File size: 5,130 Bytes
355ff9f 1984117 355ff9f 3ea2fd1 355ff9f 2214d63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
license: mit
dataset_info:
features:
- name: id
dtype: string
- name: context
dtype: string
- name: news
dtype: string
- name: conversations
list:
- name: role
dtype: string
- name: value
dtype: string
- name: label
dtype: string
- name: pct_change
dtype: float64
- name: day_of_week
dtype: int64
- name: month
dtype: int64
- name: open
dtype: float64
- name: close
dtype: float64
- name: rsi
dtype: 'null'
- name: macd
dtype: float64
- name: volume
dtype: float64
- name: high
dtype: float64
- name: low
dtype: float64
- name: adj_close
dtype: float64
- name: boll_ub
dtype: float64
- name: boll_lb
dtype: float64
- name: rsi_30
dtype: float64
- name: cci_30
dtype: float64
- name: dx_30
dtype: float64
- name: close_30_sma
dtype: float64
- name: close_60_sma
dtype: float64
- name: daily_return
dtype: float64
- name: volatility
dtype: float64
- name: is_overbought
dtype: int64
- name: is_oversold
dtype: int64
- name: date
dtype: timestamp[us]
- name: news_embedding
list: float64
- name: mentions_policy
dtype: int64
- name: mentions_merger
dtype: int64
- name: mentions_earnings
dtype: int64
- name: mentions_commodity
dtype: int64
- name: finance_sentiment_scores
list: float64
- name: avg_finance_sentiment
dtype: float64
- name: total_positive_hits
dtype: int64
- name: total_negative_hits
dtype: int64
- name: rolling_close_3d
dtype: float64
- name: rolling_close_5d
dtype: float64
- name: rolling_volatility_5d
dtype: float64
- name: sma_crossover
dtype: int64
- name: sentiment_aligned_return
dtype: float64
splits:
- name: train
num_bytes: 47360695
num_examples: 1477
- name: test
num_bytes: 2527791
num_examples: 317
- name: valid
num_bytes: 3603858
num_examples: 317
download_size: 31109624
dataset_size: 53492344
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: valid
path: data/valid-*
---
## NIFTY-Feature-Enhanced
## Dataset Summary
NIFTY-Feature-Enhanced is a multi-modal, finance-focused dataset built on top of raeidsaqur/NIFTY
.
We enrich the original dataset with structured financial indicators, derived signals, temporal features, sentiment scores, embeddings, and event tags.
This makes it suitable for:
Predictive ML models (e.g., XGBoost, LSTMs, Transformers)
Financial NLP tasks (sentiment, RAG, semantic search)
Multi-modal research (numeric + textual features combined)
## Enrichments Added
## Temporal Features
day_of_week, month
## Market Indicators (parsed from context)
open, close, high, low, adj_close, volume, pct_change
Technical signals: macd, rsi, rsi_30, cci_30, dx_30, boll_ub, boll_lb, close_30_sma, close_60_sma
## Derived Financial Signals
daily_return = (close-open)/open
volatility = high-low
is_overbought (RSI>70), is_oversold (RSI<30)
## NLP Enrichments
news_embedding → 384-dim semantic vector (MiniLM)
finance_sentiment_scores (lexicon-based per-headline)
avg_finance_sentiment → aggregate sentiment per day
total_positive_hits, total_negative_hits
## Event Tags (regex-based)
mentions_policy, mentions_merger, mentions_earnings, mentions_commodity
## Rolling & Cross Features
rolling_close_3d, rolling_close_5d
rolling_volatility_5d
sma_crossover (30SMA vs. 60SMA)
sentiment_aligned_return = sentiment × pct_change
## Example Row
{
"date": "2010-01-26",
"open": 110.12,
"close": 109.77,
"volume": 147680200,
"macd": 0.8312,
"rsi_30": 59.84,
"daily_return": -0.0031,
"volatility": 1.12,
"is_overbought": 0,
"is_oversold": 0,
"avg_finance_sentiment": 0.007,
"mentions_policy": 1,
"mentions_merger": 0,
"mentions_earnings": 1,
"mentions_commodity": 1,
"rolling_close_3d": 110.95,
"rolling_close_5d": 112.31,
"sma_crossover": 1,
"sentiment_aligned_return": -2.1e-05,
"news_embedding": [0.036, -0.041, 0.082, ...] # 384-dim vector
}
## Use Cases
Financial prediction: Build ML models using enriched market + sentiment signals.
Financial NLP: Benchmark sentiment models, retrieval tasks, RAG pipelines.
Multi-modal ML: Combine embeddings + structured features for hybrid models.
Explainability studies: Investigate interactions between news tone and market moves.
## Citation
If you use the NIFTY Financial dataset in your work, please consider citing our paper:
@article{raeidsaqur2024NiftyLM,
title = {NIFTY-LM Financial News Headlines Dataset for LLMs},
author = {Raeid Saqur},
year = 2024,
journal = {ArXiv},
url = {https://arxiv.org/abs/2024.5599314}
}
## Acknowledgements
## Original dataset: raeidsaqur/NIFTY
## Enrichments by Naga Adithya Kaushik (GenAIDevTOProd)
This makes NIFTY-Feature-Enhanced one of the most feature-rich financial datasets on Hugging Face, bridging numeric markets + NLP headlines for ML + GenAI research. |