File size: 34,742 Bytes
698c80f 35e8439 698c80f 7a4b68c 698c80f 35e8439 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 35e8439 698c80f 35e8439 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 7a4b68c 698c80f 35e8439 7a4b68c 698c80f 7a4b68c 35e8439 7a4b68c 35e8439 7a4b68c 35e8439 7a4b68c 35e8439 7a4b68c 35e8439 7a4b68c 35e8439 7a4b68c 35e8439 7a4b68c 35e8439 7a4b68c 35e8439 7a4b68c 35e8439 7a4b68c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MEDLINE/PubMed data - Modified for full abstract text extraction."""
import copy
import gzip
import xml.etree.ElementTree as ET # Using standard ElementTree
import datasets
import random
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
Courtesy of the U.S. National Library of Medicine.
"""
_DESCRIPTION = """\
NLM produces a baseline set of MEDLINE/PubMed citation records in XML format for download on an annual basis.
The annual baseline is released in December of each year. Each day, NLM produces update files that include
new, revised and deleted citations. See our documentation page for more information.
This version is modified to extract the full text from structured abstracts.
"""
_HOMEPAGE = "https://www.nlm.nih.gov/databases/download/pubmed_medline.html"
_LICENSE = "" # Assuming standard NLM terms apply, check source for specifics
# Parameters
total_files = 1274
num_bins = 50
total_urls = 20
# Compute bin size
bin_size = total_files // num_bins
# Sample one random file from each bin
selected_indices = []
for b in range(num_bins):
start = b * bin_size + 1
end = min((b + 1) * bin_size + 1, total_files + 1)
if start < end:
selected_indices.append(random.randint(start, end - 1))
# Ensure we only keep 20 URLs total (in case rounding leads to more)
selected_indices = sorted(random.sample(selected_indices, total_urls))
# Create URLs
_URLs = [f"https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed25n{i:04d}.xml.gz" for i in range(1200, 1274)]
# Copyright Ferry Boender, released under the MIT license.
# Modified by @Narsil to handle more oddities
def deepupdate(target, src):
"""Deep update target dict with src
For each k,v in src: if k doesn't exist in target, it is deep copied from
src to target. Otherwise, if v is a list, target[k] is extended with
src[k]. If v is a set, target[k] is updated with v, If v is a dict,
recursively deep-update it.
"""
for k, v in src.items():
# Handling type mismatches observed in original script
if k in target:
target_type = type(target[k])
v_type = type(v)
# Allow string to int conversion for specific known fields if needed
if target_type == int and v_type == str:
try:
v_int = int(v)
v = v_int
v_type = int
except (ValueError, TypeError):
logger.warning(f"Field '{k}': Could not convert string '{v}' to expected type {target_type}. Skipping update.")
continue # Skip this key if conversion fails
# If types still don't match after potential conversion, log and skip
if target_type != v_type and not (isinstance(target[k], list) and isinstance(v, list)) \
and not (isinstance(target[k], dict) and isinstance(v, dict)) \
and not (isinstance(target[k], set) and isinstance(v, set)):
# Check if target is list and source is not (common issue)
if isinstance(target[k], list) and not isinstance(v, list):
logger.warning(f"Field '{k}': Trying to update a list with a non-list ({v_type}). Wrapping source value in a list.")
v = [v] # Attempt to wrap the source value in a list
# Check if target is dict and source is not
elif isinstance(target[k], dict) and not isinstance(v, dict):
logger.warning(f"Field '{k}': Trying to update a dict with a non-dict ({v_type}). Skipping update.")
continue
# Other mismatches
else:
logger.warning(f"Field '{k}': Type mismatch. Target is {target_type}, Source is {v_type}. Skipping update.")
continue
# Recursive update logic based on type
if isinstance(v, list):
if k not in target:
target[k] = copy.deepcopy(v)
elif isinstance(target[k], list):
target[k].extend(v)
# Handle cases where target is not a list but should be (based on schema usually)
# This part might be less needed if schema is strictly enforced earlier
else:
logger.warning(f"Field '{k}': Trying to extend a non-list ({type(target[k])}) with a list. Replacing value.")
target[k] = copy.deepcopy(v)
elif isinstance(v, dict):
if k not in target:
target[k] = copy.deepcopy(v)
elif isinstance(target[k], dict):
deepupdate(target[k], v) # Recurse
else:
logger.warning(f"Field '{k}': Trying to update a non-dict ({type(target[k])}) with a dict. Replacing value.")
