id
int64
599M
3.26B
number
int64
1
7.7k
title
stringlengths
1
290
body
stringlengths
0
228k
state
stringclasses
2 values
html_url
stringlengths
46
51
created_at
timestamp[s]date
2020-04-14 10:18:02
2025-07-23 08:04:53
updated_at
timestamp[s]date
2020-04-27 16:04:17
2025-07-23 18:53:44
closed_at
timestamp[s]date
2020-04-14 12:01:40
2025-07-23 16:44:42
user
dict
labels
listlengths
0
4
is_pull_request
bool
2 classes
comments
listlengths
0
0
3,123,962,709
7,597
Download datasets from a private hub in 2025
### Feature request In the context of a private hub deployment, customers would like to use load_dataset() to load datasets from their hub, not from the public hub. This doesn't seem to be configurable at the moment and it would be nice to add this feature. The obvious workaround is to clone the repo first and then load it from local storage, but this adds an extra step. It'd be great to have the same experience regardless of where the hub is hosted. This issue was raised before here: https://github.com/huggingface/datasets/issues/3679 @juliensimon ### Motivation none ### Your contribution none
closed
https://github.com/huggingface/datasets/issues/7597
2025-06-06T07:55:19
2025-06-13T13:46:00
2025-06-13T13:46:00
{ "login": "DanielSchuhmacher", "id": 178552926, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,122,595,042
7,596
Add albumentations to use dataset
1. Fixed broken link to the list of transforms in torchvison. 2. Extended section about video image augmentations with an example from Albumentations.
closed
https://github.com/huggingface/datasets/pull/7596
2025-06-05T20:39:46
2025-06-17T18:38:08
2025-06-17T14:44:30
{ "login": "ternaus", "id": 5481618, "type": "User" }
[]
true
[]
3,121,689,436
7,595
Add `IterableDataset.push_to_hub()`
Basic implementation, which writes one shard per input dataset shard. This is to be improved later. Close https://github.com/huggingface/datasets/issues/5665 PS: for image/audio datasets structured as actual image/audio files (not parquet), you can sometimes speed it up with `ds.decode(num_threads=...).push_to_hub(...)`
closed
https://github.com/huggingface/datasets/pull/7595
2025-06-05T15:29:32
2025-06-06T16:12:37
2025-06-06T16:12:36
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,120,799,626
7,594
Add option to ignore keys/columns when loading a dataset from jsonl(or any other data format)
### Feature request Hi, I would like the option to ignore keys/columns when loading a dataset from files (e.g. jsonl). ### Motivation I am working on a dataset which is built on jsonl. It seems the dataset is unclean and a column has different types in each row. I can't clean this or remove the column (It is not my data and it is too big for me to clean and save on my own hardware). I would like the option to just ignore this column when using `load_dataset`, since i don't need it. I tried to look if this is already possible but couldn't find a solution. if there is I would love some help. If it is not currently possible, I would love this feature ### Your contribution I don't think I can help this time, unfortunately.
open
https://github.com/huggingface/datasets/issues/7594
2025-06-05T11:12:45
2025-06-28T09:03:00
null
{ "login": "avishaiElmakies", "id": 36810152, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,118,812,368
7,593
Fix broken link to albumentations
A few months back I rewrote all docs at [https://albumentations.ai/docs](https://albumentations.ai/docs), and some pages changed their links. In this PR fixed link to the most recent doc in Albumentations about bounding boxes and it's format. Fix a few typos in the doc as well.
closed
https://github.com/huggingface/datasets/pull/7593
2025-06-04T19:00:13
2025-06-05T16:37:02
2025-06-05T16:36:32
{ "login": "ternaus", "id": 5481618, "type": "User" }
[]
true
[]
3,118,203,880
7,592
Remove scripts altogether
TODO: - [x] remplace fixtures based on script with no-script fixtures - [x] windaube
closed
https://github.com/huggingface/datasets/pull/7592
2025-06-04T15:14:11
2025-07-16T18:59:07
2025-06-09T16:45:27
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,117,816,388
7,591
Add num_proc parameter to push_to_hub
### Feature request A number of processes parameter to the dataset.push_to_hub method ### Motivation Shards are currently uploaded serially which makes it slow for many shards, uploading can be done in parallel and much faster
open
https://github.com/huggingface/datasets/issues/7591
2025-06-04T13:19:15
2025-06-27T06:13:54
null
{ "login": "SwayStar123", "id": 46050679, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,101,654,892
7,590
`Sequence(Features(...))` causes PyArrow cast error in `load_dataset` despite correct schema.
### Description When loading a dataset with a field declared as a list of structs using `Sequence(Features(...))`, `load_dataset` incorrectly infers the field as a plain `struct<...>` instead of a `list<struct<...>>`. This leads to the following error: ``` ArrowNotImplementedError: Unsupported cast from list<item: struct<id: string, data: string>> to struct using function cast_struct ``` This occurs even when the `features` schema is explicitly provided and the dataset format supports nested structures natively (e.g., JSON, JSONL). --- ### Minimal Reproduction [Colab Link.](https://colab.research.google.com/drive/1FZPQy6TP3jVd4B3mYKyfQaWNuOAvljUq?usp=sharing) #### Dataset ```python data = [ { "list": [ {"id": "example1", "data": "text"}, ] }, ] ``` #### Schema ```python from datasets import Features, Sequence, Value item = Features({ "id": Value("string"), "data": Value("string"), }) features = Features({ "list": Sequence(item), }) ``` --- ### Tested File Formats The same schema was tested across different formats: | Format | Method | Result | | --------- | --------------------------- | ------------------- | | JSONL | `load_dataset("json", ...)` | Arrow cast error | | JSON | `load_dataset("json", ...)` | Arrow cast error | | In-memory | `Dataset.from_list(...)` | Works as expected | The issue seems not to be in the schema or the data, but in how `load_dataset()` handles the `Sequence(Features(...))` pattern when parsing from files (specifically JSON and JSONL). --- ### Expected Behavior If `features` is explicitly defined as: ```python Features({"list": Sequence(Features({...}))}) ``` Then the data should load correctly across all backends — including from JSON and JSONL — without any Arrow casting errors. This works correctly when loading from memory via `Dataset.from_list`. --- ### Environment * `datasets`: 3.6.0 * `pyarrow`: 20.0.0 * Python: 3.12.10 * OS: Ubuntu 24.04.2 LTS * Notebook: \[Colab test notebook available] ---
closed
https://github.com/huggingface/datasets/issues/7590
2025-05-29T22:53:36
2025-07-19T22:45:08
2025-07-19T22:45:08
{ "login": "AHS-uni", "id": 183279820, "type": "User" }
[]
false
[]
3,101,119,704
7,589
feat: use content defined chunking
WIP: - [x] set the parameters in `io.parquet.ParquetDatasetReader` - [x] set the parameters in `arrow_writer.ParquetWriter` It requires a new pyarrow pin ">=21.0.0" which is not yet released.
open
https://github.com/huggingface/datasets/pull/7589
2025-05-29T18:19:41
2025-06-17T15:04:07
null
{ "login": "kszucs", "id": 961747, "type": "User" }
[]
true
[]
3,094,012,025
7,588
ValueError: Invalid pattern: '**' can only be an entire path component [Colab]
### Describe the bug I have a dataset on HF [here](https://huggingface.co/datasets/kambale/luganda-english-parallel-corpus) that i've previously used to train a translation model [here](https://huggingface.co/kambale/pearl-11m-translate). now i changed a few hyperparameters to increase number of tokens for the model, increase Transformer layers, and all however, when i try to load the dataset, this error keeps coming up.. i have tried everything.. i have re-written the code a hundred times, and this keep coming up ### Steps to reproduce the bug Imports: ```bash !pip install datasets huggingface_hub fsspec ``` Python code: ```python from datasets import load_dataset HF_DATASET_NAME = "kambale/luganda-english-parallel-corpus" # Load the dataset try: if not HF_DATASET_NAME or HF_DATASET_NAME == "YOUR_HF_DATASET_NAME": raise ValueError( "Please provide a valid Hugging Face dataset name." ) dataset = load_dataset(HF_DATASET_NAME) # Omitted code as the error happens on the line above except ValueError as ve: print(f"Configuration Error: {ve}") raise except Exception as e: print(f"An error occurred while loading the dataset '{HF_DATASET_NAME}': {e}") raise e ``` now, i have tried going through this [issue](https://github.com/huggingface/datasets/issues/6737) and nothing helps ### Expected behavior loading the dataset successfully and perform splits (train, test, validation) ### Environment info from the imports, i do not install specific versions of these libraries, so the latest or available version is installed * `datasets` version: latest * `Platform`: Google Colab * `Hardware`: NVIDIA A100 GPU * `Python` version: latest * `huggingface_hub` version: latest * `fsspec` version: latest
closed
https://github.com/huggingface/datasets/issues/7588
2025-05-27T13:46:05
2025-05-30T13:22:52
2025-05-30T01:26:30
{ "login": "wkambale", "id": 43061081, "type": "User" }
[]
false
[]
3,091,834,987
7,587
load_dataset splits typing
close https://github.com/huggingface/datasets/issues/7583
closed
https://github.com/huggingface/datasets/pull/7587
2025-05-26T18:28:40
2025-05-26T18:31:10
2025-05-26T18:29:57
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,091,320,431
7,586
help is appreciated
### Feature request https://github.com/rajasekarnp1/neural-audio-upscaler/tree/main ### Motivation ai model develpment and audio ### Your contribution ai model develpment and audio
open
https://github.com/huggingface/datasets/issues/7586
2025-05-26T14:00:42
2025-05-26T18:21:57
null
{ "login": "rajasekarnp1", "id": 54931785, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,091,227,921
7,585
Avoid multiple default config names
Fix duplicating default config names. Currently, when calling `push_to_hub(set_default=True` with 2 different config names, both are set as default. Moreover, this will generate an error next time we try to push another default config name, raised by `MetadataConfigs.get_default_config_name`: https://github.com/huggingface/datasets/blob/da1db8a5b89fc0badaa0f571b36e122e52ae8c61/src/datasets/arrow_dataset.py#L5757 https://github.com/huggingface/datasets/blob/da1db8a5b89fc0badaa0f571b36e122e52ae8c61/src/datasets/utils/metadata.py#L186-L188
closed
https://github.com/huggingface/datasets/pull/7585
2025-05-26T13:27:59
2025-06-05T12:41:54
2025-06-05T12:41:52
{ "login": "albertvillanova", "id": 8515462, "type": "User" }
[]
true
[]
3,090,255,023
7,584
Add LMDB format support
### Feature request Add LMDB format support for large memory-mapping files ### Motivation Add LMDB format support for large memory-mapping files ### Your contribution I'm trying to add it
open
https://github.com/huggingface/datasets/issues/7584
2025-05-26T07:10:13
2025-05-26T18:23:37
null
{ "login": "trotsky1997", "id": 30512160, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,088,987,757
7,583
load_dataset type stubs reject List[str] for split parameter, but runtime supports it
### Describe the bug The [load_dataset](https://huggingface.co/docs/datasets/v3.6.0/en/package_reference/loading_methods#datasets.load_dataset) method accepts a `List[str]` as the split parameter at runtime, however, the current type stubs restrict the split parameter to `Union[str, Split, None]`. This causes type checkers like Pylance to raise `reportArgumentType` errors when passing a list of strings, even though it works as intended at runtime. ### Steps to reproduce the bug 1. Use load_dataset with multiple splits e.g.: ``` from datasets import load_dataset ds_train, ds_val, ds_test = load_dataset( "Silly-Machine/TuPyE-Dataset", "binary", split=["train[:75%]", "train[75%:]", "test"] ) ``` 2. Observe that code executes correctly at runtime and Pylance raises `Argument of type "List[str]" cannot be assigned to parameter "split" of type "str | Split | None"` ### Expected behavior The type stubs for [load_dataset](https://huggingface.co/docs/datasets/v3.6.0/en/package_reference/loading_methods#datasets.load_dataset) should accept `Union[str, Split, List[str], None]` or more specific overloads for the split parameter to correctly represent runtime behavior. ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.39 - Python version: 3.12.7 - `huggingface_hub` version: 0.32.0 - PyArrow version: 20.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2025.3.0
closed
https://github.com/huggingface/datasets/issues/7583
2025-05-25T02:33:18
2025-05-26T18:29:58
2025-05-26T18:29:58
{ "login": "hierr", "id": 25069969, "type": "User" }
[]
false
[]
3,083,515,643
7,582
fix: Add embed_storage in Pdf feature
Add missing `embed_storage` method in Pdf feature (Same as in Audio and Image)
closed
https://github.com/huggingface/datasets/pull/7582
2025-05-22T14:06:29
2025-05-22T14:17:38
2025-05-22T14:17:36
{ "login": "AndreaFrancis", "id": 5564745, "type": "User" }
[]
true
[]
3,083,080,413
7,581
Add missing property on `RepeatExamplesIterable`
Fixes #7561
closed
https://github.com/huggingface/datasets/pull/7581
2025-05-22T11:41:07
2025-06-05T12:41:30
2025-06-05T12:41:29
{ "login": "SilvanCodes", "id": 42788329, "type": "User" }
[]
true
[]
3,082,993,027
7,580
Requesting a specific split (eg: test) still downloads all (train, test, val) data when streaming=False.
