add_special_tokens=False,
                        #     return_offsets_mapping=False,
                        #     return_attention_mask=False,
                        #     max_length=512, truncation=True
                        # )
                        #
                        # for tkn in tokenized_input['input_ids']:
                        #     tokens.append(tkn)
                        #     bboxes.append(normalized_bbox)
                        #     # rgbs.append(row[5:8])
                        #     # fonts.append(row[8])
                        #     labels.append(row[9])

            except:
                continue

            #print('Processing...')
            # processed = self.TOKENIZER(
            #     tokens,
            #     boxes=bboxes,
            #     word_labels=labels,
            #     add_special_tokens=False,
            #     return_offsets_mapping=False,
            #     return_attention_mask=False,
            # )
            #print(processed)

            # for chunk_id, index in enumerate(range(0, len(tokens), self.CHUNK_SIZE)):
            #     split_tokens = tokens[index:index + self.CHUNK_SIZE]
            #     split_bboxes = bboxes[index:index + self.CHUNK_SIZE]
            #     # split_rgbs = rgbs[index:index + self.CHUNK_SIZE]
            #     # split_fonts = fonts[index:index + self.CHUNK_SIZE]
            #     split_labels = labels[index:index + self.CHUNK_SIZE]

                #tokenized = self.TOKENIZER(processed['words'], boxes=processed['boxes'])

            yield key, {
                "id": f"file_{f_id}",
                'words': tokens,
                "bbox": bboxes,
                # "RGBs": split_rgbs,
                # "fonts": split_fonts,
                #"image": image,
                "original_image": original_image,
                "dataset": dataset,
                "labels": labels
            }
            key += 1