target[k] = copy.deepcopy(v)
elif isinstance(v, set):
if k not in target:
target[k] = v.copy()
elif isinstance(target[k], set):
target[k].update(v.copy())
else:
logger.warning(f"Field '{k}': Trying to update a non-set ({type(target[k])}) with a set. Replacing value.")
target[k] = v.copy()
# Handle primitive types
else:
# Prevent overwriting structured types with primitives if key exists
if k in target and isinstance(target[k], (list, tuple, dict, set)):
logger.warning(f"Field '{k}': Trying to overwrite a structured type ({type(target[k])}) with a primitive ({type(v)}). Skipping update.")
continue
target[k] = copy.copy(v) # Shallow copy for primitives
def default_date():
# Using 0 might cause issues with date parsing later. Using None or empty strings might be safer
# depending on how downstream processing handles missing dates. Sticking to 0 for now.
return {"Year": 0, "Month": 0, "Day": 0}
def default_inline_article():
# Default structure expected by the schema
return {
# 'Journal': Journal, # Kept commented out as in original
"Abstract": {"AbstractText": ""}, # Key field for abstract
"ArticleTitle": "",
# 'Pagination': {'MedlinePgn': ""}, # Kept commented out
"AuthorList": {"Author": []}, # Expects a list of Author dicts
"Language": "",
"GrantList": {
"Grant": [], # Expects a list of Grant dicts
},
"PublicationTypeList": {"PublicationType": []}, # Expects a list of strings
}
def default_article():
# Top-level default structure for a PubmedArticle
return {
"MedlineCitation": {
"PMID": 0, # Needs to be populated
"DateCompleted": default_date(),
"NumberOfReferences": 0,
"DateRevised": default_date(),
"Article": default_inline_article(), # Embed the article structure
"MedlineJournalInfo": {"Country": ""},
"ChemicalList": {"Chemical": []},
"CitationSubset": "", # Often a list, handle potential type mismatch
"MeshHeadingList": {"MeshHeading": []},
},
"PubmedData": {
"ArticleIdList": [], # Schema expects Sequence({'ArticleId': Sequence(Value('string'))})
"PublicationStatus": "",
"History": {"PubMedPubDate": []},
"ReferenceList": [], # Modified by update_citation
},
}
class Pubmed(datasets.GeneratorBasedBuilder):
"""Pubmed citations records - Modified for full abstract text"""
# Use a version reflecting the modification, e.g., 5.0.1 or 6.0.0
# Check the actual NLM baseline year you are targeting
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="2025", description="Subset of 2025 annual record with full abstract parsing", version=datasets.Version("6.0.0")),
]
# Keys identified from the schema (_info method) to guide parsing
SIMPLE_KEYS = set() # Will be populated by fill_keys_from_features
LIST_KEYS = set() # Will be populated by fill_keys_from_features
IGNORE_KEYS = set() # Tracks keys explicitly ignored during parsing
def fill_keys_from_features(self, features):
"""Recursively populates SIMPLE_KEYS and LIST_KEYS based on the dataset features."""
if isinstance(features, dict):
for key, value in features.items():
if isinstance(value, datasets.Sequence):
self.LIST_KEYS.add(key)
# Recurse into the sequence's feature type
self.fill_keys_from_features(value.feature)
elif isinstance(value, datasets.Value):
# Simple value types (string, int32, etc.)
self.SIMPLE_KEYS.add(key)
elif isinstance(value, dict): # Handle nested dictionaries in features
self.SIMPLE_KEYS.add(key) # The key itself points to a dict structure
self.fill_keys_from_features(value) # Recurse into the nested dict
# Add handling for other potential feature types if necessary
elif isinstance(features, datasets.Sequence): # Handle top-level Sequence feature
self.fill_keys_from_features(features.feature)
def get_full_abstract_text(self, abstract_element):
"""
Extracts and concatenates text from all AbstractText elements
within the given Abstract element. Handles structured abstracts and inline markup.
Uses ElementTree's itertext for robustness.