### Describe the bug When using load_dataset() from the datasets library (in load.py), specifying a particular split (e.g., split="train") still results in downloading data for all splits when streaming=False. This happens during the builder_instance.download_and_prepare() call. This behavior leads to unnecessary bandwidth usage and longer download times, especially for large datasets, even if the user only intends to use a single split. ### Steps to reproduce the bug dataset_name = "skbose/indian-english-nptel-v0" dataset = load_dataset(dataset_name, token=hf_token, split="test") ### Expected behavior Optimize the download logic so that only the required split is downloaded when streaming=False when a specific split is provided. ### Environment info Dataset: skbose/indian-english-nptel-v0 Platform: M1 Apple Silicon Python verison: 3.12.9 datasets>=3.5.0
open
https://github.com/huggingface/datasets/issues/7580
2025-05-22T11:08:16
2025-05-26T18:40:31
null
{ "login": "s3pi", "id": 48768216, "type": "User" }
[]
false
[]
3,081,849,022
7,579
Fix typos in PDF and Video documentation
null
closed
https://github.com/huggingface/datasets/pull/7579
2025-05-22T02:27:40
2025-05-22T12:53:49
2025-05-22T12:53:47
{ "login": "AndreaFrancis", "id": 5564745, "type": "User" }
[]
true
[]
3,080,833,740
7,577
arrow_schema is not compatible with list
### Describe the bug ``` import datasets f = datasets.Features({'x': list[datasets.Value(dtype='int32')]}) f.arrow_schema Traceback (most recent call last): File "datasets/features/features.py", line 1826, in arrow_schema return pa.schema(self.type).with_metadata({"huggingface": json.dumps(hf_metadata)}) ^^^^^^^^^ File "datasets/features/features.py", line 1815, in type return get_nested_type(self) ^^^^^^^^^^^^^^^^^^^^^ File "datasets/features/features.py", line 1252, in get_nested_type return pa.struct( ^^^^^^^^^^ File "pyarrow/types.pxi", line 5406, in pyarrow.lib.struct File "pyarrow/types.pxi", line 3890, in pyarrow.lib.field File "pyarrow/types.pxi", line 5918, in pyarrow.lib.ensure_type TypeError: DataType expected, got <class 'list'> ``` The following works ``` f = datasets.Features({'x': datasets.LargeList(datasets.Value(dtype='int32'))}) ``` ### Expected behavior according to https://github.com/huggingface/datasets/blob/458f45a22c3cc9aea5f442f6f519333dcfeae9b9/src/datasets/features/features.py#L1765 python list should be a valid type specification for features ### Environment info - `datasets` version: 3.5.1 - Platform: macOS-15.5-arm64-arm-64bit - Python version: 3.12.9 - `huggingface_hub` version: 0.30.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
closed
https://github.com/huggingface/datasets/issues/7577
2025-05-21T16:37:01
2025-05-26T18:49:51
2025-05-26T18:32:55
{ "login": "jonathanshen-upwork", "id": 164412025, "type": "User" }
[]
false
[]
3,080,450,538
7,576
Fix regex library warnings
# PR Summary This small PR resolves the regex library warnings showing starting Python3.11: ```python DeprecationWarning: 'count' is passed as positional argument ```
closed
https://github.com/huggingface/datasets/pull/7576
2025-05-21T14:31:58
2025-06-05T13:35:16
2025-06-05T12:37:55
{ "login": "emmanuel-ferdman", "id": 35470921, "type": "User" }
[]
true
[]
3,080,228,718
7,575
[MINOR:TYPO] Update save_to_disk docstring
r/hub/filesystem in save_to_disk
closed
https://github.com/huggingface/datasets/pull/7575
2025-05-21T13:22:24
2025-06-05T12:39:13
2025-06-05T12:39:13
{ "login": "cakiki", "id": 3664563, "type": "User" }
[]
true
[]
3,079,641,072
7,574
Missing multilingual directions in IWSLT2017 dataset's processing script
### Describe the bug Hi, Upon using `iwslt2017.py` in `IWSLT/iwslt2017` on the Hub for loading the datasets, I am unable to obtain the datasets for the language pairs `de-it`, `de-ro`, `de-nl`, `it-de`, `nl-de`, and `ro-de` using it. These 6 pairs do not show up when using `get_dataset_config_names()` to obtain the list of all the configs present in `IWSLT/iwslt2017`. This should not be the case since as mentioned in their original paper (please see https://aclanthology.org/2017.iwslt-1.1.pdf), the authors specify that "_this year we proposed the multilingual translation between any pair of languages from {Dutch, English, German, Italian, Romanian}..._" and because these datasets are indeed present in `data/2017-01-trnmted/texts/DeEnItNlRo/DeEnItNlRo/DeEnItNlRo-DeEnItNlRo.zip`. Best Regards, Anand ### Steps to reproduce the bug Check the output of `get_dataset_config_names("IWSLT/iwslt2017", trust_remote_code=True)`: only 24 language pairs are present and the following 6 config names are absent: `iwslt2017-de-it`, `iwslt2017-de-ro`, `iwslt2017-de-nl`, `iwslt2017-it-de`, `iwslt2017-nl-de`, and `iwslt2017-ro-de`. ### Expected behavior The aforementioned 6 language pairs should also be present and hence, all these 6 language pairs' IWSLT2017 datasets must also be available for further use. I would suggest removing `de` from the `BI_LANGUAGES` list and moving it over to the `MULTI_LANGUAGES` list instead in `iwslt2017.py` to account for all the 6 missing language pairs (the same `de-en` dataset is present in both `data/2017-01-trnmted/texts/DeEnItNlRo/DeEnItNlRo/DeEnItNlRo-DeEnItNlRo.zip` and `data/2017-01-trnted/texts/de/en/de-en.zip` but the `de-ro`, `de-nl`, `it-de`, `nl-de`, and `ro-de` datasets are only present in `data/2017-01-trnmted/texts/DeEnItNlRo/DeEnItNlRo/DeEnItNlRo-DeEnItNlRo.zip`: so, its unclear why the following comment: _`# XXX: Artificially removed DE from here, as it also exists within bilingual data`_ has been added as `L71` in `iwslt2017.py`). The `README.md` file in `IWSLT/iwslt2017`must then be re-created using `datasets-cli test path/to/iwslt2017.py --save_info --all_configs` to pass all split size verification checks for the 6 new language pairs which were previously non-existent. ### Environment info - `datasets` version: 3.5.0 - Platform: Linux-6.8.0-56-generic-x86_64-with-glibc2.39 - Python version: 3.12.3 - `huggingface_hub` version: 0.30.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
open
https://github.com/huggingface/datasets/issues/7574
2025-05-21T09:53:17
2025-05-26T18:36:38
null
{ "login": "andy-joy-25", "id": 79297451, "type": "User" }
[]
false
[]
3,076,415,382
7,573
No Samsum dataset
### Describe the bug https://huggingface.co/datasets/Samsung/samsum dataset not found error 404 Originated from https://github.com/meta-llama/llama-cookbook/issues/948 ### Steps to reproduce the bug go to website https://huggingface.co/datasets/Samsung/samsum see the error also downloading it with python throws ``` Couldn't find 'Samsung/samsum' on the Hugging Face Hub either: FileNotFoundError: Samsung/samsum@f00baf5a7d4abfec6820415493bcb52c587788e6/samsum.py (repository not found) ``` ### Expected behavior Dataset exists ### Environment info ``` - `datasets` version: 3.2.0 - Platform: macOS-15.4.1-arm64-arm-64bit - Python version: 3.12.2 - `huggingface_hub` version: 0.26.5 - PyArrow version: 16.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0 ```
closed
https://github.com/huggingface/datasets/issues/7573
2025-05-20T09:54:35
2025-07-21T18:34:34
2025-06-18T12:52:23
{ "login": "IgorKasianenko", "id": 17688220, "type": "User" }
[]
false
[]
3,074,529,251
7,572
Fixed typos
More info: [comment](https://github.com/huggingface/datasets/pull/7564#issuecomment-2863391781).
closed
https://github.com/huggingface/datasets/pull/7572
2025-05-19T17:16:59
2025-06-05T12:25:42
2025-06-05T12:25:41
{ "login": "TopCoder2K", "id": 47208659, "type": "User" }
[]
true
[]
3,074,116,942
7,571
fix string_to_dict test
null
closed
https://github.com/huggingface/datasets/pull/7571
2025-05-19T14:49:23
2025-05-19T14:52:24
2025-05-19T14:49:28
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,065,966,529
7,570
Dataset lib seems to broke after fssec lib update
### Describe the bug I am facing an issue since today where HF's dataset is acting weird and in some instances failure to recognise a valid dataset entirely, I think it is happening due to recent change in `fsspec` lib as using this command fixed it for me in one-time: `!pip install -U datasets huggingface_hub fsspec` ### Steps to reproduce the bug from datasets import load_dataset def download_hf(): dataset_name = input("Enter the dataset name: ") subset_name = input("Enter subset name: ") ds = load_dataset(dataset_name, name=subset_name) for split in ds: ds[split].to_pandas().to_csv(f"{subset_name}.csv", index=False) download_hf() ### Expected behavior ``` Downloading readme: 100%  1.55k/1.55k [00:00<00:00, 121kB/s] Downloading data files: 100%  1/1 [00:00<00:00,  2.06it/s] Downloading data: 0%| | 0.00/54.2k [00:00<?, ?B/s] Downloading data: 100%|██████████| 54.2k/54.2k [00:00<00:00, 121kB/s] Extracting data files: 100%  1/1 [00:00<00:00, 35.17it/s] Generating test split:   140/0 [00:00<00:00, 2628.62 examples/s] --------------------------------------------------------------------------- NotImplementedError Traceback (most recent call last) [<ipython-input-2-12ab305b0e77>](https://localhost:8080/#) in <cell line: 0>() 8 ds[split].to_pandas().to_csv(f"{subset_name}.csv", index=False) 9 ---> 10 download_hf() 2 frames [/usr/local/lib/python3.11/dist-packages/datasets/builder.py](https://localhost:8080/#) in as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory) 1171 is_local = not is_remote_filesystem(self._fs) 1172 if not is_local: -> 1173 raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.") 1174 if not os.path.exists(self._output_dir): 1175 raise FileNotFoundError( NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported. ``` OR ``` Traceback (most recent call last): File "e:\Fuck\download-data\mcq_dataset.py", line 10, in <module> download_hf() File "e:\Fuck\download-data\mcq_dataset.py", line 6, in download_hf ds = load_dataset(dataset_name, name=subset_name) File "C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\datasets\load.py", line 2606, in load_dataset builder_instance = load_dataset_builder( File "C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\datasets\load.py", line 2277, in load_dataset_builder dataset_module = dataset_module_factory( File "C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\datasets\load.py", line 1917, in dataset_module_factory raise e1 from None File "C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\datasets\load.py", line 1867, in dataset_module_factory raise DatasetNotFoundError(f"Dataset '{path}' doesn't exist on the Hub or cannot be accessed.") from e datasets.exceptions.DatasetNotFoundError: Dataset 'dataset repo_id' doesn't exist on the Hub or cannot be accessed. ``` ### Environment info colab and 3.10 local system
closed
https://github.com/huggingface/datasets/issues/7570
2025-05-15T11:45:06
2025-06-13T00:44:27
2025-06-13T00:44:27
{ "login": "sleepingcat4", "id": 81933585, "type": "User" }
[]
false
[]
3,061,234,054
7,569
Dataset creation is broken if nesting a dict inside a dict inside a list
### Describe the bug Hey, I noticed that the creation of datasets with `Dataset.from_generator` is broken if dicts and lists are nested in a certain way and a schema is being passed. See below for details. Best, Tim ### Steps to reproduce the bug Runing this code: ```python from datasets import Dataset, Features, Sequence, Value def generator(): yield { "a": [{"b": {"c": 0}}], } features = Features( { "a": Sequence( feature={ "b": { "c": Value("int32"), }, }, length=1, ) } ) dataset = Dataset.from_generator(generator, features=features) ``` leads to ``` Generating train split: 1 examples [00:00, 540.85 examples/s] Traceback (most recent call last): File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 1635, in _prepare_split_single num_examples, num_bytes = writer.finalize() ^^^^^^^^^^^^^^^^^ File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/arrow_writer.py", line 657, in finalize self.write_examples_on_file() File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/arrow_writer.py", line 510, in write_examples_on_file self.write_batch(batch_examples=batch_examples) File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/arrow_writer.py", line 629, in write_batch pa_table = pa.Table.from_arrays(arrays, schema=schema) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pyarrow/table.pxi", line 4851, in pyarrow.lib.Table.from_arrays File "pyarrow/table.pxi", line 1608, in pyarrow.lib._sanitize_arrays File "pyarrow/array.pxi", line 399, in pyarrow.lib.asarray File "pyarrow/array.pxi", line 1004, in pyarrow.lib.Array.cast File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/pyarrow/compute.py", line 405, in cast return call_function("cast", [arr], options, memory_pool) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pyarrow/_compute.pyx", line 598, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 393, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status pyarrow.lib.ArrowNotImplementedError: Unsupported cast from fixed_size_list<item: struct<c: int32>>[1] to struct using function cast_struct The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/user/test/tools/hf_test2.py", line 23, in <module> dataset = Dataset.from_generator(generator, features=features) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 1114, in from_generator ).read() ^^^^^^ File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/io/generator.py", line 49, in read self.builder.download_and_prepare( File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 1649, in _download_and_prepare super()._download_and_prepare( File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 1487, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 1644, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset Process finished with exit code 1 ``` ### Expected behavior I expected this code not to lead to an error. I have done some digging and figured out that the problem seems to be the `get_nested_type` function in `features.py`, which, for whatever reason, flips Sequences and dicts whenever it encounters a dict inside of a sequence. This seems to be necessary, as disabling that flip leads to another error. However, by keeping that flip enabled for the highest level and disabling it for all subsequent levels, I was able to work around this problem. Specifically, by patching `get_nested_type` as follows, it works on the given example (emphasis on the `level` parameter I added): ```python def get_nested_type(schema: FeatureType, level=0) -> pa.DataType: """ get_nested_type() converts a datasets.FeatureType into a pyarrow.DataType, and acts as the inverse of generate_from_arrow_type(). It performs double-duty as the implementation of Features.type and handles the conversion of datasets.Feature->pa.struct """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, Features): return pa.struct( {key: get_nested_type(schema[key], level = level + 1) for key in schema} ) # Features is subclass of dict, and dict order is deterministic since Python 3.6 elif isinstance(schema, dict): return pa.struct( {key: get_nested_type(schema[key], level = level + 1) for key in schema} ) # however don't sort on struct types since the order matters elif isinstance(schema, (list, tuple)): if len(schema) != 1: raise ValueError("When defining list feature, you should just provide one example of the inner type") value_type = get_nested_type(schema[0], level = level + 1) return pa.list_(value_type) elif isinstance(schema, LargeList): value_type = get_nested_type(schema.feature, level = level + 1) return pa.large_list(value_type) elif isinstance(schema, Sequence): value_type = get_nested_type(schema.feature, level = level + 1) # We allow to reverse list of dict => dict of list for compatibility with tfds if isinstance(schema.feature, dict) and level == 1: data_type = pa.struct({f.name: pa.list_(f.type, schema.length) for f in value_type}) else: data_type = pa.list_(value_type, schema.length) return data_type # Other objects are callable which returns their data type (ClassLabel, Array2D, Translation, Arrow datatype creation methods) return schema() ``` I have honestly no idea what I am doing here, so this might produce other issues for different inputs. ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-6.8.0-59-generic-x86_64-with-glibc2.35 - Python version: 3.11.11 - `huggingface_hub` version: 0.30.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0 Also tested it with 3.5.0, same result.
