File size: 6,170 Bytes
c0a5498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
---
task_categories:
- feature-extraction
pretty_name: HPLT2-embeddings
size_categories:
- n>1T
language:
- sq
- bg
- ca
- cs
- da
- de
- es
- et
- el
- eu
- fi
- fr
- gl
- ga
- hr
- hu
- hy
- is
- it
- lv
- lt
- mk
- nl
- pl
- pt
- ro
- sl
- sk
- sr
- tr
- sv
- nb
- nn
configs:
- config_name: als_Latn
data_files:
- split: train
path: als_Latn/*
- config_name: bul_Cyrl
data_files:
- split: train
path: bul_Cyrl/*
- config_name: cat_Latn
data_files:
- split: train
path: cat_Latn/*
- config_name: ces_Latn
data_files:
- split: train
path: ces_Latn/*
- config_name: dan_Latn
data_files:
- split: train
path: dan_Latn/*
- config_name: deu_Latn
data_files:
- split: train
path: deu_Latn/*
- config_name: ekk_Latn
data_files:
- split: train
path: ekk_Latn/*
- config_name: ell_Grek
data_files:
- split: train
path: ell_Grek/*
- config_name: eus_Latn
data_files:
- split: train
path: eus_Latn/*
- config_name: fin_Latn
data_files:
- split: train
path: fin_Latn/*
- config_name: fra_Latn
data_files:
- split: train
path: fra_Latn/*
- config_name: gle_Latn
data_files:
- split: train
path: gle_Latn/*
- config_name: glg_Latn
data_files:
- split: train
path: glg_Latn/*
- config_name: hrv_Latn
data_files:
- split: train
path: hrv_Latn/*
- config_name: hun_Latn
data_files:
- split: train
path: hun_Latn/*
- config_name: hye_Armn
data_files:
- split: train
path: hye_Armn/*
- config_name: isl_Latn
data_files:
- split: train
path: isl_Latn/*
- config_name: ita_Latn
data_files:
- split: train
path: ita_Latn/*
- config_name: lit_Latn
data_files:
- split: train
path: lit_Latn/*
- config_name: lvs_Latn
data_files:
- split: train
path: lvs_Latn/*
- config_name: mkd_Cyrl
data_files:
- split: train
path: mkd_Cyrl/*
- config_name: nld_Latn
data_files:
- split: train
path: nld_Latn/*
- config_name: nno_Latn
data_files:
- split: train
path: nno_Latn/*
- config_name: nob_Latn
data_files:
- split: train
path: nob_Latn/*
- config_name: pol_Latn
data_files:
- split: train
path: pol_Latn/*
- config_name: por_Latn
data_files:
- split: train
path: por_Latn/*
- config_name: ron_Latn
data_files:
- split: train
path: ron_Latn/*
- config_name: slk_Latn
data_files:
- split: train
path: slk_Latn/*
- config_name: slv_Latn
data_files:
- split: train
path: slv_Latn/*
- config_name: spa_Latn
data_files:
- split: train
path: spa_Latn/*
- config_name: srp_Cyrl
data_files:
- split: train
path: srp_Cyrl/*
- config_name: swe_Latn
data_files:
- split: train
path: swe_Latn/*
- config_name: tur_Latn
data_files:
- split: train
path: tur_Latn/*
- config_name: ukr_Cyrl
data_files:
- split: train
path: ukr_Cyrl/*
---
# HPLT2-embeddings
## Dataset summary
HPLT2-embeddings is an extension of the [**HPLT2**](https://hplt-project.org/datasets/v2.0) dataset, annotated with **document-level** [**Snowflake's Arctic-embed-m-v2.0**](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0) **embeddings** for **35 languages**, making the dataset **useful for a variety of tasks**, including document clustering, filtering, and other multilingual research.
Snowflake-arctic-embed-m-v2.0 has a sequence length limit of 8192 tokens, each document's embeddings are obtained by using the CLS token to embed each document.
The embeddings were computed as part of our [**🦊 JQL: Judging Quality across Languages**](https://huggingface.co/spaces/JQL-AI/JQL) project and will be the basis for an upcoming high-quality subset of HPLT2.
We believe that they can be useful for other multilingual research and applications.
For more details, see our paper [Judging Quality Across Languages: A Multilingual Approach to Pretraining Data Filtering with Language Models](https://arxiv.org/abs/2505.22232).
## Usage
You can load the dataset in Python using e.g.pandas:
```python
import h5py
import pandas as pd
# Path to your .h5 file
file_path = "000_001_00000.h5" # <-- Replace with your actual file path
# Open the HDF5 file and load data
with h5py.File(file_path, "r") as f:
# Load the embeddings and document IDs from the "train" group
embeddings = f["train/embeddings"][:]
document_ids = f["train/document_id"][:]
# Convert document IDs from bytes (if needed)
if isinstance(document_ids[0], bytes):
document_ids = [doc_id.decode("utf-8") for doc_id in document_ids]
# Optionally: create a DataFrame (only if embeddings aren't too large for RAM)
df = pd.DataFrame(embeddings)
df.insert(0, "document_id", document_ids) # Add document_id as the first column
# Preview the DataFrame
print(df.head())
print(f"Loaded {len(df)} rows with shape {embeddings.shape[1]}-dimensional embeddings.")
```
## Origin of the Dataset
This dataset, derived from HPLT2, includes web content collected from 2013 to 2024. As HPLT2 is sourced from the broader internet, it may contain some personally identifiable information (PII), despite efforts to anonymize email addresses and public IP addresses during processing.
## Considerations for Data Usage
For information on social impact, potential biases, and known limitations, please refer to the [HPLT2 documentation](https://hplt-project.org/datasets/v2.0).
## Citation information
If you use this dataset in your research or applications, please use the following citation:
```
@article{ali2025judging,
title = {Judging Quality Across Languages: A Multilingual Approach to Pretraining Data Filtering with Language Models},
author = {
Mehdi Ali,
Manuel Brack,
Max Lübbering,
Elias Wendt,
Abbas Goher Khan,
Richard Rutmann,
Alex Jude,
Maurice Kraus,
Alexander Arno Weber,
Felix Stollenwerk,
David Kaczér,
Florian Mai,
Lucie Flek,
Rafet Sifa,
Nicolas Flores-Herr,
Joachim Köhler,
Patrick Schramowski,
Michael Fromm,
Kristian Kersting
},
year = {2025},
journal = {arXiv preprint arXiv:2505:22232}
}
``` |