"""
if abstract_element is None:
return ""
# Find all AbstractText child elements directly under Abstract
# Using XPath './/AbstractText' would find them anywhere below,
# but './AbstractText' finds only direct children. Let's use direct children first.
abstract_text_elements = abstract_element.findall('./AbstractText')
full_text_parts = []
if not abstract_text_elements:
# Fallback 1: No direct AbstractText children, maybe text is directly in Abstract? (Unlikely for PubMed)
# Fallback 2: Or maybe AbstractText tags are nested deeper unexpectedly. Try finding them anywhere.
abstract_text_elements = abstract_element.findall('.//AbstractText')
if not abstract_text_elements:
# Fallback 3: Use itertext on the Abstract element itself if no AbstractText found
all_text = [text.strip() for text in abstract_element.itertext() if text and text.strip()]
if all_text:
logger.debug(f"Found abstract text directly within <Abstract> or nested tags (no <AbstractText>): {' '.join(all_text)}")
return "\n".join(all_text)
else:
return "" # No text found at all
# Process found AbstractText elements
for text_element in abstract_text_elements:
# Get label attribute if present
label = text_element.get('Label')
nlm_category = text_element.get('NlmCategory') # Capture NlmCategory if needed
# Use itertext() to get *all* text within the element,
# effectively stripping tags like <i>, <b> but keeping their content.
# We join fragments within one AbstractText element with spaces,
# and fragments from different AbstractText elements with newlines later.
text_content = " ".join(text.strip() for text in text_element.itertext() if text and text.strip())
# Construct the output string for this part
current_part = ""
if label:
current_part += f"{label}: "
# Optionally include NlmCategory:
# if nlm_category:
# current_part += f"({nlm_category}) "
current_part += text_content
if current_part: # Avoid adding empty parts
full_text_parts.append(current_part)
# Join the parts from different AbstractText elements with newlines
return "\n".join(full_text_parts)
def xml_to_dictionnary(self, parentElement):
"""
Recursively converts an XML element and its children into a dictionary,
guided by SIMPLE_KEYS and LIST_KEYS derived from the dataset schema.
Includes specific handling for Abstract and ArticleTitle.
"""
data = {}
# --- Handling for specific tags ---
# Handle ArticleTitle: Preserve inner XML tags as a string
if parentElement.tag == "ArticleTitle":
# Extract inner XML/HTML as string. itertext() gets only text.
# To keep tags: concatenate text before first child + string representation of children + tail text
inner_xml_parts = [ET.tostring(e, encoding='unicode', method='xml') for e in parentElement]
full_content = (parentElement.text or "").strip() + "".join(inner_xml_parts) + (parentElement.tail or "").strip()
# Clean up potential extra whitespace between elements
full_content = ' '.join(full_content.split())
# Return directly as {Tag: Value} structure expected by caller
return {parentElement.tag: full_content.strip()}
# --- Process Children ---
children = list(parentElement)
for child in children:
key = child.tag
value = None
# --- Specific Handling for Abstract Tag ---
if key == "Abstract":
full_abstract = self.get_full_abstract_text(child)
# Structure according to schema: {Abstract: {AbstractText: "..."}}
value = {"AbstractText": full_abstract}
# Skip AbstractText if found outside Abstract (already handled by get_full_abstract_text)
elif key == "AbstractText":
# logger.warning(f"Skipping <{key}> found outside <Abstract> context.")
continue # Handled within the Abstract block
# --- End Specific Handling ---
else:
# --- Generic Handling for other tags ---
# Ensure child.text is not None before stripping
child_text = child.text if child.text is not None else ""
if len(child) == 0: # Element has no children, just text content
value = child_text.strip()
else: # Element has children, recurse
recursive_result = self.xml_to_dictionnary(child)
# recursive_result is {'ChildTag': {...}} or {'ChildTag': 'text'}
if isinstance(recursive_result, dict) and key in recursive_result:
value = recursive_result[key] # Extract the inner value/dict
else:
# This case might happen if recursion failed or returned unexpected structure
logger.warning(f"Unexpected recursive result for <{key}>: {recursive_result}. Using direct text if available.")