open
https://github.com/huggingface/datasets/issues/7569
2025-05-13T21:06:45
2025-05-20T19:25:15
null
{ "login": "TimSchneider42", "id": 25732590, "type": "User" }
[]
false
[]
3,060,515,257
7,568
`IterableDatasetDict.map()` call removes `column_names` (in fact info.features)
When calling `IterableDatasetDict.map()`, each split’s `IterableDataset.map()` is invoked without a `features` argument. While omitting the argument isn’t itself incorrect, the implementation then sets `info.features = features`, which destroys the original `features` content. Since `IterableDataset.column_names` relies on `info.features`, it ends up broken (`None`). **Reproduction** 1. Define an IterableDatasetDict with a non-None features schema. 2. my_iterable_dataset_dict contains "text" column. 3. Call: ```Python new_dict = my_iterable_dataset_dict.map( function=my_fn, with_indices=False, batched=True, batch_size=16, ) ``` 4. Observe ```Python new_dict["train"].info.features # {'text': Value(dtype='string', id=None)} new_dict["train"].column_names # ['text'] ``` 5. Call: ```Python new_dict = my_iterable_dataset_dict.map( function=my_fn, with_indices=False, batched=True, batch_size=16, remove_columns=["foo"] ) ``` 6. Observe: ```Python new_dict["train"].info.features # → None new_dict["train"].column_names # → None ``` 5. Internally, in dataset_dict.py this loop omits features ([code](https://github.com/huggingface/datasets/blob/b9efdc64c3bfb8f21f8a4a22b21bddd31ecd5a31/src/datasets/dataset_dict.py#L2047C5-L2056C14)): ```Python for split, dataset in self.items(): dataset_dict[split] = dataset.map( function=function, with_indices=with_indices, input_columns=input_columns, batched=batched, batch_size=batch_size, drop_last_batch=drop_last_batch, remove_columns=remove_columns, fn_kwargs=fn_kwargs, # features omitted → defaults to None ) ``` 7. Then inside IterableDataset.map() ([code](https://github.com/huggingface/datasets/blob/b9efdc64c3bfb8f21f8a4a22b21bddd31ecd5a31/src/datasets/iterable_dataset.py#L2619C1-L2622C37)) correct `info.features` is replaced by features which is None: ```Python info = self.info.copy() info.features = features # features is None here return IterableDataset(..., info=info, ...) ``` **Suggestion** It looks like this replacement was added intentionally but maybe should be done only if `features` is `not None`. **Workarround:** `SFTTrainer` calls `dataset.map()` several times and then fails on `NoneType` when iterating `dataset.column_names`. I decided to write this patch - works form me. ```python def patch_iterable_dataset_map(): _orig_map = IterableDataset.map def _patched_map(self, *args, **kwargs): if "features" not in kwargs or kwargs["features"] is None: kwargs["features"] = self.info.features return _orig_map(self, *args, **kwargs) IterableDataset.map = _patched_map ```
open
https://github.com/huggingface/datasets/issues/7568
2025-05-13T15:45:42
2025-06-30T09:33:47
null
{ "login": "mombip", "id": 7893763, "type": "User" }
[]
false
[]
3,058,308,538
7,567
interleave_datasets seed with multiple workers
### Describe the bug Using interleave_datasets with multiple dataloader workers and a seed set causes the same dataset sampling order across all workers. Should the seed be modulated with the worker id? ### Steps to reproduce the bug See above ### Expected behavior See above ### Environment info - `datasets` version: 3.5.1 - Platform: macOS-15.4.1-arm64-arm-64bit - Python version: 3.12.9 - `huggingface_hub` version: 0.30.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
open
https://github.com/huggingface/datasets/issues/7567
2025-05-12T22:38:27
2025-06-29T06:53:59
null
{ "login": "jonathanasdf", "id": 511073, "type": "User" }
[]
false
[]
3,055,279,344
7,566
terminate called without an active exception; Aborted (core dumped)
### Describe the bug I use it as in the tutorial here: https://huggingface.co/docs/datasets/stream, and it ends up with abort. ### Steps to reproduce the bug 1. `pip install datasets` 2. ``` $ cat main.py #!/usr/bin/env python3 from datasets import load_dataset dataset = load_dataset('HuggingFaceFW/fineweb', split='train', streaming=True) print(next(iter(dataset))) ``` 3. `chmod +x main.py` ``` $ ./main.py README.md: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 43.1k/43.1k [00:00<00:00, 7.04MB/s] Resolving data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 25868/25868 [00:05<00:00, 4859.26it/s] Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 25868/25868 [00:00<00:00, 54773.56it/s] {'text': "How AP reported in all formats from tornado-stricken regionsMarch 8, 2012\nWhen the first serious bout of tornadoes of 2012 blew through middle America in the middle of the night, they touched down in places hours from any AP bureau. Our closest video journalist was Chicago-based Robert Ray, who dropped his plans to travel to Georgia for Super Tuesday, booked several flights to the cities closest to the strikes and headed for the airport. He’d decide once there which flight to take.\nHe never got on board a plane. Instead, he ended up driving toward Harrisburg, Ill., where initial reports suggested a town was destroyed. That decision turned out to be a lucky break for the AP. Twice.\nRay was among the first journalists to arrive and he confirmed those reports -- in all formats. He shot powerful video, put victims on the phone with AP Radio and played back sound to an editor who transcribed the interviews and put the material on text wires. He then walked around the devastation with the Central Regional Desk on the line, talking to victims with the phone held so close that editors could transcribe his interviews in real time.\nRay also made a dramatic image of a young girl who found a man’s prosthetic leg in the rubble, propped it up next to her destroyed home and spray-painted an impromptu sign: “Found leg. Seriously.”\nThe following day, he was back on the road and headed for Georgia and a Super Tuesday date with Newt Gingrich’s campaign. The drive would take him through a stretch of the South that forecasters expected would suffer another wave of tornadoes.\nTo prevent running into THAT storm, Ray used his iPhone to monitor Doppler radar, zooming in on extreme cells and using Google maps to direct himself to safe routes. And then the journalist took over again.\n“When weather like that occurs, a reporter must seize the opportunity to get the news out and allow people to see, hear and read the power of nature so that they can take proper shelter,” Ray says.\nSo Ray now started to use his phone to follow the storms. He attached a small GoPro camera to his steering wheel in case a tornado dropped down in front of the car somewhere, and took video of heavy rain and hail with his iPhone. Soon, he spotted a tornado and the chase was on. He followed an unmarked emergency vehicle to Cleveland, Tenn., where he was first on the scene of the storm's aftermath.\nAgain, the tornadoes had struck in locations that were hours from the nearest AP bureau. Damage and debris, as well as a wickedly violent storm that made travel dangerous, slowed our efforts to get to the news. That wasn’t a problem in Tennessee, where our customers were well served by an all-formats report that included this text story.\n“CLEVELAND, Tenn. (AP) _ Fierce wind, hail and rain lashed Tennessee for the second time in three days, and at least 15 people were hospitalized Friday in the Chattanooga area.”\nThe byline? Robert Ray.\nFor being adept with technology, chasing after news as it literally dropped from the sky and setting a standard for all-formats reporting that put the AP ahead on the most competitive news story of the day, Ray wins this week’s $300 Best of the States prize.\n© 2013 The Associated Press. All rights reserved. Terms and conditions apply. See AP.org for details.", 'id': '<urn:uuid:d66bc6fe-8477-4adf-b430-f6a558ccc8ff>', 'dump': 'CC-MAIN-2013-20', 'url': 'http://%20jwashington@ap.org/Content/Press-Release/2012/How-AP-reported-in-all-formats-from-tornado-stricken-regions', 'date': '2013-05-18T05:48:54Z', 'file_path': 's3://commoncrawl/crawl-data/CC-MAIN-2013-20/segments/1368696381249/warc/CC-MAIN-20130516092621-00000-ip-10-60-113-184.ec2.internal.warc.gz', 'language': 'en', 'language_score': 0.9721424579620361, 'token_count': 717} terminate called without an active exception Aborted (core dumped) ``` ### Expected behavior I'm not a proficient Python user, so it might be my own error, but even in that case, the error message should be better. ### Environment info `Successfully installed datasets-3.6.0 dill-0.3.8 hf-xet-1.1.0 huggingface-hub-0.31.1 multiprocess-0.70.16 requests-2.32.3 xxhash-3.5.0` ``` $ cat /etc/lsb-release DISTRIB_ID=Ubuntu DISTRIB_RELEASE=22.04 DISTRIB_CODENAME=jammy DISTRIB_DESCRIPTION="Ubuntu 22.04.4 LTS" ```
open
https://github.com/huggingface/datasets/issues/7566
2025-05-11T23:05:54
2025-06-23T17:56:02
null
{ "login": "alexey-milovidov", "id": 18581488, "type": "User" }
[]
false
[]
3,051,731,207
7,565
add check if repo exists for dataset uploading
Currently, I'm reuploading datasets for [`MTEB`](https://github.com/embeddings-benchmark/mteb/). Some of them have many splits (more than 20), and I'm encountering the error: `Too many requests for https://huggingface.co/datasets/repo/create`. It seems that this issue occurs because the dataset tries to recreate itself every time a split is uploaded. To resolve this, I've added a check to ensure that if the dataset already exists, it won't attempt to recreate it.
open
https://github.com/huggingface/datasets/pull/7565
2025-05-09T10:27:00
2025-06-09T14:39:23
null
{ "login": "Samoed", "id": 36135455, "type": "User" }
[]
true
[]
3,049,275,226
7,564
Implementation of iteration over values of a column in an IterableDataset object
Refers to [this issue](https://github.com/huggingface/datasets/issues/7381).
closed
https://github.com/huggingface/datasets/pull/7564
2025-05-08T14:59:22
2025-05-19T12:15:02
2025-05-19T12:15:02
{ "login": "TopCoder2K", "id": 47208659, "type": "User" }
[]
true
[]
3,046,351,253
7,563
set dev version
null
closed
https://github.com/huggingface/datasets/pull/7563
2025-05-07T15:18:29
2025-05-07T15:21:05
2025-05-07T15:18:36
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,046,339,430
7,562
release: 3.6.0
null
closed
https://github.com/huggingface/datasets/pull/7562
2025-05-07T15:15:13
2025-05-07T15:17:46
2025-05-07T15:15:21
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,046,302,653
7,561
NotImplementedError: <class 'datasets.iterable_dataset.RepeatExamplesIterable'> doesn't implement num_shards yet
### Describe the bug When using `.repeat()` on an `IterableDataset`, this error gets thrown. There is [this thread](https://discuss.huggingface.co/t/making-an-infinite-iterabledataset/146192/5) that seems to imply the fix is trivial, but I don't know anything about this codebase, so I'm opening this issue rather than attempting to open a PR. ### Steps to reproduce the bug 1. Create an `IterableDataset`. 2. Call `.repeat(None)` on it. 3. Wrap it in a pytorch `DataLoader` 4. Iterate over it. ### Expected behavior This should work normally. ### Environment info datasets: 3.5.0
closed
https://github.com/huggingface/datasets/issues/7561
2025-05-07T15:05:42
2025-06-05T12:41:30
2025-06-05T12:41:30
{ "login": "cyanic-selkie", "id": 32219669, "type": "User" }
[]
false
[]
3,046,265,500
7,560
fix decoding tests
null
closed
https://github.com/huggingface/datasets/pull/7560
2025-05-07T14:56:14
2025-05-07T14:59:02
2025-05-07T14:56:20
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,046,177,078
7,559
fix aiohttp import
null
closed
https://github.com/huggingface/datasets/pull/7559
2025-05-07T14:31:32
2025-05-07T14:34:34
2025-05-07T14:31:38
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,046,066,628
7,558
fix regression
reported in https://github.com/huggingface/datasets/pull/7557 (I just reorganized the condition) wanted to apply this change to the original PR but github didn't let me apply it directly - merging this one instead
closed
https://github.com/huggingface/datasets/pull/7558
2025-05-07T13:56:03
2025-05-07T13:58:52
2025-05-07T13:56:18
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,045,962,076
7,557
check for empty _formatting
Fixes a regression from #7553 breaking shuffling of iterable datasets <img width="884" alt="Screenshot 2025-05-07 at 9 16 52 AM" src="https://github.com/user-attachments/assets/d2f43c5f-4092-4efe-ac31-a32cbd025fe3" />
closed
https://github.com/huggingface/datasets/pull/7557
2025-05-07T13:22:37
2025-05-07T13:57:12
2025-05-07T13:57:12
{ "login": "winglian", "id": 381258, "type": "User" }
[]
true
[]
3,043,615,210
7,556
Add `--merge-pull-request` option for `convert_to_parquet`
Closes #7527 Note that this implementation **will only merge the last PR in the case that they get split up by `push_to_hub`**. See https://github.com/huggingface/datasets/discussions/7555 for more details.
closed
https://github.com/huggingface/datasets/pull/7556
2025-05-06T18:05:05
2025-07-18T19:09:10
2025-07-18T19:09:10
{ "login": "klamike", "id": 17013474, "type": "User" }
[]
true
[]
3,043,089,844
7,554
datasets downloads and generates all splits, even though a single split is requested (for dataset with loading script)
### Describe the bug `datasets` downloads and generates all splits, even though a single split is requested. [This](https://huggingface.co/datasets/jordiae/exebench) is the dataset in question. It uses a loading script. I am not 100% sure that this is a bug, because maybe with loading scripts `datasets` must actually process all the splits? But I thought loading scripts were designed to avoid this. ### Steps to reproduce the bug See [this notebook](https://colab.research.google.com/drive/14kcXp_hgcdj-kIzK0bCG6taE-CLZPVvq?usp=sharing) Or: ```python from datasets import load_dataset dataset = load_dataset('jordiae/exebench', split='test_synth', trust_remote_code=True) ``` ### Expected behavior I expected only the `test_synth` split to be downloaded and processed. ### Environment info - `datasets` version: 3.5.1 - Platform: Linux-6.1.123+-x86_64-with-glibc2.35 - Python version: 3.11.12 - `huggingface_hub` version: 0.30.2 - PyArrow version: 18.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2025.3.0
closed
https://github.com/huggingface/datasets/issues/7554
2025-05-06T14:43:38
2025-05-07T14:53:45
2025-05-07T14:53:44
{ "login": "sei-eschwartz", "id": 50171988, "type": "User" }
[]
false
[]
3,042,953,907
7,553
Rebatch arrow iterables before formatted iterable
close https://github.com/huggingface/datasets/issues/7538 and https://github.com/huggingface/datasets/issues/7475
closed
https://github.com/huggingface/datasets/pull/7553
2025-05-06T13:59:58
2025-05-07T13:17:41
2025-05-06T14:03:42
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,040,258,084
7,552
Enable xet in push to hub
follows https://github.com/huggingface/huggingface_hub/pull/3035 related to https://github.com/huggingface/datasets/issues/7526
closed
https://github.com/huggingface/datasets/pull/7552
2025-05-05T17:02:09
2025-05-06T12:42:51
2025-05-06T12:42:48
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,038,114,928
7,551
Issue with offline mode and partial dataset cached
### Describe the bug Hi, a issue related to #4760 here when loading a single file from a dataset, unable to access it in offline mode afterwards ### Steps to reproduce the bug ```python import os # os.environ["HF_HUB_OFFLINE"] = "1" os.environ["HF_TOKEN"] = "xxxxxxxxxxxxxx" import datasets dataset_name = "uonlp/CulturaX" data_files = "fr/fr_part_00038.parquet" ds = datasets.load_dataset(dataset_name, split='train', data_files=data_files) print(f"Dataset loaded : {ds}") ``` Once the file has been cached, I rerun with the HF_HUB_OFFLINE activated an get this error : ``` ValueError: Couldn't find cache for uonlp/CulturaX for config 'default-1e725f978350254e' Available configs in the cache: ['default-2935e8cdcc21c613'] ``` ### Expected behavior Should be able to access the previously cached files ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.4.0-215-generic-x86_64-with-glibc2.31 - Python version: 3.12.0 - `huggingface_hub` version: 0.27.0 - PyArrow version: 19.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
open
https://github.com/huggingface/datasets/issues/7551
2025-05-04T16:49:37
2025-05-13T03:18:43
null
{ "login": "nrv", "id": 353245, "type": "User" }
[]
false
[]
3,037,017,367
7,550
disable aiohttp depend for python 3.13t free-threading compat
null
closed
https://github.com/huggingface/datasets/pull/7550
2025-05-03T00:28:18
2025-05-03T00:28:24
2025-05-03T00:28:24
{ "login": "Qubitium", "id": 417764, "type": "User" }
[]
true
[]
3,036,272,015
7,549
TypeError: Couldn't cast array of type string to null on webdataset format dataset
### Describe the bug ```python from datasets import load_dataset dataset = load_dataset("animetimm/danbooru-wdtagger-v4-w640-ws-30k") ``` got ``` File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/arrow_writer.py", line 626, in write_batch arrays.append(pa.array(typed_sequence)) File "pyarrow/array.pxi", line 255, in pyarrow.lib.array File "pyarrow/array.pxi", line 117, in pyarrow.lib._handle_arrow_array_protocol File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/arrow_writer.py", line 258, in __arrow_array__ out = cast_array_to_feature( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 2006, in cast_array_to_feature arrays = [ File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 2007, in <listcomp> _c(array.field(name) if name in array_fields else null_array, subfeature) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 2066, in cast_array_to_feature casted_array_values = _c(array.values, feature.feature) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 2103, in cast_array_to_feature return array_cast( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 1949, in array_cast raise TypeError(f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)}") TypeError: Couldn't cast array of type string to null The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/load.py", line 2084, in load_dataset builder_instance.download_and_prepare( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/builder.py", line 1649, in _download_and_prepare super()._download_and_prepare( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/builder.py", line 1487, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/builder.py", line 1644, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset ``` `datasets==3.5.1` whats wrong its inner json structure is like ```yaml features: - name: "image" dtype: "image" - name: "json.id" dtype: "string" - name: "json.width" dtype: "int32" - name: "json.height" dtype: "int32" - name: "json.rating" sequence: dtype: "string" - name: "json.general_tags" sequence: dtype: "string" - name: "json.character_tags" sequence: dtype: "string" ``` i'm 100% sure all the jsons satisfies the abovementioned format. ### Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("animetimm/danbooru-wdtagger-v4-w640-ws-30k") ``` ### Expected behavior load the dataset successfully, with the abovementioned json format and webp images ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 3.5.1 - Platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 - Python version: 3.10.16 - `huggingface_hub` version: 0.30.2 - PyArrow version: 20.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2025.3.0
open
https://github.com/huggingface/datasets/issues/7549
2025-05-02T15:18:07
2025-05-02T15:37:05
null
{ "login": "narugo1992", "id": 117186571, "type": "User" }
[]
false
[]
3,035,568,851
7,548
Python 3.13t (free threads) Compat
