File size: 2,974 Bytes
6cb5089
 
 
 
 
b3bf70d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391aaab
 
 
b3bf70d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb5089
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: mit
language:
- en
---
## Dataset Description

This dataset contains code snippets from Triton-based projects across GitHub, specifically filtered to include only repositories with permissive licenses (MIT, Apache, BSD, etc.). Each entry in the dataset includes:

- Triton code snippet
- Repository information
- File path
- Commit hash
- Direct GitHub URL to the source code
- License information
- Categorization of the code functionality

## Dataset Creation

The dataset was created by:

1. Collecting Triton code snippets from public GitHub repositories
2. Categorizing the code snippets based on functionality (Using claude)
3. Filtering to keep only snippets from repositories with permissive licenses using a custom `should_keep_license` function

## License Information

This dataset is released under the MIT License. However, each code snippet in the dataset comes from a repository with its own specific license (all permissive). The license type for each snippet is included in the dataset.

Permissive licenses included in this dataset:
- MIT
- BSD
- APACHE
- CC0

## Format and Usage

The dataset is provided in two formats:
- JSON format (`permissive_triton_dataset.json`)
- Parquet format (`permissive_triton_dataset.parquet`)

### Sample Data Structure

```json
{
  "uuid": "...",
  "file_name": "example_triton_file.py",
  "repo_name": "username/repo",
  "file_path": "path/to/file.py",
  "commit_hash": "abcdef123456",
  "starcount": 42,
  "input": "@triton.jit\ndef example_kernel(...):\n    ...",
  "category": {
    "Functionality": ["Category1", "Category2"]
  },
  "licenses": ["MIT"],
  "github_url": "https://github.com/username/repo/blob/abcdef123456/path/to/file.py"
}
```

### Field Descriptions

| Field | Description |
|-------|-------------|
| `uuid` | Unique identifier for the entry in the dataset |
| `file_name` | Name of the source code file |
| `repo_name` | GitHub repository name in format "username/repo" |
| `file_path` | Path to the file within the repository |
| `commit_hash` | Git commit hash for the specific version of the file |
| `starcount` | Number of stars the repository had at the time of data collection |
| `input` | The actual Triton code snippet |
| `category` | Categorization of the code functionality (labeled using Claude) |
| `licenses` | List of permissive license types applicable to this code |
| `github_url` | Direct URL to view the file on GitHub at the specific commit |

#### Category Types

We consider categories in the following domains: Functionality, Data Type, Performance Objective, Parallelization Strategy, and Memory Access Pattern.
We optinally add labels to each of these domains per entry to try and describe the data (using claude).

### Loading the Dataset

```python
# Using JSON
import json
with open('permissive_triton_dataset.json', 'r') as f:
    dataset = json.load(f)

# Using Parquet
import pandas as pd
df = pd.read_parquet('permissive_triton_dataset.parquet')
```