value = child_text.strip() # Fallback to text
# --- Add parsed value to data dictionary ---
if value is None or value == "": # Skip empty/None values unless schema requires empty string
# Check schema if empty string is valid/expected for this key?
# For simplicity, skipping None/empty string for now.
continue
if key in data: # Key already exists
if isinstance(data[key], list):
data[key].append(value) # Append to existing list
else:
data[key] = [data[key], value] # Convert to list
elif key in self.LIST_KEYS:
# Key expects a list according to schema
if isinstance(value, list):
data[key] = value # Value is already a list (e.g. multiple identical children)
else:
data[key] = [value] # Wrap single value in a list
elif key in self.SIMPLE_KEYS:
data[key] = value # Store as simple value
elif key in self.IGNORE_KEYS:
continue # Explicitly ignore
else:
# Key not in schema or explicitly ignored yet
# Heuristic: If it appears multiple times, treat as list? Risky.
# Safest is to log and ignore, or add to IGNORE_KEYS.
if key not in ["PublicationStatus", "CitationSubset"]: # Allow known schema deviations
logger.info(f"Ignoring unexpected key '{key}' found under <{parentElement.tag}>. Content: {value}. Add to Features or IGNORE_KEYS if needed.")
self.IGNORE_KEYS.add(key) # Ignore future occurrences in this run
else: # Handle known deviations that might appear as single strings but schema expects sequence
if key in self.LIST_KEYS: # Check if it SHOULD be a list
data[key] = [value]
else:
data[key] = value # Store as simple if not expected list
# --- Filling Defaults for missing optional elements (as per original script) ---
if parentElement.tag == "MeshHeading":
if "QualifierName" not in data: data["QualifierName"] = "" # Expects string
elif parentElement.tag == "Author":
if "LastName" not in data: data["LastName"] = ""
if "ForeName" not in data: data["ForeName"] = ""
if "Initials" not in data: data["Initials"] = ""
if "CollectiveName" not in data: data["CollectiveName"] = ""
elif parentElement.tag == "JournalIssue":
if "Volume" not in data: data["Volume"] = ""
if "Issue" not in data: data["Issue"] = ""
# PubDate handling might be needed if it's inconsistent
elif parentElement.tag == "Grant":
if "GrantID" not in data: data["GrantID"] = ""
# Might need defaults for Agency, Country if they are optional but in schema
# Return structure expected by recursion {TagName: data_dict}
# Return empty dict if no children were parsed successfully?
if data or parentElement.text: # Include if it has data OR direct text (for simple elements)
# If it only had text content (no children processed), return that directly
if not data and parentElement.text and parentElement.text.strip():
return {parentElement.tag: parentElement.text.strip()}
else:
# If it's a structure with attributes, add them
if parentElement.attrib:
# Careful not to overwrite parsed children with same key as attribute
attr_dict = {f"@{k}": v for k, v in parentElement.attrib.items() if k not in data}
data.update(attr_dict)
return {parentElement.tag: data}
else:
# Return the tag with an empty dict to indicate it was present but empty/unparsed
return {parentElement.tag: {}}
def _info(self):
"""Defines the dataset schema."""
# Define reusable structures
Date = {
"Year": datasets.Value("int32"),
"Month": datasets.Value("int32"),
"Day": datasets.Value("int32"),
}
MeshHeading = {"DescriptorName": datasets.Value("string"), "QualifierName": datasets.Value("string")}
MedlineJournalInfo = {
"Country": datasets.Value("string"),
# Original script commented these out due to inconsistency, keeping them commented
# 'MedlineTA': datasets.Value('string'),
# 'NlmUniqueID': datasets.Value('string'),
# 'ISSNLinking': datasets.Value('string'),
}
Chemical = {
"RegistryNumber": datasets.Value("string"),
"NameOfSubstance": datasets.Value("string"),
}
Author = {
# Attributes like ValidYN, EqualContrib can be added if needed: "@ValidYN": datasets.Value("string")
"LastName": datasets.Value("string"),
"ForeName": datasets.Value("string"),
"Initials": datasets.Value("string"),
"CollectiveName": datasets.Value("string"), # Handle cases where Author is CollectiveName
# AffiliationInfo might be needed
}
Grant = {
# GrantID might be optional in data but required by schema? Check data.
"GrantID": datasets.Value("string"), # Default added in parser if missing
"Agency": datasets.Value("string"),
"Country": datasets.Value("string"),
}
# Define the main Article structure, including the corrected Abstract
Article = {
# 'Journal': Journal, # Kept commented out
"Abstract": {"AbstractText": datasets.Value("string")}, # Expects a single string now
"ArticleTitle": datasets.Value("string"), # Allows HTML tags based on parser
# 'Pagination': {'MedlinePgn': datasets.Value('string')}, # Kept commented out
"AuthorList": {"Author": datasets.Sequence(Author)}, # Sequence of Author dicts
"Language": datasets.Value("string"), # Usually single, but XML allows multiple, use Sequence? Check data. Assuming single for now.