### Describe the bug Cannot install `datasets` under `python 3.13t` due to dependency on `aiohttp` and aiohttp cannot be built for free-threading python. The `free threading` support issue in `aiothttp` is active since August 2024! Ouch. https://github.com/aio-libs/aiohttp/issues/8796#issue-2475941784 `pip install dataset` ```bash (vm313t) root@gpu-base:~/GPTQModel# pip install datasets WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='pypi.org', port=443): Read timed out. (read timeout=15)")': /simple/datasets/ Collecting datasets Using cached datasets-3.5.1-py3-none-any.whl.metadata (19 kB) Requirement already satisfied: filelock in /root/vm313t/lib/python3.13t/site-packages (from datasets) (3.18.0) Requirement already satisfied: numpy>=1.17 in /root/vm313t/lib/python3.13t/site-packages (from datasets) (2.2.5) Collecting pyarrow>=15.0.0 (from datasets) Using cached pyarrow-20.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl.metadata (3.3 kB) Collecting dill<0.3.9,>=0.3.0 (from datasets) Using cached dill-0.3.8-py3-none-any.whl.metadata (10 kB) Collecting pandas (from datasets) Using cached pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (89 kB) Requirement already satisfied: requests>=2.32.2 in /root/vm313t/lib/python3.13t/site-packages (from datasets) (2.32.3) Requirement already satisfied: tqdm>=4.66.3 in /root/vm313t/lib/python3.13t/site-packages (from datasets) (4.67.1) Collecting xxhash (from datasets) Using cached xxhash-3.5.0-cp313-cp313t-linux_x86_64.whl Collecting multiprocess<0.70.17 (from datasets) Using cached multiprocess-0.70.16-py312-none-any.whl.metadata (7.2 kB) Collecting fsspec<=2025.3.0,>=2023.1.0 (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets) Using cached fsspec-2025.3.0-py3-none-any.whl.metadata (11 kB) Collecting aiohttp (from datasets) Using cached aiohttp-3.11.18.tar.gz (7.7 MB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... done Requirement already satisfied: huggingface-hub>=0.24.0 in /root/vm313t/lib/python3.13t/site-packages (from datasets) (0.30.2) Requirement already satisfied: packaging in /root/vm313t/lib/python3.13t/site-packages (from datasets) (25.0) Requirement already satisfied: pyyaml>=5.1 in /root/vm313t/lib/python3.13t/site-packages (from datasets) (6.0.2) Collecting aiohappyeyeballs>=2.3.0 (from aiohttp->datasets) Using cached aiohappyeyeballs-2.6.1-py3-none-any.whl.metadata (5.9 kB) Collecting aiosignal>=1.1.2 (from aiohttp->datasets) Using cached aiosignal-1.3.2-py2.py3-none-any.whl.metadata (3.8 kB) Collecting attrs>=17.3.0 (from aiohttp->datasets) Using cached attrs-25.3.0-py3-none-any.whl.metadata (10 kB) Collecting frozenlist>=1.1.1 (from aiohttp->datasets) Using cached frozenlist-1.6.0-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (16 kB) Collecting multidict<7.0,>=4.5 (from aiohttp->datasets) Using cached multidict-6.4.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.3 kB) Collecting propcache>=0.2.0 (from aiohttp->datasets) Using cached propcache-0.3.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (10 kB) Collecting yarl<2.0,>=1.17.0 (from aiohttp->datasets) Using cached yarl-1.20.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (72 kB) Requirement already satisfied: idna>=2.0 in /root/vm313t/lib/python3.13t/site-packages (from yarl<2.0,>=1.17.0->aiohttp->datasets) (3.10) Requirement already satisfied: typing-extensions>=3.7.4.3 in /root/vm313t/lib/python3.13t/site-packages (from huggingface-hub>=0.24.0->datasets) (4.13.2) Requirement already satisfied: charset-normalizer<4,>=2 in /root/vm313t/lib/python3.13t/site-packages (from requests>=2.32.2->datasets) (3.4.1) Requirement already satisfied: urllib3<3,>=1.21.1 in /root/vm313t/lib/python3.13t/site-packages (from requests>=2.32.2->datasets) (2.4.0) Requirement already satisfied: certifi>=2017.4.17 in /root/vm313t/lib/python3.13t/site-packages (from requests>=2.32.2->datasets) (2025.4.26) Collecting python-dateutil>=2.8.2 (from pandas->datasets) Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB) Collecting pytz>=2020.1 (from pandas->datasets) Using cached pytz-2025.2-py2.py3-none-any.whl.metadata (22 kB) Collecting tzdata>=2022.7 (from pandas->datasets) Using cached tzdata-2025.2-py2.py3-none-any.whl.metadata (1.4 kB) Collecting six>=1.5 (from python-dateutil>=2.8.2->pandas->datasets) Using cached six-1.17.0-py2.py3-none-any.whl.metadata (1.7 kB) Using cached datasets-3.5.1-py3-none-any.whl (491 kB) Using cached dill-0.3.8-py3-none-any.whl (116 kB) Using cached fsspec-2025.3.0-py3-none-any.whl (193 kB) Using cached multiprocess-0.70.16-py312-none-any.whl (146 kB) Using cached multidict-6.4.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (220 kB) Using cached yarl-1.20.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (404 kB) Using cached aiohappyeyeballs-2.6.1-py3-none-any.whl (15 kB) Using cached aiosignal-1.3.2-py2.py3-none-any.whl (7.6 kB) Using cached attrs-25.3.0-py3-none-any.whl (63 kB) Using cached frozenlist-1.6.0-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (385 kB) Using cached propcache-0.3.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (282 kB) Using cached pyarrow-20.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl (42.2 MB) Using cached pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB) Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl (229 kB) Using cached pytz-2025.2-py2.py3-none-any.whl (509 kB) Using cached six-1.17.0-py2.py3-none-any.whl (11 kB) Using cached tzdata-2025.2-py2.py3-none-any.whl (347 kB) Building wheels for collected packages: aiohttp Building wheel for aiohttp (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for aiohttp (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [156 lines of output] ********************* * Accelerated build * ********************* /tmp/pip-build-env-wjqi8_7w/overlay/lib/python3.13t/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: Apache Software License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running bdist_wheel running build running build_py creating build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/typedefs.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/http_parser.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/client_reqrep.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/client_ws.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_app.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/http_websocket.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/resolver.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/tracing.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/http_writer.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/http_exceptions.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/log.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/__init__.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_runner.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/worker.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/connector.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/client_exceptions.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_middlewares.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/tcp_helpers.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_response.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_server.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_request.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_urldispatcher.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_exceptions.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/formdata.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/streams.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/multipart.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_routedef.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_ws.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/payload.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/client_proto.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_log.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/base_protocol.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/payload_streamer.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/http.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_fileresponse.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/test_utils.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/client.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/cookiejar.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/compression_utils.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/hdrs.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/helpers.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/pytest_plugin.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_protocol.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/abc.py -> build/lib.linux-x86_64-cpython-313t/aiohttp creating build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/__init__.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/writer.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/models.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/reader.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/reader_c.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/helpers.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/reader_py.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket running egg_info writing aiohttp.egg-info/PKG-INFO writing dependency_links to aiohttp.egg-info/dependency_links.txt writing requirements to aiohttp.egg-info/requires.txt writing top-level names to aiohttp.egg-info/top_level.txt reading manifest file 'aiohttp.egg-info/SOURCES.txt' reading manifest template 'MANIFEST.in' warning: no files found matching 'aiohttp' anywhere in distribution warning: no files found matching '*.pyi' anywhere in distribution warning: no previously-included files matching '*.pyc' found anywhere in distribution warning: no previously-included files matching '*.pyd' found anywhere in distribution warning: no previously-included files matching '*.so' found anywhere in distribution warning: no previously-included files matching '*.lib' found anywhere in distribution warning: no previously-included files matching '*.dll' found anywhere in distribution warning: no previously-included files matching '*.a' found anywhere in distribution warning: no previously-included files matching '*.obj' found anywhere in distribution warning: no previously-included files found matching 'aiohttp/*.html' no previously-included directories found matching 'docs/_build' adding license file 'LICENSE.txt' writing manifest file 'aiohttp.egg-info/SOURCES.txt' copying aiohttp/_cparser.pxd -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/_find_header.pxd -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/_headers.pxi -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/_http_parser.pyx -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/_http_writer.pyx -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/py.typed -> build/lib.linux-x86_64-cpython-313t/aiohttp creating build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/.hash/_cparser.pxd.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/.hash/_find_header.pxd.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/.hash/_http_parser.pyx.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/.hash/_http_writer.pyx.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/.hash/hdrs.py.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/_websocket/mask.pxd -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/mask.pyx -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/reader_c.pxd -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket creating build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket/.hash copying aiohttp/_websocket/.hash/mask.pxd.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket/.hash copying aiohttp/_websocket/.hash/mask.pyx.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket/.hash copying aiohttp/_websocket/.hash/reader_c.pxd.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket/.hash running build_ext building 'aiohttp._websocket.mask' extension creating build/temp.linux-x86_64-cpython-313t/aiohttp/_websocket x86_64-linux-gnu-gcc -fno-strict-overflow -Wsign-compare -DNDEBUG -g -O2 -Wall -g -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -fPIC -I/root/vm313t/include -I/usr/include/python3.13t -c aiohttp/_websocket/mask.c -o build/temp.linux-x86_64-cpython-313t/aiohttp/_websocket/mask.o aiohttp/_websocket/mask.c:1864:80: error: unknown type name ‘__pyx_vectorcallfunc’; did you mean ‘vectorcallfunc’? 1864 | static CYTHON_INLINE PyObject *__Pyx_PyVectorcall_FastCallDict(PyObject *func, __pyx_vectorcallfunc vc, PyObject *const *args, size_t nargs, PyObject *kw); | ^~~~~~~~~~~~~~~~~~~~ | vectorcallfunc aiohttp/_websocket/mask.c: In function ‘__pyx_f_7aiohttp_10_websocket_4mask__websocket_mask_cython’: aiohttp/_websocket/mask.c:2905:3: warning: ‘Py_OptimizeFlag’ is deprecated [-Wdeprecated-declarations] 2905 | if (unlikely(__pyx_assertions_enabled())) { | ^~ In file included from /usr/include/python3.13t/Python.h:76, from aiohttp/_websocket/mask.c:16: /usr/include/python3.13t/cpython/pydebug.h:13:37: note: declared here 13 | Py_DEPRECATED(3.12) PyAPI_DATA(int) Py_OptimizeFlag; | ^~~~~~~~~~~~~~~ aiohttp/_websocket/mask.c: At top level: aiohttp/_websocket/mask.c:4846:69: error: unknown type name ‘__pyx_vectorcallfunc’; did you mean ‘vectorcallfunc’? 4846 | static PyObject *__Pyx_PyVectorcall_FastCallDict_kw(PyObject *func, __pyx_vectorcallfunc vc, PyObject *const *args, size_t nargs, PyObject *kw) | ^~~~~~~~~~~~~~~~~~~~ | vectorcallfunc aiohttp/_websocket/mask.c:4891:80: error: unknown type name ‘__pyx_vectorcallfunc’; did you mean ‘vectorcallfunc’? 4891 | static CYTHON_INLINE PyObject *__Pyx_PyVectorcall_FastCallDict(PyObject *func, __pyx_vectorcallfunc vc, PyObject *const *args, size_t nargs, PyObject *kw) | ^~~~~~~~~~~~~~~~~~~~ | vectorcallfunc aiohttp/_websocket/mask.c: In function ‘__Pyx_CyFunction_CallAsMethod’: aiohttp/_websocket/mask.c:5580:6: error: unknown type name ‘__pyx_vectorcallfunc’; did you mean ‘vectorcallfunc’? 5580 | __pyx_vectorcallfunc vc = __Pyx_CyFunction_func_vectorcall(cyfunc); | ^~~~~~~~~~~~~~~~~~~~ | vectorcallfunc aiohttp/_websocket/mask.c:1954:45: warning: initialization of ‘int’ from ‘vectorcallfunc’ {aka ‘struct _object * (*)(struct _object *, struct _object * const*, long unsigned int, struct _object *)’} makes integer from pointer without a cast [-Wint-conversion] 1954 | #define __Pyx_CyFunction_func_vectorcall(f) (((PyCFunctionObject*)f)->vectorcall) | ^ aiohttp/_websocket/mask.c:5580:32: note: in expansion of macro ‘__Pyx_CyFunction_func_vectorcall’ 5580 | __pyx_vectorcallfunc vc = __Pyx_CyFunction_func_vectorcall(cyfunc); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ aiohttp/_websocket/mask.c:5583:16: warning: implicit declaration of function ‘__Pyx_PyVectorcall_FastCallDict’ [-Wimplicit-function-declaration] 5583 | return __Pyx_PyVectorcall_FastCallDict(func, vc, &PyTuple_GET_ITEM(args, 0), (size_t)PyTuple_GET_SIZE(args), kw); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ aiohttp/_websocket/mask.c:5583:16: warning: returning ‘int’ from a function with return type ‘PyObject *’ {aka ‘struct _object *’} makes pointer from integer without a cast [-Wint-conversion] 5583 | return __Pyx_PyVectorcall_FastCallDict(func, vc, &PyTuple_GET_ITEM(args, 0), (size_t)PyTuple_GET_SIZE(args), kw); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ error: command '/usr/bin/x86_64-linux-gnu-gcc' failed with exit code 1 [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for aiohttp Failed to build aiohttp ERROR: Failed to build installable wheels for some pyproject.toml based projects (aiohttp) ``` ### Steps to reproduce the bug See above ### Expected behavior Install ### Environment info Ubuntu 24.04
open
https://github.com/huggingface/datasets/issues/7548
2025-05-02T09:20:09
2025-05-12T15:11:32
null
{ "login": "Qubitium", "id": 417764, "type": "User" }
[]
false
[]
3,034,830,291
7,547
Avoid global umask for setting file mode.
This PR updates the method for setting the permissions on `cache_path` after calling `shutil.move`. The call to `shutil.move` may not preserve permissions if the source and destination are on different filesystems. Reading and resetting umask can cause race conditions, so directly read what permissions were set for the `temp_file` instead. This fixes https://github.com/huggingface/datasets/issues/7536.
closed
https://github.com/huggingface/datasets/pull/7547
2025-05-01T22:24:24
2025-05-06T13:05:00
2025-05-06T13:05:00
{ "login": "ryan-clancy", "id": 1282383, "type": "User" }
[]
true
[]
3,034,018,298
7,546
Large memory use when loading large datasets to a ZFS pool
### Describe the bug When I load large parquet based datasets from the hub like `MLCommons/peoples_speech` using `load_dataset`, all my memory (500GB) is used and isn't released after loading, meaning that the process is terminated by the kernel if I try to load an additional dataset. This makes it impossible to train models using multiple large datasets. ### Steps to reproduce the bug `uv run --with datasets==3.5.1 python` ```python from datasets import load_dataset load_dataset('MLCommons/peoples_speech', 'clean') load_dataset('mozilla-foundation/common_voice_17_0', 'en') ``` ### Expected behavior I would expect that a lot less than 500GB of RAM would be required to load the dataset, or at least that the RAM usage would be cleared as soon as the dataset is loaded (and thus reside as a memory mapped file) such that other datasets can be loaded. ### Environment info I am currently using the latest datasets==3.5.1 but I have had the same problem with multiple other versions.
closed
https://github.com/huggingface/datasets/issues/7546
2025-05-01T14:43:47
2025-05-13T13:30:09
2025-05-13T13:29:53
{ "login": "FredHaa", "id": 6875946, "type": "User" }
[]
false
[]
3,031,617,547
7,545
Networked Pull Through Cache
### Feature request Introduce a HF_DATASET_CACHE_NETWORK_LOCATION configuration (e.g. an environment variable) together with a companion network cache service. Enable a three-tier cache lookup for datasets: 1. Local on-disk cache 2. Configurable network cache proxy 3. Official Hugging Face Hub ### Motivation - Distributed training & ephemeral jobs: In high-performance or containerized clusters, relying solely on a local disk cache either becomes a streaming bottleneck or incurs a heavy cold-start penalty as each job must re-download datasets. - Traffic & cost reduction: A pull-through network cache lets multiple consumers share a common cache layer, reducing duplicate downloads from the Hub and lowering egress costs. - Better streaming adoption: By offloading repeat dataset pulls to a locally managed cache proxy, streaming workloads can achieve higher throughput and more predictable latency. - Proven pattern: Similar proxy-cache solutions (e.g. Harbor’s Proxy Cache for Docker images) have demonstrated reliability and performance at scale: https://goharbor.io/docs/2.1.0/administration/configure-proxy-cache/ ### Your contribution I’m happy to draft the initial PR for adding HF_DATASET_CACHE_NETWORK_LOCATION support in datasets and sketch out a minimal cache-service prototype. I have limited bandwidth so I would be looking for collaborators if anyone else is interested.
open
https://github.com/huggingface/datasets/issues/7545
2025-04-30T15:16:33
2025-04-30T15:16:33
null
{ "login": "wrmedford", "id": 8764173, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,027,024,285
7,544
Add try_original_type to DatasetDict.map
This PR resolves #7472 for DatasetDict The previously merged PR #7483 added `try_original_type` to ArrowDataset, but DatasetDict misses `try_original_type` Cc: @lhoestq
closed
https://github.com/huggingface/datasets/pull/7544
2025-04-29T04:39:44
2025-05-05T14:42:49
2025-05-05T14:42:49
{ "login": "yoshitomo-matsubara", "id": 11156001, "type": "User" }
[]
true
[]
3,026,867,706
7,543
The memory-disk mapping failure issue of the map function(resolved, but there are some suggestions.)
