Datasets:

ArXiv:
DOI:
License:
File size: 2,043 Bytes
fcf1749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: mit
---

# MADAR: Efficient Continual Learning for Malware Analysis with Diversity-Aware Replay

This dataset is released in support of the paper:

> **MADAR: Efficient Continual Learning for Malware Analysis with Diversity-Aware Replay**  
> Mohammad Saidur Rahman, Scott Coull, Qi Yu, Matthew Wright  
> arXiv preprint [arXiv:2502.05760](https://arxiv.org/abs/2502.05760), 2025

MADAR is a benchmark suite for evaluating continual learning methods in malware classification. It includes realistic data distribution shifts and supports scenarios such as Domain-Incremental Learning (Domain-IL) and Class-Incremental Learning (Class-IL). The dataset includes curated samples from two primary sources:

- **EMBER-Domain**: Derived from the EMBER dataset of Windows PE files.
- **AZ-Domain**: Derived from the AndroZoo dataset of Android APKs.

---

## Dataset Sources

### EMBER-Domain

Curated from the EMBER dataset:

> Hyrum S. Anderson and Phil Roth  
> *Ember: An open dataset for training static PE malware machine learning models*  
> arXiv preprint [arXiv:1804.04637](https://arxiv.org/abs/1804.04637), 2018

### AZ-Domain

Curated from the AndroZoo dataset:

> Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon  
> *AndroZoo: Collecting Millions of Android Apps for the Research Community*  
> International Conference on Mining Software Repositories (MSR), 2016

> Marco Alecci, Pedro Jesús Ruiz Jiménez, Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein  
> *AndroZoo: A Retrospective with a Glimpse into the Future*  
> International Conference on Mining Software Repositories (MSR), 2024

---

## License

This dataset is released under the MIT License.

---

## Citation

If you use MADAR in your work, please cite:

```bibtex
@article{rahman2025madar,
  title={MADAR: Efficient Continual Learning for Malware Analysis with Diversity-Aware Replay},
  author={Rahman, Mohammad Saidur and Coull, Scott and Yu, Qi and Wright, Matthew},
  journal={arXiv preprint arXiv:2502.05760},
  year={2025}
}