"GrantList": {
# GrantList might be optional, Grant inside might be optional/list
"Grant": datasets.Sequence(Grant), # Sequence of Grant dicts
},
"PublicationTypeList": {"PublicationType": datasets.Sequence(datasets.Value("string"))}, # Sequence of strings
}
# Define the top-level features including MedlineCitation and PubmedData
features = datasets.Features(
{
"MedlineCitation": {
"PMID": datasets.Value("int32"), # Primary key
"DateCompleted": Date,
"NumberOfReferences": datasets.Value("int32"), # Often missing, default to 0
"DateRevised": Date,
"Article": Article, # Embed the article structure
"MedlineJournalInfo": MedlineJournalInfo,
"ChemicalList": {"Chemical": datasets.Sequence(Chemical)},
# CitationSubset can be single or multiple - using string for simplicity, may need Sequence
"CitationSubset": datasets.Value("string"), # Or datasets.Sequence(datasets.Value("string"))? Check data.
"MeshHeadingList": {
"MeshHeading": datasets.Sequence(MeshHeading),
},
# Other potential fields: KeywordList, GeneSymbolList, CommentsCorrectionsList etc.
},
"PubmedData": {
# ArticleIdList structure is complex: list of dicts, where 'ArticleId' is list of strings
"ArticleIdList": datasets.Sequence({
"ArticleId": datasets.Sequence(datasets.Value("string")),
# Potential attribute: "@IdType": datasets.Value("string")
}),
"PublicationStatus": datasets.Value("string"),
"History": {"PubMedPubDate": datasets.Sequence(Date)}, # Sequence of Date dicts
# ReferenceList is modified by update_citation to be simpler
"ReferenceList": datasets.Sequence({
"Citation": datasets.Value("string"),
"CitationId": datasets.Value("int32"), # Assuming PMID is used as CitationId
# Potential other fields from original reference structure if needed
}),
},
}
)
# Populate SIMPLE_KEYS and LIST_KEYS based on the final features
self.fill_keys_from_features(features)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Downloads data and defines splits."""
# Use dl_manager.download_and_extract for Gzip files
# Using download() and manual gzip opening allows iterparse directly on the stream potentially
# but download_and_extract is standard practice if disk space is okay.
# Let's stick to download() and manual gzip opening to facilitate iterparse later.
dl_dir = dl_manager.download(_URLs) # Returns list/dict of paths to downloaded .xml.gz files
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, # Assuming all data goes to train split
gen_kwargs={"filenames": dl_dir if isinstance(dl_dir, list) else list(dl_dir.values())},
),
]
def update_citation(self, article):
"""
Flattens the complex ReferenceList structure into a simpler list of {Citation, CitationId}.
Modifies the 'article' dictionary in-place.
Needs careful error handling for potentially missing keys.
"""
citations = []
try:
# Navigate the potentially complex structure safely
reference_list_container = article.get("PubmedData", {}).get("ReferenceList")
if not reference_list_container:
article["PubmedData"]["ReferenceList"] = [] # Ensure key exists even if empty
return
# reference_list_container is likely a list of {'Reference': [...]} dicts
for ref_container in reference_list_container:
references = ref_container.get("Reference")
if not references: continue
# references is likely a list of actual reference dicts
for ref in references:
citation_text = ref.get("Citation")
if not citation_text: continue
citation_id = None
# Find the PMID in the ArticleIdList within the reference
article_id_list_container = ref.get("ArticleIdList")
if article_id_list_container:
# This is likely a list of {'ArticleId': [...]}
for id_container in article_id_list_container:
article_ids = id_container.get("ArticleId")
if article_ids:
# article_ids is a list of strings, look for integer ones (PMIDs)
for art_id in article_ids:
try:
# Check if it's a digit string and potentially a PMID
if art_id.isdigit():
citation_id = int(art_id)
# Optional: Check IdType attribute if available
# id_type = id_container.get("@IdType")
# if id_type == "pubmed": # Found explicit PMID
break # Use the first valid integer ID found
except (ValueError, TypeError):
continue # Skip non-integer IDs
if citation_id: break # Stop looking once an ID is found for this reference
# If a valid CitationId (PMID) was found, add the pair
if citation_id is not None:
citations.append({"Citation": citation_text, "CitationId": citation_id})