### Describe the bug ## bug When the map function processes a large dataset, it temporarily stores the data in a cache file on the disk. After the data is stored, the memory occupied by it is released. Therefore, when using the map function to process a large-scale dataset, only a dataset space of the size of `writer_batch_size` will be occupied in memory. However, I found that the map function does not actually reduce memory usage when I used it. At first, I thought there was a bug in the program, causing a memory leak—meaning the memory was not released after the data was stored in the cache. But later, I used a Linux command to check for recently modified files during program execution and found that no new files were created or modified. This indicates that the program did not store the dataset in the disk cache. ## bug solved After modifying the parameters of the map function multiple times, I discovered the `cache_file_name` parameter. By changing it, the cache file can be stored in the specified directory. After making this change, I noticed that the cache file appeared. Initially, I found this quite incredible, but then I wondered if the cache file might have failed to be stored in a certain folder. This could be related to the fact that I don't have root privileges. So, I delved into the source code of the map function to find out where the cache file would be stored by default. Eventually, I found the function `def _get_cache_file_path(self, fingerprint):`, which automatically generates the storage path for the cache file. The output was as follows: `/tmp/hf_datasets-j5qco9ug/cache-f2830487643b9cc2.arrow`. My hypothesis was confirmed: the lack of root privileges indeed prevented the cache file from being stored, which in turn prevented the release of memory. Therefore, changing the storage location to a folder where I have write access resolved the issue. ### Steps to reproduce the bug my code `train_data = train_data.map(process_fun, remove_columns=['image_name', 'question_type', 'concern', 'question', 'candidate_answers', 'answer'])` ### Expected behavior Although my bug has been resolved, it still took me nearly a week to search for relevant information and debug the program. However, if a warning or error message about insufficient cache file write permissions could be provided during program execution, I might have been able to identify the cause more quickly. Therefore, I hope this aspect can be improved. I am documenting this bug here so that friends who encounter similar issues can solve their problems in a timely manner. ### Environment info python: 3.10.15 datasets: 3.5.0
closed
https://github.com/huggingface/datasets/issues/7543
2025-04-29T03:04:59
2025-04-30T02:22:17
2025-04-30T02:22:17
{ "login": "jxma20", "id": 76415358, "type": "User" }
[]
false
[]
3,025,054,630
7,542
set dev version
null
closed
https://github.com/huggingface/datasets/pull/7542
2025-04-28T14:03:48
2025-04-28T14:08:37
2025-04-28T14:04:00
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,025,045,919
7,541
release: 3.5.1
null
closed
https://github.com/huggingface/datasets/pull/7541
2025-04-28T14:00:59
2025-04-28T14:03:38
2025-04-28T14:01:54
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,024,862,966
7,540
support pyarrow 20
fix ``` TypeError: ArrayExtensionArray.to_pylist() got an unexpected keyword argument 'maps_as_pydicts' ```
closed
https://github.com/huggingface/datasets/pull/7540
2025-04-28T13:01:11
2025-04-28T13:23:53
2025-04-28T13:23:52
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,023,311,163
7,539
Fix IterableDataset state_dict shard_example_idx counting
# Fix IterableDataset's state_dict shard_example_idx reporting ## Description This PR fixes issue #7475 where the `shard_example_idx` value in `IterableDataset`'s `state_dict()` always equals the number of samples in a shard, even if only a few examples have been consumed. The issue is in the `_iter_arrow` method of the `ArrowExamplesIterable` class where it updates the `shard_example_idx` state by the full length of the batch (`len(pa_table)`) even when we're only partway through processing the examples. ## Changes Modified the `_iter_arrow` method of `ArrowExamplesIterable` to: 1. Track the actual number of examples processed 2. Only increment the `shard_example_idx` by the number of examples actually yielded 3. Handle partial batches correctly ## How to Test I've included a simple test case that demonstrates the fix: ```python from datasets import Dataset # Create a test dataset ds = Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=1) # Iterate through part of the dataset for idx, example in enumerate(ds): print(example) if idx == 2: # Stop after 3 examples (0, 1, 2) state_dict = ds.state_dict() print("Checkpoint state_dict:", state_dict) break # Before the fix, the output would show shard_example_idx: 6 # After the fix, it shows shard_example_idx: 3, correctly reflecting the 3 processed examples ``` ## Implementation Details 1. Added logic to track the number of examples actually seen in the current shard 2. Modified the state update to only count examples actually yielded 3. Improved handling of partial batches and skipped examples This fix ensures that checkpointing and resuming works correctly with exactly the expected number of examples, rather than skipping ahead to the end of the batch.
closed
https://github.com/huggingface/datasets/pull/7539
2025-04-27T20:41:18
2025-05-06T14:24:25
2025-05-06T14:24:24
{ "login": "Harry-Yang0518", "id": 129883215, "type": "User" }
[]
true
[]
3,023,280,056
7,538
`IterableDataset` drops samples when resuming from a checkpoint
When resuming from a checkpoint, `IterableDataset` will drop samples if `num_shards % world_size == 0` and the underlying example supports `iter_arrow` and needs to be formatted. In that case, the `FormattedExamplesIterable` fetches a batch of samples from the child iterable's `iter_arrow` and yields them one by one (after formatting). However, the child increments the `shard_example_idx` counter (in its `iter_arrow`) before returning the batch for the whole batch size, which leads to a portion of samples being skipped if the iteration (of the parent iterable) is stopped mid-batch. Perhaps one way to avoid this would be by signalling the child iterable which samples (within the chunk) are processed by the parent and which are not, so that it can adjust the `shard_example_idx` counter accordingly. This would also mean the chunk needs to be sliced when resuming, but this is straightforward to implement. The following is a minimal reproducer of the bug: ```python from datasets import Dataset from datasets.distributed import split_dataset_by_node ds = Dataset.from_dict({"n": list(range(24))}) ds = ds.to_iterable_dataset(num_shards=4) world_size = 4 rank = 0 ds_rank = split_dataset_by_node(ds, rank, world_size) it = iter(ds_rank) examples = [] for idx, example in enumerate(it): examples.append(example) if idx == 2: state_dict = ds_rank.state_dict() break ds_rank.load_state_dict(state_dict) it_resumed = iter(ds_rank) examples_resumed = examples[:] for example in it: examples.append(example) for example in it_resumed: examples_resumed.append(example) print("ORIGINAL ITER EXAMPLES:", examples) print("RESUMED ITER EXAMPLES:", examples_resumed) ```
closed
https://github.com/huggingface/datasets/issues/7538
2025-04-27T19:34:49
2025-05-06T14:04:05
2025-05-06T14:03:42
{ "login": "mariosasko", "id": 47462742, "type": "User" }
[ { "name": "bug", "color": "d73a4a" } ]
false
[]
3,018,792,966
7,537
`datasets.map(..., num_proc=4)` multi-processing fails
The following code fails in python 3.11+ ```python tokenized_datasets = datasets.map(tokenize_function, batched=True, num_proc=4, remove_columns=["text"]) ``` Error log: ```bash Traceback (most recent call last): File "/usr/local/lib/python3.12/dist-packages/multiprocess/process.py", line 315, in _bootstrap self.run() File "/usr/local/lib/python3.12/dist-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.12/dist-packages/multiprocess/pool.py", line 114, in worker task = get() ^^^^^ File "/usr/local/lib/python3.12/dist-packages/multiprocess/queues.py", line 371, in get return _ForkingPickler.loads(res) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 327, in loads return load(file, ignore, **kwds) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 313, in load return Unpickler(file, ignore=ignore, **kwds).load() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 525, in load obj = StockUnpickler.load(self) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 659, in _create_code if len(args) == 16: return CodeType(*args) ^^^^^^^^^^^^^^^ TypeError: code() argument 13 must be str, not int ``` After upgrading dill to the latest 0.4.0 with "pip install --upgrade dill", it can pass. So it seems that there is a compatibility issue between dill 0.3.4 and python 3.11+, because python 3.10 works fine. Is the dill deterministic issue mentioned in https://github.com/huggingface/datasets/blob/main/setup.py#L117) still valid? Any plan to unpin?
open
https://github.com/huggingface/datasets/issues/7537
2025-04-25T01:53:47
2025-05-06T13:12:08
null
{ "login": "faaany", "id": 24477841, "type": "User" }
[]
false
[]
3,018,425,549
7,536
[Errno 13] Permission denied: on `.incomplete` file
### Describe the bug When downloading a dataset, we frequently hit the below Permission Denied error. This looks to happen (at least) across datasets in HF, S3, and GCS. It looks like the `temp_file` being passed [here](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/file_utils.py#L412) can sometimes be created with `000` permissions leading to the permission denied error (the user running the code is still the owner of the file). Deleting that particular file and re-running the code with 0 changes will usually succeed. Is there some race condition happening with the [umask](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/file_utils.py#L416), which is process global, and the [file creation](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/file_utils.py#L404)? ``` _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .venv/lib/python3.12/site-packages/datasets/load.py:2084: in load_dataset builder_instance.download_and_prepare( .venv/lib/python3.12/site-packages/datasets/builder.py:925: in download_and_prepare self._download_and_prepare( .venv/lib/python3.12/site-packages/datasets/builder.py:1649: in _download_and_prepare super()._download_and_prepare( .venv/lib/python3.12/site-packages/datasets/builder.py:979: in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) .venv/lib/python3.12/site-packages/datasets/packaged_modules/folder_based_builder/folder_based_builder.py:120: in _split_generators downloaded_files = dl_manager.download(files) .venv/lib/python3.12/site-packages/datasets/download/download_manager.py:159: in download downloaded_path_or_paths = map_nested( .venv/lib/python3.12/site-packages/datasets/utils/py_utils.py:514: in map_nested _single_map_nested((function, obj, batched, batch_size, types, None, True, None)) .venv/lib/python3.12/site-packages/datasets/utils/py_utils.py:382: in _single_map_nested return [mapped_item for batch in iter_batched(data_struct, batch_size) for mapped_item in function(batch)] .venv/lib/python3.12/site-packages/datasets/download/download_manager.py:206: in _download_batched return thread_map( .venv/lib/python3.12/site-packages/tqdm/contrib/concurrent.py:69: in thread_map return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs) .venv/lib/python3.12/site-packages/tqdm/contrib/concurrent.py:51: in _executor_map return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs)) .venv/lib/python3.12/site-packages/tqdm/std.py:1181: in __iter__ for obj in iterable: ../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:619: in result_iterator yield _result_or_cancel(fs.pop()) ../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:317: in _result_or_cancel return fut.result(timeout) ../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:449: in result return self.__get_result() ../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:401: in __get_result raise self._exception ../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/thread.py:59: in run result = self.fn(*self.args, **self.kwargs) .venv/lib/python3.12/site-packages/datasets/download/download_manager.py:229: in _download_single out = cached_path(url_or_filename, download_config=download_config) .venv/lib/python3.12/site-packages/datasets/utils/file_utils.py:206: in cached_path output_path = get_from_cache( .venv/lib/python3.12/site-packages/datasets/utils/file_utils.py:412: in get_from_cache fsspec_get(url, temp_file, storage_options=storage_options, desc=download_desc, disable_tqdm=disable_tqdm) .venv/lib/python3.12/site-packages/datasets/utils/file_utils.py:331: in fsspec_get fs.get_file(path, temp_file.name, callback=callback) .venv/lib/python3.12/site-packages/fsspec/asyn.py:118: in wrapper return sync(self.loop, func, *args, **kwargs) .venv/lib/python3.12/site-packages/fsspec/asyn.py:103: in sync raise return_result .venv/lib/python3.12/site-packages/fsspec/asyn.py:56: in _runner result[0] = await coro _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <s3fs.core.S3FileSystem object at 0x7f27c18b2e70> rpath = '<my-bucket>/<my-prefix>/img_1.jpg' lpath = '/home/runner/_work/_temp/hf_cache/downloads/6c97983efa4e24e534557724655df8247a0bd04326cdfc4a95b638c11e78222d.incomplete' callback = <datasets.utils.file_utils.TqdmCallback object at 0x7f27c00cdbe0> version_id = None, kwargs = {} _open_file = <function S3FileSystem._get_file.<locals>._open_file at 0x7f27628d1120> body = <StreamingBody at 0x7f276344fa80 for ClientResponse at 0x7f27c015fce0> content_length = 521923, failed_reads = 0, bytes_read = 0 async def _get_file( self, rpath, lpath, callback=_DEFAULT_CALLBACK, version_id=None, **kwargs ): if os.path.isdir(lpath): return bucket, key, vers = self.split_path(rpath) async def _open_file(range: int): kw = self.req_kw.copy() if range: kw["Range"] = f"bytes={range}-" resp = await self._call_s3( "get_object", Bucket=bucket, Key=key, **version_id_kw(version_id or vers), **kw, ) return resp["Body"], resp.get("ContentLength", None) body, content_length = await _open_file(range=0) callback.set_size(content_length) failed_reads = 0 bytes_read = 0 try: > with open(lpath, "wb") as f0: E PermissionError: [Errno 13] Permission denied: '/home/runner/_work/_temp/hf_cache/downloads/6c97983efa4e24e534557724655df8247a0bd04326cdfc4a95b638c11e78222d.incomplete' .venv/lib/python3.12/site-packages/s3fs/core.py:1355: PermissionError ``` ### Steps to reproduce the bug I believe this is a race condition and cannot reliably re-produce it, but it happens fairly frequently in our GitHub Actions tests and can also be re-produced (with lesser frequency) on cloud VMs. ### Expected behavior The dataset loads properly with no permission denied error. ### Environment info - `datasets` version: 3.5.0 - Platform: Linux-5.10.0-34-cloud-amd64-x86_64-with-glibc2.31 - Python version: 3.12.10 - `huggingface_hub` version: 0.30.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
closed
https://github.com/huggingface/datasets/issues/7536
2025-04-24T20:52:45
2025-05-06T13:05:01
2025-05-06T13:05:01
{ "login": "ryan-clancy", "id": 1282383, "type": "User" }
[]
false
[]
3,018,289,872
7,535
Change dill version in requirements
Change dill version to >=0.3.9,<0.4.5 and check for errors
open
https://github.com/huggingface/datasets/pull/7535
2025-04-24T19:44:28
2025-05-19T14:51:29
null
{ "login": "JGrel", "id": 98061329, "type": "User" }
[]
true
[]
3,017,259,407
7,534
TensorFlow RaggedTensor Support (batch-level)
### Feature request Hi, Currently datasets does not support RaggedTensor output on batch-level. When building a Object Detection Dataset (with TensorFlow) I need to enable RaggedTensors as that's how BBoxes & classes are expected from the Keras Model POV. Currently there's a error thrown saying that "Nested Data is not supported". It'd be very helpful if this was fixed! :) ### Motivation Enabling Object Detection pipelines for TensorFlow. ### Your contribution With guidance I'd happily help making the PR. The current implementation with DataCollator and later enforcing `np.array` is the problematic part (at the end of `np_get_batch` in `tf_utils.py`). As `numpy` don't support "Raggednes"
open
https://github.com/huggingface/datasets/issues/7534
2025-04-24T13:14:52
2025-06-30T17:03:39
null
{ "login": "Lundez", "id": 7490199, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,015,075,086
7,533
Add custom fingerprint support to `from_generator`
This PR adds `dataset_id_suffix` parameter to 'Dataset.from_generator' function. `Dataset.from_generator` function passes all of its arguments to `BuilderConfig.create_config_id`, including generator function itself. `BuilderConfig.create_config_id` function tries to hash all the args, which can take a large amount of time or even cause MemoryError if the dataset processed in a generator function is large enough. This PR allows user to pass a custom fingerprint (`dataset_id_suffix`) to be used as a suffix in a dataset name instead of the one generated by hashing the args. This PR is a possible solution of #7513
open
https://github.com/huggingface/datasets/pull/7533
2025-04-23T19:31:35
2025-07-10T09:29:35
null
{ "login": "simonreise", "id": 43753582, "type": "User" }
[]
true
[]
3,009,546,204
7,532
Document the HF_DATASETS_CACHE environment variable in the datasets cache documentation
This pull request updates the Datasets documentation to include the `HF_DATASETS_CACHE` environment variable. While the current documentation only mentions `HF_HOME` for overriding the default cache directory, `HF_DATASETS_CACHE` is also a supported and useful option for specifying a custom cache location for datasets stored in Arrow format. This addition is based on the discussion in (https://github.com/huggingface/datasets/issues/7457), where users noted the absence of this variable in the documentation despite its functionality. The update adds a new section to `cache.mdx` that explains how to use `HF_DATASETS_CACHE` with an example. This change aims to improve clarity and help users better manage their cache directories when working in shared environments or with limited local storage. Closes #7457.
