File size: 5,130 Bytes
355ff9f
 
1984117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355ff9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea2fd1
 
 
 
 
 
 
 
355ff9f
 
 
 
 
 
 
 
2214d63
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
license: mit
dataset_info:
  features:
  - name: id
    dtype: string
  - name: context
    dtype: string
  - name: news
    dtype: string
  - name: conversations
    list:
    - name: role
      dtype: string
    - name: value
      dtype: string
  - name: label
    dtype: string
  - name: pct_change
    dtype: float64
  - name: day_of_week
    dtype: int64
  - name: month
    dtype: int64
  - name: open
    dtype: float64
  - name: close
    dtype: float64
  - name: rsi
    dtype: 'null'
  - name: macd
    dtype: float64
  - name: volume
    dtype: float64
  - name: high
    dtype: float64
  - name: low
    dtype: float64
  - name: adj_close
    dtype: float64
  - name: boll_ub
    dtype: float64
  - name: boll_lb
    dtype: float64
  - name: rsi_30
    dtype: float64
  - name: cci_30
    dtype: float64
  - name: dx_30
    dtype: float64
  - name: close_30_sma
    dtype: float64
  - name: close_60_sma
    dtype: float64
  - name: daily_return
    dtype: float64
  - name: volatility
    dtype: float64
  - name: is_overbought
    dtype: int64
  - name: is_oversold
    dtype: int64
  - name: date
    dtype: timestamp[us]
  - name: news_embedding
    list: float64
  - name: mentions_policy
    dtype: int64
  - name: mentions_merger
    dtype: int64
  - name: mentions_earnings
    dtype: int64
  - name: mentions_commodity
    dtype: int64
  - name: finance_sentiment_scores
    list: float64
  - name: avg_finance_sentiment
    dtype: float64
  - name: total_positive_hits
    dtype: int64
  - name: total_negative_hits
    dtype: int64
  - name: rolling_close_3d
    dtype: float64
  - name: rolling_close_5d
    dtype: float64
  - name: rolling_volatility_5d
    dtype: float64
  - name: sma_crossover
    dtype: int64
  - name: sentiment_aligned_return
    dtype: float64
  splits:
  - name: train
    num_bytes: 47360695
    num_examples: 1477
  - name: test
    num_bytes: 2527791
    num_examples: 317
  - name: valid
    num_bytes: 3603858
    num_examples: 317
  download_size: 31109624
  dataset_size: 53492344
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
  - split: valid
    path: data/valid-*
---

## NIFTY-Feature-Enhanced
## Dataset Summary

NIFTY-Feature-Enhanced is a multi-modal, finance-focused dataset built on top of raeidsaqur/NIFTY
.
We enrich the original dataset with structured financial indicators, derived signals, temporal features, sentiment scores, embeddings, and event tags.

This makes it suitable for:

Predictive ML models (e.g., XGBoost, LSTMs, Transformers)

Financial NLP tasks (sentiment, RAG, semantic search)

Multi-modal research (numeric + textual features combined)

## Enrichments Added
## Temporal Features

day_of_week, month

## Market Indicators (parsed from context)

open, close, high, low, adj_close, volume, pct_change

Technical signals: macd, rsi, rsi_30, cci_30, dx_30, boll_ub, boll_lb, close_30_sma, close_60_sma

## Derived Financial Signals

daily_return = (close-open)/open

volatility = high-low

is_overbought (RSI>70), is_oversold (RSI<30)

## NLP Enrichments

news_embedding → 384-dim semantic vector (MiniLM)

finance_sentiment_scores (lexicon-based per-headline)

avg_finance_sentiment → aggregate sentiment per day

total_positive_hits, total_negative_hits

## Event Tags (regex-based)

mentions_policy, mentions_merger, mentions_earnings, mentions_commodity

## Rolling & Cross Features

rolling_close_3d, rolling_close_5d

rolling_volatility_5d

sma_crossover (30SMA vs. 60SMA)

sentiment_aligned_return = sentiment × pct_change

## Example Row
{
  "date": "2010-01-26",
  "open": 110.12,
  "close": 109.77,
  "volume": 147680200,
  "macd": 0.8312,
  "rsi_30": 59.84,
  "daily_return": -0.0031,
  "volatility": 1.12,
  "is_overbought": 0,
  "is_oversold": 0,
  "avg_finance_sentiment": 0.007,
  "mentions_policy": 1,
  "mentions_merger": 0,
  "mentions_earnings": 1,
  "mentions_commodity": 1,
  "rolling_close_3d": 110.95,
  "rolling_close_5d": 112.31,
  "sma_crossover": 1,
  "sentiment_aligned_return": -2.1e-05,
  "news_embedding": [0.036, -0.041, 0.082, ...]  # 384-dim vector
}

## Use Cases

Financial prediction: Build ML models using enriched market + sentiment signals.

Financial NLP: Benchmark sentiment models, retrieval tasks, RAG pipelines.

Multi-modal ML: Combine embeddings + structured features for hybrid models.

Explainability studies: Investigate interactions between news tone and market moves.

## Citation

If you use the NIFTY Financial dataset in your work, please consider citing our paper:

@article{raeidsaqur2024NiftyLM,
    title        = {NIFTY-LM Financial News Headlines Dataset for LLMs},
    author       = {Raeid Saqur},
    year         = 2024,
    journal      = {ArXiv},
    url          = {https://arxiv.org/abs/2024.5599314}
}

## Acknowledgements

## Original dataset: raeidsaqur/NIFTY

## Enrichments by Naga Adithya Kaushik (GenAIDevTOProd)

This makes NIFTY-Feature-Enhanced one of the most feature-rich financial datasets on Hugging Face, bridging numeric markets + NLP headlines for ML + GenAI research.