# else: logger.debug(f"Reference found without parsable PMID: {citation_text[:50]}...")
# Replace the old ReferenceList structure in PubmedData
if "PubmedData" in article:
article["PubmedData"]["ReferenceList"] = citations
else:
# Handle case where PubmedData might be missing entirely? Unlikely if default used.
article["PubmedData"] = {"ReferenceList": citations}
except Exception as e:
logger.error(f"Error during citation update for article: {e}")
# Ensure the key exists even if update fails, matching schema
if "PubmedData" not in article:
article["PubmedData"] = {}
article["PubmedData"]["ReferenceList"] = []
def _generate_examples(self, filenames):
"""Yields examples parsing XML files using iterparse for memory efficiency, skipping duplicate PMIDs."""
# id_ = 0 # Simple counter if needed for logging, but not used as key anymore
yielded_pmids = set() # Keep track of PMIDs we've already yielded
for filename in filenames:
logger.info(f"Processing file: {filename}")
try:
with gzip.open(filename, "rb") as f: # Read as bytes for ET
context = ET.iterparse(f, events=("end",))
event, root = next(context) # Get root iterator
for event, elem in context:
if event == "end" and elem.tag == "PubmedArticle":
article_dict_wrapper = None
pmid = "UNKNOWN_PMID" # Default for logging if extraction fails early
try:
article_dict_wrapper = self.xml_to_dictionnary(elem)
if not article_dict_wrapper or 'PubmedArticle' not in article_dict_wrapper:
logger.warning(f"Parser returned empty or invalid structure for a PubmedArticle element in {filename}")
elem.clear()
continue
article = article_dict_wrapper.get('PubmedArticle')
if not article or not isinstance(article, dict):
logger.warning(f"Parsed empty or invalid article data from element in {filename}")
elem.clear()
continue
# --- Extract PMID early for duplicate check ---
pmid_val = article.get("MedlineCitation", {}).get("PMID", 0)
try:
pmid = int(pmid_val)
if pmid <= 0: raise ValueError("PMID must be positive")
except (ValueError, TypeError):
logger.warning(f"Skipping article due to invalid or missing PMID: '{pmid_val}' in {filename}")
elem.clear()
continue # Skip this article if PMID invalid
# --- !!! DUPLICATE CHECK !!! ---
if pmid in yielded_pmids:
logger.warning(f"Skipping duplicate PMID {pmid} found in {filename}.")
elem.clear()
continue # Skip this duplicate entry
# --- End DUPLICATE CHECK ---
# --- If not duplicate, proceed with processing ---
self.update_citation(article)
new_article = default_article()
deepupdate(new_article, article)
# --- Final validation before yield (PMID check redundant but safe) ---
final_pmid_check = new_article.get("MedlineCitation", {}).get("PMID", 0)
if final_pmid_check != pmid:
logger.error(f"PMID mismatch after processing! Expected {pmid}, got {final_pmid_check}. Skipping article.")
elem.clear()
continue
# Validate against schema
encoded_example = self.info.features.encode_example(new_article)
# Yield pmid as key and the validated dictionary
yield pmid, new_article # Use actual PMID as the example key
yielded_pmids.add(pmid) # Add to set *after* successful yield
except Exception as e:
logger.error(f"Failed to process article PMID {pmid} in {filename}: {e}", exc_info=False) # exc_info=True for full traceback
# Logging data causing error can be helpful but verbose:
# if 'new_article' in locals(): logger.debug(f"Problematic data: {new_article}")
finally:
elem.clear() # Clear the element in all cases (success, skip, error)
if root is not None:
root.clear()
except ET.ParseError as e:
logger.error(f"XML ParseError in file {filename}: {e}")
continue
except gzip.BadGzipFile:
logger.error(f"Bad Gzip File error for {filename}. It might be corrupted or incomplete.")
continue
except FileNotFoundError:
logger.error(f"File not found: {filename}")
continue
except Exception as e:
logger.error(f"An unexpected error occurred processing file {filename}: {e}", exc_info=True)
continue |