closed
https://github.com/huggingface/datasets/pull/7532
2025-04-22T00:23:13
2025-05-06T15:54:38
2025-05-06T15:54:38
{ "login": "Harry-Yang0518", "id": 129883215, "type": "User" }
[]
true
[]
3,008,914,887
7,531
Deepspeed reward training hangs at end of training with Dataset.from_list
There seems to be a weird interaction between Deepspeed, the Dataset.from_list method and trl's RewardTrainer. On a multi-GPU setup (10 A100s), training always hangs at the very end of training until it times out. The training itself works fine until the end of training and running the same script with Deepspeed on a single GPU works without hangig. The issue persisted across a wide range of Deepspeed configs and training arguments. The issue went away when storing the exact same dataset as a JSON and using `dataset = load_dataset("json", ...)`. Here is my training script: ```python import pickle import os import random import warnings import torch from datasets import load_dataset, Dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer from trl import RewardConfig, RewardTrainer, ModelConfig ####################################### Reward model ################################################# # Explicitly set arguments model_name_or_path = "Qwen/Qwen2.5-1.5B" output_dir = "Qwen2-0.5B-Reward-LoRA" per_device_train_batch_size = 2 num_train_epochs = 5 gradient_checkpointing = True learning_rate = 1.0e-4 logging_steps = 25 eval_strategy = "steps" eval_steps = 50 max_length = 2048 torch_dtype = "auto" trust_remote_code = False model_args = ModelConfig( model_name_or_path=model_name_or_path, model_revision=None, trust_remote_code=trust_remote_code, torch_dtype=torch_dtype, lora_task_type="SEQ_CLS", # Make sure task type is seq_cls ) training_args = RewardConfig( output_dir=output_dir, per_device_train_batch_size=per_device_train_batch_size, num_train_epochs=num_train_epochs, gradient_checkpointing=gradient_checkpointing, learning_rate=learning_rate, logging_steps=logging_steps, eval_strategy=eval_strategy, eval_steps=eval_steps, max_length=max_length, gradient_checkpointing_kwargs=dict(use_reentrant=False), center_rewards_coefficient = 0.01, fp16=False, bf16=True, save_strategy="no", dataloader_num_workers=0, # deepspeed="./configs/deepspeed_config.json", ) ################ # Model & Tokenizer ################ model_kwargs = dict( revision=model_args.model_revision, use_cache=False if training_args.gradient_checkpointing else True, torch_dtype=model_args.torch_dtype, ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=True ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, num_labels=1, trust_remote_code=model_args.trust_remote_code, **model_kwargs ) # Align padding tokens between tokenizer and model model.config.pad_token_id = tokenizer.pad_token_id # If post-training a base model, use ChatML as the default template if tokenizer.chat_template is None: model, tokenizer = setup_chat_format(model, tokenizer) if model_args.use_peft and model_args.lora_task_type != "SEQ_CLS": warnings.warn( "You are using a `task_type` that is different than `SEQ_CLS` for PEFT. This will lead to silent bugs" " Make sure to pass --lora_task_type SEQ_CLS when using this script with PEFT.", UserWarning, ) ############## # Load dataset ############## with open('./prefs.pkl', 'rb') as fh: loaded_data = pickle.load(fh) random.shuffle(loaded_data) dataset = [] for a_wins, a, b in loaded_data: if a_wins == 0: a, b = b, a dataset.append({'chosen': a, 'rejected': b}) dataset = Dataset.from_list(dataset) # Split the dataset into training and evaluation sets train_eval_split = dataset.train_test_split(test_size=0.15, shuffle=True, seed=42) # Access the training and evaluation datasets train_dataset = train_eval_split['train'] eval_dataset = train_eval_split['test'] ########## # Training ########## trainer = RewardTrainer( model=model, processing_class=tokenizer, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, ) trainer.train() ``` Replacing `dataset = Dataset.from_list(dataset)` with ```python with open('./prefs.json', 'w') as fh: json.dump(dataset, fh) dataset = load_dataset("json", data_files="./prefs.json", split='train') ``` resolves the issue.
open
https://github.com/huggingface/datasets/issues/7531
2025-04-21T17:29:20
2025-06-29T06:20:45
null
{ "login": "Matt00n", "id": 60710414, "type": "User" }
[]
false
[]
3,007,452,499
7,530
How to solve "Spaces stuck in Building" problems
### Describe the bug Public spaces may stuck in Building after restarting, error log as follows: build error Unexpected job error ERROR: failed to push spaces-registry.huggingface.tech/spaces/*:cpu-*-*: unexpected status from HEAD request to https://spaces-registry.huggingface.tech/v2/spaces/*/manifests/cpu-*-*: 401 Unauthorized ### Steps to reproduce the bug Restart space / Factory rebuild cannot avoid it ### Expected behavior Fix this problem ### Environment info no requirements.txt can still happen python gradio spaces
closed
https://github.com/huggingface/datasets/issues/7530
2025-04-21T03:08:38
2025-04-22T07:49:52
2025-04-22T07:49:52
{ "login": "ghost", "id": 10137, "type": "User" }
[]
false
[]
3,007,118,969
7,529
audio folder builder cannot detect custom split name
### Describe the bug when using audio folder builder (`load_dataset("audiofolder", data_dir="/path/to/folder")`), it cannot detect custom split name other than train/validation/test ### Steps to reproduce the bug i have the following folder structure ``` my_dataset/ ├── train/ │ ├── lorem.wav │ ├── … │ └── metadata.csv ├── test/ │ ├── ipsum.wav │ ├── … │ └── metadata.csv ├── validation/ │ ├── dolor.wav │ ├── … │ └── metadata.csv └── custom/ ├── sit.wav ├── … └── metadata.csv ``` using `ds = load_dataset("audiofolder", data_dir="/path/to/my_dataset")` ### Expected behavior i got `ds` with only 3 splits train/validation/test, whenever i rename train/validation/test folder it also disappear if i re-create `ds` ### Environment info - `datasets` version: 3.5.0 - Platform: Windows-11-10.0.26100-SP0 - Python version: 3.12.8 - `huggingface_hub` version: 0.30.2 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
open
https://github.com/huggingface/datasets/issues/7529
2025-04-20T16:53:21
2025-04-20T16:53:21
null
{ "login": "phineas-pta", "id": 37548991, "type": "User" }
[]
false
[]
3,006,433,485
7,528
Data Studio Error: Convert JSONL incorrectly
### Describe the bug Hi there, I uploaded a dataset here https://huggingface.co/datasets/V-STaR-Bench/V-STaR, but I found that Data Studio incorrectly convert the "bboxes" value for the whole dataset. Therefore, anyone who downloaded the dataset via the API would get the wrong "bboxes" value in the data file. Could you help me address the issue? Many thanks, ### Steps to reproduce the bug The JSONL file of [V_STaR_test_release.jsonl](https://huggingface.co/datasets/V-STaR-Bench/V-STaR/blob/main/V_STaR_test_release.jsonl) has the correct values of every "bboxes" for each sample. But in the Data Studio, we can see that the values of "bboxes" have changed, and load the dataset via API will also get the wrong values. ### Expected behavior Fix the bug to correctly download my dataset. ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-5.14.0-427.22.1.el9_4.x86_64-x86_64-with-glibc2.34 - Python version: 3.10.16 - `huggingface_hub` version: 0.29.3 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2023.10.0
open
https://github.com/huggingface/datasets/issues/7528
2025-04-19T13:21:44
2025-05-06T13:18:38
null
{ "login": "zxccade", "id": 144962041, "type": "User" }
[]
false
[]
3,005,242,422
7,527
Auto-merge option for `convert-to-parquet`
### Feature request Add a command-line option, e.g. `--auto-merge-pull-request` that enables automatic merging of the commits created by the `convert-to-parquet` tool. ### Motivation Large datasets may result in dozens of PRs due to the splitting mechanism. Each of these has to be manually accepted via the website. ### Your contribution Happy to look into submitting a PR if this is of interest to maintainers.
closed
https://github.com/huggingface/datasets/issues/7527
2025-04-18T16:03:22
2025-07-18T19:09:03
2025-07-18T19:09:03
{ "login": "klamike", "id": 17013474, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,005,107,536
7,526
Faster downloads/uploads with Xet storage
![Image](https://github.com/user-attachments/assets/6e247f4a-d436-4428-a682-fe18ebdc73a9) ## Xet is out ! Over the past few weeks, Hugging Face’s [Xet Team](https://huggingface.co/xet-team) took a major step forward by [migrating the first Model and Dataset repositories off LFS and to Xet storage](https://huggingface.co/posts/jsulz/911431940353906). See more information on the HF blog: https://huggingface.co/blog/xet-on-the-hub You can already enable Xet on Hugging Face account to benefit from faster downloads and uploads :) We finalized an official integration with the `huggingface_hub` library that means you get the benefits of Xet without any significant changes to your current workflow. ## Previous versions of `datasets` For older versions of `datasets` you might see this warning in `push_to_hub()`: ``` Uploading files as bytes or binary IO objects is not supported by Xet Storage. ``` This means the `huggingface_hub` + Xet integration isn't enabled for your version of `datasets`. You can fix this by updating to `datasets>=3.6.0` and `huggingface_hub>=0.31.0` ``` pip install -U datasets huggingface_hub ``` ## The future Stay tuned for more Xet optimizations, especially on [Xet-optimized Parquet](https://huggingface.co/blog/improve_parquet_dedupe)
open
https://github.com/huggingface/datasets/issues/7526
2025-04-18T14:46:42
2025-05-12T12:09:09
null
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
false
[]
3,003,032,248
7,525
Fix indexing in split commit messages
When a large commit is split up, it seems the commit index in the message is zero-based while the total number is one-based. I came across this running `convert-to-parquet` and was wondering why there was no `6-of-6` commit. This PR fixes that by adding one to the commit index, so both are one-based. Current behavior: <img width="463" alt="Screenshot 2025-04-17 at 1 00 17 PM" src="https://github.com/user-attachments/assets/7f3d389e-cb92-405d-a3c2-f2b1cdf0cb79" />
closed
https://github.com/huggingface/datasets/pull/7525
2025-04-17T17:06:26
2025-04-28T14:26:27
2025-04-28T14:26:27
{ "login": "klamike", "id": 17013474, "type": "User" }
[]
true
[]
3,002,067,826
7,524
correct use with polars example
null
closed
https://github.com/huggingface/datasets/pull/7524
2025-04-17T10:19:19
2025-04-28T13:48:34
2025-04-28T13:48:33
{ "login": "SiQube", "id": 43832476, "type": "User" }
[]
true
[]
2,999,616,692
7,523
mention av in video docs
null
closed
https://github.com/huggingface/datasets/pull/7523
2025-04-16T13:11:12
2025-04-16T13:13:45
2025-04-16T13:11:42
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,998,169,017
7,522
Preserve formatting in concatenated IterableDataset
Fixes #7515
closed
https://github.com/huggingface/datasets/pull/7522
2025-04-16T02:37:33
2025-05-19T15:07:38
2025-05-19T15:07:37
{ "login": "francescorubbo", "id": 5140987, "type": "User" }
[]
true
[]
2,997,666,366
7,521
fix: Image Feature in Datasets Library Fails to Handle bytearray Objects from Spark DataFrames (#7517)
## Task Support bytes-like objects (bytes and bytearray) in Features classes ### Description The `Features` classes only accept `bytes` objects for binary data, but not `bytearray`. This leads to errors when using `IterableDataset.from_spark()` with Spark DataFrames as they contain `bytearray` objects, even though both `bytes` and `bytearray` are valid [*bytes-like objects* in Python](https://docs.python.org/3/glossary.html#term-bytes-like-object). ### Changes - Updated `Features` classes to accept both `bytes` and `bytearray` types for binary data fields. ### Reasoning - `bytes` and `bytearray` serve the same purpose for binary data, with the only difference being mutability. - Modifying the Spark iterator to convert `bytearray` to `bytes` would be a workaround, not a true fix. I think the correct solution is to accept all bytes-like objects as input. - This approach is more robust and future-proof since Python 3.12+ provides a [standard way to check for buffer protocol](https://docs.python.org/3/c-api/buffer.html#bufferobjects). ### Testing - Added tests to cover `bytearray` inputs for image features. ### Related Issues - Fixes: #7517
closed
https://github.com/huggingface/datasets/pull/7521
2025-04-15T21:23:58
2025-05-07T14:17:29
2025-05-07T14:17:29
{ "login": "giraffacarp", "id": 73196164, "type": "User" }
[]
true
[]
2,997,422,044
7,520
Update items in the dataset without `map`
### Feature request I would like to be able to update items in my dataset without affecting all rows. At least if there was a range option, I would be able to process those items, save the dataset, and then continue. If I am supposed to split the dataset first, that is not clear, since the docs suggest that any of those functions returns a new object, so I don't think I can do that. ### Motivation I am applying an extremely time-consuming function to each item in my `Dataset`. Unfortunately, datasets only supports updating values via `map`, so if my computer dies in the middle of this long-running process, I lose all progress. This is far from ideal. I would like to use `datasets` throughout this processing, but this limitation is now forcing me to write my own dataset format just to do this intermediary operation. It would be less intuitive but I suppose I could split and then concatenate the dataset before saving? But this feels very inefficient. ### Your contribution I can test the feature.
open
https://github.com/huggingface/datasets/issues/7520
2025-04-15T19:39:01
2025-04-19T18:47:46
null
{ "login": "mashdragon", "id": 122402293, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,996,458,961
7,519
pdf docs fixes
close https://github.com/huggingface/datasets/issues/7494
closed
https://github.com/huggingface/datasets/pull/7519
2025-04-15T13:35:56
2025-04-15T13:38:31
2025-04-15T13:36:03
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,996,141,825
7,518
num_proc parallelization works only for first ~10s.
### Describe the bug When I try to load an already downloaded dataset with num_proc=64, the speed is very high for the first 10-20 seconds acheiving 30-40K samples / s, and 100% utilization for all cores but it soon drops to <= 1000 with almost 0% utilization for most cores. ### Steps to reproduce the bug ``` // download dataset with cli !huggingface-cli download --repo-type dataset timm/imagenet-1k-wds --max-workers 32 from datasets import load_dataset ds = load_dataset("timm/imagenet-1k-wds", num_proc=64) ``` ### Expected behavior 100% core utilization throughout. ### Environment info Azure A100-80GB, 16 cores VM ![Image](https://github.com/user-attachments/assets/69d00fe3-d720-4474-9439-21e046d85034)
open
https://github.com/huggingface/datasets/issues/7518
2025-04-15T11:44:03
2025-04-15T13:12:13
null
{ "login": "pshishodiaa", "id": 33901783, "type": "User" }
[]
false
[]
2,996,106,077
7,517
Image Feature in Datasets Library Fails to Handle bytearray Objects from Spark DataFrames
### Describe the bug When using `IterableDataset.from_spark()` with a Spark DataFrame containing image data, the `Image` feature class fails to properly process this data type, causing an `AttributeError: 'bytearray' object has no attribute 'get'` ### Steps to reproduce the bug 1. Create a Spark DataFrame with a column containing image data as bytearray objects 2. Define a Feature schema with an Image feature 3. Create an IterableDataset using `IterableDataset.from_spark()` 4. Attempt to iterate through the dataset ``` from pyspark.sql import SparkSession from datasets import Dataset, IterableDataset, Features, Image, Value # initialize spark spark = SparkSession.builder.appName("MinimalRepro").getOrCreate() # create spark dataframe data = [(0, open("image.png", "rb").read())] df = spark.createDataFrame(data, "idx: int, image: binary") # convert to dataset features = Features({"idx": Value("int64"), "image": Image()}) ds = Dataset.from_spark(df, features=features) ds_iter = IterableDataset.from_spark(df, features=features) # iterate print(next(iter(ds))) print(next(iter(ds_iter))) ``` ### Expected behavior The features should work on `IterableDataset` the same way they work on `Dataset` ### Environment info - `datasets` version: 3.5.0 - Platform: macOS-15.3.2-arm64-arm-64bit - Python version: 3.12.7 - `huggingface_hub` version: 0.30.2 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
closed
https://github.com/huggingface/datasets/issues/7517
2025-04-15T11:29:17
2025-05-07T14:17:30
2025-05-07T14:17:30
{ "login": "giraffacarp", "id": 73196164, "type": "User" }
[]
false
[]
2,995,780,283
7,516
unsloth/DeepSeek-R1-Distill-Qwen-32B server error
### Describe the bug hfhubhttperror: 500 server error: internal server error for url: https://huggingface.co/api/models/unsloth/deepseek-r1-distill-qwen-32b-bnb-4bit/commits/main (request id: root=1-67fe23fa-3a2150eb444c2a823c388579;de3aed68-c397-4da5-94d4-6565efd3b919) internal error - we're working hard to fix this as soon as possible! ### Steps to reproduce the bug unsloth/DeepSeek-R1-Distill-Qwen-32B server error ### Expected behavior Network repair ### Environment info The web side is also unavailable
closed
https://github.com/huggingface/datasets/issues/7516
2025-04-15T09:26:53
2025-04-15T09:57:26
2025-04-15T09:57:26
{ "login": "Editor-1", "id": 164353862, "type": "User" }
[]
false
[]
2,995,082,418
7,515
`concatenate_datasets` does not preserve Pytorch format for IterableDataset
### Describe the bug When concatenating datasets with `concatenate_datasets`, I would expect the resulting combined dataset to be in the same format as the inputs (assuming it's consistent). This is indeed the behavior when combining `Dataset`, but not when combining `IterableDataset`. Specifically, when applying `concatenate_datasets` to a list of `IterableDataset` in Pytorch format (i.e. using `.with_format(Pytorch)`), the output `IterableDataset` is not in Pytorch format. ### Steps to reproduce the bug ``` import datasets ds = datasets.Dataset.from_dict({"a": [1,2,3]}) iterable_ds = ds.to_iterable_dataset() datasets.concatenate_datasets([ds.with_format("torch")]) # <- this preserves Pytorch format datasets.concatenate_datasets([iterable_ds.with_format("torch")]) # <- this does NOT preserves Pytorch format ``` ### Expected behavior Pytorch format should be preserved when combining IterableDataset in Pytorch format. ### Environment info datasets==3.5.0, Python 3.11.11, torch==2.2.2
closed
https://github.com/huggingface/datasets/issues/7515
2025-04-15T04:36:34
2025-05-19T15:07:38
2025-05-19T15:07:38
{ "login": "francescorubbo", "id": 5140987, "type": "User" }
[]
false
[]
2,994,714,923
7,514
Do not hash `generator` in `BuilderConfig.create_config_id`
`Dataset.from_generator` function passes all of its arguments to `BuilderConfig.create_config_id`, including generator function itself. `BuilderConfig.create_config_id` function tries to hash all the args, and hashing a `generator` can take a large amount of time or even cause MemoryError if the dataset processed in a generator function is large enough. Maybe we should pop generator from `config_kwargs_to_add_to_suffix` before hashing to avoid it. There is a more detailed description of the problem this PR solves in #7513
closed
https://github.com/huggingface/datasets/pull/7514
2025-04-15T01:26:43
2025-04-23T11:55:55
2025-04-15T16:27:51
{ "login": "simonreise", "id": 43753582, "type": "User" }
[]
true
[]
2,994,678,437
7,513
MemoryError while creating dataset from generator
### Describe the bug # TL:DR `Dataset.from_generator` function passes all of its arguments to `BuilderConfig.create_config_id`, including `generator` function itself. `BuilderConfig.create_config_id` function tries to hash all the args, which can take a large amount of time or even cause MemoryError if the dataset processed in a generator function is large enough. Maybe we should pop `generator` from `config_kwargs_to_add_to_suffix` before hashing to avoid it. # Full description I have a pretty large spatial imagery dataset that is generated from two xbatcher.BatchGenerators via custom `dataset_generator` function that looks like this if simplified: ``` def dataset_generator(): for index in samples: data_dict = { "key": index, "x": x_batches[index].data, "y": y_batches[index].data, } yield data_dict ``` Then I use `datasets.Dataset.from_generator` to generate the dataset itself. ``` # Create dataset ds = datasets.Dataset.from_generator( dataset_generator, features=feat, cache_dir=(output / ".cache"), ) ``` It works nicely with pretty small data, but if the dataset is huge and barely fits in memory, it crashes with memory error: <details> <summary>Full stack trace</summary> ``` File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\remote_sensing_processor\segmentation\semantic\tiles.py:248](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/remote_sensing_processor/segmentation/semantic/tiles.py#line=247), in generate_tiles(x, y, output, tile_size, shuffle, split, x_dtype, y_dtype, x_nodata, y_nodata) 245 yield data_dict 247 # Create dataset --> 248 ds = datasets.Dataset.from_generator( 249 dataset_generator, 250 features=feat, 251 cache_dir=(output / ".cache"), 252 ) 254 # Save dataset 255 ds.save_to_disk(output / name) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\arrow_dataset.py:1105](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/arrow_dataset.py#line=1104), in Dataset.from_generator(generator, features, cache_dir, keep_in_memory, gen_kwargs, num_proc, split, **kwargs) 1052 """Create a Dataset from a generator. 1053 1054 Args: (...) 1101 ``` 1102 """ 1103 from .io.generator import GeneratorDatasetInputStream -> 1105 return GeneratorDatasetInputStream( 1106 generator=generator, 1107 features=features, 1108 cache_dir=cache_dir, 1109 keep_in_memory=keep_in_memory, 1110 gen_kwargs=gen_kwargs, 1111 num_proc=num_proc, 1112 split=split, 1113 **kwargs, 1114 ).read() File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\io\generator.py:29](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/io/generator.py#line=28), in GeneratorDatasetInputStream.__init__(self, generator, features, cache_dir, keep_in_memory, streaming, gen_kwargs, num_proc, split, **kwargs) 9 def __init__( 10 self, 11 generator: Callable, (...) 19 **kwargs, 20 ): 21 super().__init__( 22 features=features, 23 cache_dir=cache_dir, (...) 27 **kwargs, 28 ) ---> 29 self.builder = Generator( 30 cache_dir=cache_dir, 31 features=features, 32 generator=generator, 33 gen_kwargs=gen_kwargs, 34 split=split, 35 **kwargs, 36 ) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\builder.py:343](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/builder.py#line=342), in DatasetBuilder.__init__(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, repo_id, data_files, data_dir, storage_options, writer_batch_size, **config_kwargs) 341 config_kwargs["data_dir"] = data_dir 342 self.config_kwargs = config_kwargs --> 343 self.config, self.config_id = self._create_builder_config( 344 config_name=config_name, 345 custom_features=features, 346 **config_kwargs, 347 ) 349 # prepare info: DatasetInfo are a standardized dataclass across all datasets 350 # Prefill datasetinfo 351 if info is None: 352 # TODO FOR PACKAGED MODULES IT IMPORTS DATA FROM src/packaged_modules which doesn't make sense File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\builder.py:604](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/builder.py#line=603), in DatasetBuilder._create_builder_config(self, config_name, custom_features, **config_kwargs) 598 builder_config._resolve_data_files( 599 base_path=self.base_path, 600 download_config=DownloadConfig(token=self.token, storage_options=self.storage_options), 601 ) 603 # compute the config id that is going to be used for caching --> 604 config_id = builder_config.create_config_id( 605 config_kwargs, 606 custom_features=custom_features, 607 ) 608 is_custom = (config_id not in self.builder_configs) and config_id != "default" 609 if is_custom: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\builder.py:187](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/builder.py#line=186), in BuilderConfig.create_config_id(self, config_kwargs, custom_features) 185 suffix = Hasher.hash(config_kwargs_to_add_to_suffix) 186 else: --> 187 suffix = Hasher.hash(config_kwargs_to_add_to_suffix) 189 if custom_features is not None: 190 m = Hasher() File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\fingerprint.py:188](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/fingerprint.py#line=187), in Hasher.hash(cls, value) 186 @classmethod 187 def hash(cls, value: Any) -> str: --> 188 return cls.hash_bytes(dumps(value)) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:109](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=108), in dumps(obj) 107 """Pickle an object to a string.""" 108 file = BytesIO() --> 109 dump(obj, file) 110 return file.getvalue() File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:103](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=102), in dump(obj, file) 101 def dump(obj, file): 102 """Pickle an object to a file.""" --> 103 Pickler(file, recurse=True).dump(obj) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:420](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=419), in Pickler.dump(self, obj) 418 def dump(self, obj): #NOTE: if settings change, need to update attributes 419 logger.trace_setup(self) --> 420 StockPickler.dump(self, obj) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:484](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=483), in _Pickler.dump(self, obj) 482 if self.proto >= 4: 483 self.framer.start_framing() --> 484 self.save(obj) 485 self.write(STOP) 486 self.framer.end_framing() File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1985](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1984), in save_function(pickler, obj) 1982 if state_dict: 1983 state = state, state_dict -> 1985 _save_with_postproc(pickler, (_create_function, ( 1986 obj.__code__, globs, obj.__name__, obj.__defaults__, 1987 closure 1988 ), state), obj=obj, postproc_list=postproc_list) 1990 # Lift closure cell update to earliest function (#458) 1991 if _postproc: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1117](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1116), in _save_with_postproc(pickler, reduction, is_pickler_dill, obj, postproc_list) 1115 continue 1116 else: -> 1117 pickler.save_reduce(*reduction) 1118 # pop None created by calling preprocessing step off stack 1119 pickler.write(POP) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:690](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=689), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 688 else: 689 save(func) --> 690 save(args) 691 write(REDUCE) 693 if obj is not None: 694 # If the object is already in the memo, this means it is 695 # recursive. In this case, throw away everything we put on the 696 # stack, and fetch the object back from the memo. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:905](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=904), in _Pickler.save_tuple(self, obj) 903 if n <= 3 and self.proto >= 2: 904 for element in obj: --> 905 save(element) 906 # Subtle. Same as in the big comment below. 907 if id(obj) in memo: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: [... skipping similar frames: Pickler.save at line 70 (1 times), Pickler.save at line 414 (1 times)] File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:905](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=904), in _Pickler.save_tuple(self, obj) 903 if n <= 3 and self.proto >= 2: 904 for element in obj: --> 905 save(element) 906 # Subtle. Same as in the big comment below. 907 if id(obj) in memo: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:905](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=904), in _Pickler.save_tuple(self, obj) 903 if n <= 3 and self.proto >= 2: 904 for element in obj: --> 905 save(element) 906 # Subtle. Same as in the big comment below. 907 if id(obj) in memo: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:690](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=689), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 688 else: 689 save(func) --> 690 save(args) 691 write(REDUCE) 693 if obj is not None: 694 # If the object is already in the memo, this means it is 695 # recursive. In this case, throw away everything we put on the 696 # stack, and fetch the object back from the memo. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:920](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=919), in _Pickler.save_tuple(self, obj) 918 write(MARK) 919 for element in obj: --> 920 save(element) 922 if id(obj) in memo: 923 # Subtle. d was not in memo when we entered save_tuple(), so 924 # the process of saving the tuple's elements must have saved (...) 928 # could have been done in the "for element" loop instead, but 929 # recursive tuples are a rare thing. 930 get = self.get(memo[id(obj)][0]) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1019](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1018), in _Pickler._batch_setitems(self, items) 1017 k, v = tmp[0] 1018 save(k) -> 1019 save(v) 1020 write(SETITEM) 1021 # else tmp is empty, and we're done File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: [... skipping similar frames: Pickler.save at line 70 (1 times), Pickler.save at line 414 (1 times)] File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: [... skipping similar frames: Pickler.save at line 70 (1 times), Pickler.save at line 414 (1 times)] File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:920](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=919), in _Pickler.save_tuple(self, obj) 918 write(MARK) 919 for element in obj: --> 920 save(element) 922 if id(obj) in memo: 923 # Subtle. d was not in memo when we entered save_tuple(), so 924 # the process of saving the tuple's elements must have saved (...) 928 # could have been done in the "for element" loop instead, but 929 # recursive tuples are a rare thing. 930 get = self.get(memo[id(obj)][0]) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:809](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=808), in _Pickler.save_bytes(self, obj) 806 self.save_reduce(codecs.encode, 807 (str(obj, 'latin1'), 'latin1'), obj=obj) 808 return --> 809 self._save_bytes_no_memo(obj) 810 self.memoize(obj) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:797](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=796), in _Pickler._save_bytes_no_memo(self, obj) 795 self._write_large_bytes(BINBYTES8 + pack("<Q", n), obj) 796 elif n >= self.framer._FRAME_SIZE_TARGET: --> 797 self._write_large_bytes(BINBYTES + pack("<I", n), obj) 798 else: 799 self.write(BINBYTES + pack("<I", n) + obj) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:254](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=253), in _Framer.write_large_bytes(self, header, payload) 247 # Perform direct write of the header and payload of the large binary 248 # object. Be careful not to concatenate the header and the payload 249 # prior to calling 'write' as we do not want to allocate a large 250 # temporary bytes object. 251 # We intentionally do not insert a protocol 4 frame opcode to make 252 # it possible to optimize file.read calls in the loader. 253 write(header) --> 254 write(payload) MemoryError: ``` </details> Memory error is an expected type of error in such case, but when I started digging down, I found out that it occurs in a kinda unexpected place - in `create_config_id` function. It tries to hash `config_kwargs_to_add_to_suffix`, including generator function itself. I modified the `BuilderConfig.create_config_id` code like this to check which values are hashed and how much time it takes to hash them and ran it on a toy dataset: ``` print(config_kwargs_to_add_to_suffix) start_time = time.time() if all(isinstance(v, (str, bool, int, float)) for v in config_kwargs_to_add_to_suffix.values()): suffix = ",".join( str(k) + "=" + urllib.parse.quote_plus(str(v)) for k, v in config_kwargs_to_add_to_suffix.items() ) if len(suffix) > 32: # hash if too long suffix = Hasher.hash(config_kwargs_to_add_to_suffix) else: suffix = Hasher.hash(config_kwargs_to_add_to_suffix) end_time = time.time() print(f"Execution time: {end_time - start_time:.4f} seconds") print(suffix) ``` In my case the content of `config_kwargs_to_add_to_suffix` was like this: ``` {'features': {'key': Value(dtype='int64', id=None), 'x': Array3D(shape=(44, 128, 128), dtype='float32', id=None), 'y_class': Array2D(shape=(128, 128), dtype='int32', id=None)}, 'gen_kwargs': None, 'generator': <function generate_tiles.<locals>.dataset_generator at 0x00000139D10D7920>, 'split': NamedSplit('train')} ``` Also I noticed that hashing took a significant amount of time - 43.1482 seconds, while the overall function execution (with data loading, batching and saving dataset) took 2min 45s. The output of `create_config_id` is just a dataset id, so, it is inappropirately large amount of time. But when I added `config_kwargs_to_add_to_suffix.pop("generator", None)`, the hashing took only 0.0060 seconds. Maybe we shouldn't hash the generator function, as it can be really computationally and memory expensive. ### Steps to reproduce the bug This is a simplified example of a workflow I used to generate dataset. But I think that you can use almost any workflow to reproduce that bug. ``` import pystac import pystac_client import planetary_computer import numpy as np import xarray as xr import rioxarray as rxr import dask import xbatcher import datasets # Loading a dataset, in our case - single Landsat image catalog = pystac_client.Client.open( "https://planetarycomputer.microsoft.com/api/stac/v1", modifier=planetary_computer.sign_inplace, ) brazil = [-60.2, -3.31] time_of_interest = "2021-06-01/2021-08-31" search = catalog.search(collections=["landsat-c2-l2"], intersects={"type": "Point", "coordinates": brazil}, datetime=time_of_interest) items = search.item_collection() item = min(items, key=lambda item: pystac.extensions.eo.EOExtension.ext(item).cloud_cover) # Getting x data bands = [] for band in ["red", "green", "blue", "nir08", "coastal", "swir16", "swir22", "lwir11"]: with rxr.open_rasterio(item.assets[band].href, chunks=True, lock=True) as raster: raster = raster.to_dataset('band') #print(raster) raster = raster.rename({1: band}) bands.append(raster) x = xr.merge(bands).squeeze().to_array("band").persist() # Getting y data with rxr.open_rasterio(item.assets['qa_pixel'].href, chunks=True, lock=True) as raster: y = raster.squeeze().persist() # Setting up batches generators x_batches = xbatcher.BatchGenerator(ds=x, input_dims={"x": 256, "y": 256}) y_batches = xbatcher.BatchGenerator(ds=y, input_dims={"x": 256, "y": 256}) # Filtering samples that contain only nodata samples = list(range(len(x_batches))) samples_filtered = [] for i in samples: if not np.array_equal(np.unique(x_batches[i]), np.array([0.])) and not np.array_equal(np.unique(y_batches[i]), np.array([0])): samples_filtered.append(i) samples = samples_filtered np.random.shuffle(samples) # Setting up features feat = { "key": datasets.Value(dtype="int64"), "x": datasets.Array3D(dtype="float32", shape=(4, 256, 256)), "y": datasets.Array2D(dtype="int32", shape=(256, 256)) } feat = datasets.Features(feat) # Setting up a generator def dataset_generator(): for index in samples: data_dict = { "key": index, "x": x_batches[index].data, "y": y_batches[index].data, } yield data_dict # Create dataset ds = datasets.Dataset.from_generator( dataset_generator, features=feat, cache_dir="temp/cache", ) ``` Please, try adding `config_kwargs_to_add_to_suffix.pop("generator", None)` to `BuilderConfig.create_config_id` and then measuring how much time it takes to run ``` if all(isinstance(v, (str, bool, int, float)) for v in config_kwargs_to_add_to_suffix.values()): suffix = ",".join( str(k) + "=" + urllib.parse.quote_plus(str(v)) for k, v in config_kwargs_to_add_to_suffix.items() ) if len(suffix) > 32: # hash if too long suffix = Hasher.hash(config_kwargs_to_add_to_suffix) else: suffix = Hasher.hash(config_kwargs_to_add_to_suffix) ``` code block with and without `config_kwargs_to_add_to_suffix.pop("generator", None)` In my case the difference was 3.3828 seconds without popping generator function and 0.0010 seconds with popping. ### Expected behavior Much faster hashing and no MemoryErrors ### Environment info - `datasets` version: 3.5.0 - Platform: Windows-11-10.0.26100-SP0 - Python version: 3.12.9 - `huggingface_hub` version: 0.30.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.12.0
open
https://github.com/huggingface/datasets/issues/7513
2025-04-15T01:02:02
2025-04-23T19:37:08
null
{ "login": "simonreise", "id": 43753582, "type": "User" }
[]
false
[]
2,994,043,544
7,512
.map() fails if function uses pyvista
### Describe the bug Using PyVista inside a .map() produces a crash with `objc[78796]: +[NSResponder initialize] may have been in progress in another thread when fork() was called. We cannot safely call it or ignore it in the fork() child process. Crashing instead. Set a breakpoint on objc_initializeAfterForkError to debug.` ### Steps to reproduce the bug Run ```python import numpy as np import pyvista as pv import datasets data = [{"coords": np.random.rand(5, 3)} for _ in range(3)] def render_point(example): plotter = pv.Plotter(off_screen=True) cloud = pv.PolyData(example["coords"]) plotter.add_mesh(cloud) img = plotter.screenshot(return_img=True) return {"image": img} # breaks if num_proc>1 ds = datasets.Dataset.from_list(data).map(render_point, num_proc=2) ``` ### Expected behavior It should work. Just like when I use a process pool to make it work. ```python import numpy as np import pyvista as pv import multiprocessing data = [{"coords": np.random.rand(5, 3)} for _ in range(3)] def render_point(example): plotter = pv.Plotter(off_screen=True) cloud = pv.PolyData(example["coords"]) plotter.add_mesh(cloud) img = plotter.screenshot(return_img=True) return {"image": img} if __name__ == "__main__": with multiprocessing.Pool(processes=2) as pool: results = pool.map(render_point, data) print(results[0]["image"].shape) ``` ### Environment info - `datasets` version: 3.3.2 - Platform: macOS-15.3.2-arm64-arm-64bit - Python version: 3.11.10 - `huggingface_hub` version: 0.28.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.10.0 And then I suppose pyvista info is good to have. ```python import pyvista as pv print(pv.Report()) ``` gives -------------------------------------------------------------------------------- Date: Mon Apr 14 21:42:08 2025 CEST OS : Darwin (macOS 15.3.2) CPU(s) : 10 Machine : arm64 Architecture : 64bit RAM : 32.0 GiB Environment : IPython File system : apfs GPU Vendor : Apple GPU Renderer : Apple M1 Max GPU Version : 4.1 Metal - 89.3 MathText Support : True Python 3.11.10 (main, Oct 7 2024, 23:25:27) [Clang 18.1.8 ] pyvista : 0.44.2 vtk : 9.4.0 numpy : 2.2.2 matplotlib : 3.10.0 scooby : 0.10.0 pooch : 1.8.2 pillow : 11.1.0 imageio : 2.36.1 PyQt5 : 5.15.11 IPython : 8.30.0 scipy : 1.14.1 tqdm : 4.67.1 jupyterlab : 4.3.5 nest_asyncio : 1.6.0 --------------------------------------------------------------------------------
open
https://github.com/huggingface/datasets/issues/7512
2025-04-14T19:43:02
2025-04-14T20:01:53
null
{ "login": "el-hult", "id": 11832922, "type": "User" }
[]
false
[]
2,992,131,117
7,510
Incompatibile dill version (0.3.9) in datasets 2.18.0 - 3.5.0
### Describe the bug Datasets 2.18.0 - 3.5.0 has a dependency on dill < 0.3.9. This causes errors with dill >= 0.3.9. Could you please take a look into it and make it compatible? ### Steps to reproduce the bug 1. Install setuptools >= 2.18.0 2. Install dill >=0.3.9 3. Run pip check 4. Output: ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. datasets 2.18.0 requires dill<0.3.9,>=0.3.0, but you have dill 0.3.9 which is incompatible. ### Expected behavior Pip install both libraries without any errors ### Environment info Datasets version: 2.18 - 3.5 Python: 3.11
open
https://github.com/huggingface/datasets/issues/7510
2025-04-14T07:22:44
2025-05-19T14:54:04
null
{ "login": "JGrel", "id": 98061329, "type": "User" }
[]
false
[]
2,991,484,542
7,509
Dataset uses excessive memory when loading files
### Describe the bug Hi I am having an issue when loading a dataset. I have about 200 json files each about 1GB (total about 215GB). each row has a few features which are a list of ints. I am trying to load the dataset using `load_dataset`. The dataset is about 1.5M samples I use `num_proc=32` and a node with 378GB of memory. About a third of the way there I get an OOM. I also saw an old bug with a similar issue, which says to set `writer_batch_size`. I tried to lower it to 10, but it still crashed. I also tried to lower the `num_proc` to 16 and even 8, but still the same issue. ### Steps to reproduce the bug `dataset = load_dataset("json", data_dir=data_config.train_path, num_proc=data_config.num_proc, writer_batch_size=50)["train"]` ### Expected behavior Loading a dataset with more than 100GB to spare should not cause an OOM error. maybe i am missing something but I would love some help. ### Environment info - `datasets` version: 3.5.0 - Platform: Linux-6.6.20-aufs-1-x86_64-with-glibc2.36 - Python version: 3.11.2 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
open
https://github.com/huggingface/datasets/issues/7509
2025-04-13T21:09:49
2025-04-28T15:18:55
null
{ "login": "avishaiElmakies", "id": 36810152, "type": "User" }
[]
false
[]
2,986,612,934
7,508
Iterating over Image feature columns is extremely slow
We are trying to load datasets where the image column stores `PIL.PngImagePlugin.PngImageFile` images. However, iterating over these datasets is extremely slow. What I have found: 1. It is the presence of the image column that causes the slowdown. Removing the column from the dataset results in blazingly fast (as expected) times 2. It is ~2x faster to iterate when the column contains a single image as opposed to a list of images i.e., the feature is a Sequence of Image objects. We often need multiple images per sample, so we need to work with a list of images 3. It is ~17x faster to store paths to PNG files and load them using `PIL.Image.open`, as opposed to iterating over a `Dataset` with an Image column, and ~30x faster compared to `Sequence` of `Image`s. See a simple script below with an openly available dataset. It would be great to understand the standard practices for storing and loading multimodal datasets (image + text). https://huggingface.co/docs/datasets/en/image_load seems a bit underdeveloped? (e.g., `dataset.decode` only works with `IterableDataset`, but it's not clear from the doc) Thanks! ```python from datasets import load_dataset, load_from_disk from PIL import Image from pathlib import Path ds = load_dataset("getomni-ai/ocr-benchmark") for idx, sample in enumerate(ds["test"]): image = sample["image"] image.save(f"/tmp/ds_files/images/image_{idx}.png") ds.save_to_disk("/tmp/ds_columns") # Remove the 'image' column ds["test"] = ds["test"].remove_columns(["image"]) # Create image paths for each sample image_paths = [f"images/image_{idx}.png" for idx in range(len(ds["test"]))] # Add the 'image_path' column to the dataset ds["test"] = ds["test"].add_column("image_path", image_paths) # Save the updated dataset ds.save_to_disk("/tmp/ds_files") files_path = Path("/tmp/ds_files") column_path = Path("/tmp/ds_columns") # load and benchmark ds_file = load_from_disk(files_path) ds_column = load_from_disk(column_path) import time images_files = [] start = time.time() for idx in range(len(ds_file["test"])): image_path = files_path / ds_file["test"][idx]["image_path"] image = Image.open(image_path) images_files.append(image) end = time.time() print(f"Time taken to load images from files: {end - start} seconds") # Time taken to load images from files: 1.2364635467529297 seconds images_column = [] start = time.time() for idx in range(len(ds_column["test"])): images_column.append(ds_column["test"][idx]["image"]) end = time.time() print(f"Time taken to load images from columns: {end - start} seconds") # Time taken to load images from columns: 20.49347186088562 seconds ```
open
https://github.com/huggingface/datasets/issues/7508
2025-04-10T19:00:54
2025-04-15T17:57:08
null
{ "login": "sohamparikh", "id": 11831521, "type": "User" }
[]
false
[]
2,984,309,806
7,507
Front-end statistical data quantity deviation
### Describe the bug While browsing the dataset at https://huggingface.co/datasets/NeuML/wikipedia-20250123, I noticed that a dataset with nearly 7M entries was estimated to be only 4M in size—almost half the actual amount. According to the post-download loading and the dataset_info (https://huggingface.co/datasets/NeuML/wikipedia-20250123/blob/main/train/dataset_info.json), the true data volume is indeed close to 7M. This significant discrepancy could mislead users when sorting datasets by row count. Why not directly retrieve this information from dataset_info? Not sure if this is the right place to report this bug, but leaving it here for the team's awareness.
open
https://github.com/huggingface/datasets/issues/7507
2025-04-10T02:51:38
2025-04-15T12:54:51
null
{ "login": "rangehow", "id": 88258534, "type": "User" }
[]
false
[]
2,981,687,450
7,506
HfHubHTTPError: 429 Client Error: Too Many Requests for URL when trying to access Fineweb-10BT on 4A100 GPUs using SLURM
### Describe the bug I am trying to run some finetunings on 4 A100 GPUs using SLURM using axolotl training framework which in turn uses Huggingface's Trainer and Accelerate on [Fineweb-10BT](https://huggingface.co/datasets/HuggingFaceFW/fineweb), but I end up running into 429 Client Error: Too Many Requests for URL error when I call next(dataloader_iter). Funny is, that I can run some test fine tuning (for just 200 training steps) in 1 A100 GPU using SLURM. Is there any rate limiter set for querying dataset? I could run the fine tuning with the same settings (4 A100 GPUs in SLURM) last month. ### Steps to reproduce the bug You would need a server installed with SLURM 1. Create conda environment 1.1 conda create -n example_env -c conda-forge gxx=11 python=3.10 1.2 conda activate example_env 1.3 pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124 1.4 conda install nvidia/label/cuda-12.4.0::cuda-toolkit 1.5 Download flash_attn-2.7.4.post1+cu12torch2.5cxx11abiFALSE-cp310-cp310-linux_x86_64.whl 1.6 pip3 install packaging 1.7 pip3 install ninja 1.8 pip3 install mlflow 1.9 Clone https://github.com/calvintanama/axolotl.git 1.10 `cd` to `axolotl` 1.11 pip3 install -e '.[deepspeed]' 2. Run the training 2.1. Create a folder called `config_run` in axolotl directory 2.2. Copy `config/phi3_pruned_extra_pretrain_22_29_bottleneck_residual_8_a100_4.yaml` to `config_run` 2.3. Change yaml file in the `config_run` accordingly 2.4. Change directory and conda environment name in `jobs/train_phi3_22_29_bottleneck_residual_8_a100_4_temp.sh` 2.5. `jobs/train_phi3_22_29_bottleneck_residual_8_a100_4_temp.sh` ### Expected behavior This should not cause any error, but gotten ``` File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/accelerate/data_loader.py", line 552, in __iter__ [rank3]: current_batch = next(dataloader_iter) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 701, in __next__ [rank3]: data = self._next_data() [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 757, in _next_data [rank3]: data = self._dataset_fetcher.fetch(index) # may raise StopIteration [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py", line 33, in fetch [rank3]: data.append(next(self.dataset_iter)) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/accelerate/data_loader.py", line 338, in __iter__ [rank3]: for element in self.dataset: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 2266, in __iter__ [rank3]: for key, example in ex_iterable: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1866, in __iter__ [rank3]: for key, example in self.ex_iterable: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1084, in __iter__ [rank3]: yield from self._iter() [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1263, in _iter [rank3]: for key, transformed_example in outputs: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1258, in <genexpr> [rank3]: outputs = ( [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1244, in iter_outputs [rank3]: for i, key_example in inputs_iterator: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1106, in iter_batched_inputs [rank3]: for key, example in iterator: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1866, in __iter__ [rank3]: for key, example in self.ex_iterable: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1535, in __iter__ [rank3]: for x in self.ex_iterable: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 374, in __iter__ [rank3]: for key, pa_table in self.generate_tables_fn(**gen_kwags): [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py", line 90, in _generate_tables [rank3]: if parquet_fragment.row_groups: [rank3]: File "pyarrow/_dataset_parquet.pyx", line 386, in pyarrow._dataset_parquet.ParquetFileFragment.row_groups.__get__ [rank3]: File "pyarrow/_dataset_parquet.pyx", line 393, in pyarrow._dataset_parquet.ParquetFileFragment.metadata.__get__ [rank3]: File "pyarrow/_dataset_parquet.pyx", line 382, in pyarrow._dataset_parquet.ParquetFileFragment.ensure_complete_metadata [rank3]: File "pyarrow/error.pxi", line 89, in pyarrow.lib.check_status [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 827, in read_with_retries [rank3]: out = read(*args, **kwargs) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 1013, in read [rank3]: return super().read(length) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/fsspec/spec.py", line 1941, in read [rank3]: out = self.cache._fetch(self.loc, self.loc + length) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/fsspec/caching.py", line 234, in _fetch [rank3]: self.cache = self.fetcher(start, end) # new block replaces old [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 976, in _fetch_range [rank3]: hf_raise_for_status(r) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 482, in hf_raise_for_status [rank3]: raise _format(HfHubHTTPError, str(e), response) from e [rank3]: huggingface_hub.errors.HfHubHTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co/datasets/HuggingFaceFW/fineweb/resolve/0f039043b23fe1d4eed300b504aa4b4a68f1c7ba/sample/10BT/006_00000.parquet ``` ### Environment info - datasets 3.5.0 - torch 2.5.1 - transformers 4.46.2
open
https://github.com/huggingface/datasets/issues/7506
2025-04-09T06:32:04
2025-06-29T06:04:59
null
{ "login": "calvintanama", "id": 66202555, "type": "User" }
[]
false
[]
2,979,926,156
7,505
HfHubHTTPError: 403 Forbidden: None. Cannot access content at: https://hf.co/api/s3proxy
I have already logged in Huggingface using CLI with my valid token. Now trying to download the datasets using following code: from transformers import WhisperProcessor, WhisperForConditionalGeneration, WhisperTokenizer, Trainer, TrainingArguments, DataCollatorForSeq2Seq from datasets import load_dataset, DatasetDict, Audio def load_and_preprocess_dataset(): dataset = load_dataset("mozilla-foundation/common_voice_17_0", "bn") dataset = dataset.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"]) dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) dataset = dataset["train"].train_test_split(test_size=0.1) dataset = DatasetDict({ "train": dataset["train"], "test": dataset["test"] }) return dataset load_and_preprocess_dataset() I am getting following error: Downloading data: 100%  25/25 [00:01<00:00, 25.31files/s] --------------------------------------------------------------------------- HTTPError Traceback (most recent call last) File ~/github/bangla-asr/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_http.py:409, in hf_raise_for_status(response, endpoint_name) 408 try: --> 409 response.raise_for_status() 410 except HTTPError as e: File ~/github/bangla-asr/.venv/lib/python3.11/site-packages/requests/models.py:1024, in Response.raise_for_status(self) 1023 if http_error_msg: -> 1024 raise HTTPError(http_error_msg, response=self) HTTPError: 403 Client Error: BlockSIEL for url: https://hf.co/api/s3proxy?GET=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf65687d8a6928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250dc638866f22bf1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D621e731d4fd6d08afbf568379797746ab8e2b853b6728ff5e1122fef6e56880b%26X-Amz-SignedHeaders%3Dhost%26response-content-disposition%3Dinline%253B%2520filename%252A%253DUTF-8%2527%2527bn_validated_1.tar%253B%2520filename%253D%2522bn_validated_1.tar%2522%253B%26response-content-type%3Dapplication%252Fx-tar%26x-id%3DGetObject&HEAD=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf65687d8a6928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250dc638866f22bf1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D15254fb79d30b0dc36b94a28138e675e0e00bb475b8a3ae774418500b095a661%26X-Amz-SignedHeaders%3Dhost&sign=eyJhbGciOiJIUzI1NiJ9.eyJyZWRpcmVjdF9kb21haW4iOiJoZi1odWItbGZzLXVzLWVhc3QtMS5zMy51cy1lYXN0LTEuYW1hem9uYXdzLmNvbSIsImlhdCI6MTc0NDExOTgyNSwiZXhwIjoxNzQ0MjA2MjI1LCJpc3MiOiJodHRwczovL2h1Z2dpbmdmYWNlLmNvIn0.5sJzudFDU3SmOdOLlwmQCOfQFf2r7y9590HoX8WBkRk The above exception was the direct cause of the following exception: HfHubHTTPError Traceback (most recent call last) Cell In[16], line 15 9 dataset = DatasetDict({ 10 "train": dataset["train"], 11 "test": dataset["test"] 12 }) 13 return dataset ---> 15 load_and_preprocess_dataset() 17 # def setup_model(): 18 # processor = WhisperProcessor.from_pretrained("openai/whisper-base") ... 475 range_header = response.request.headers.get("Range") HfHubHTTPError: 403 Forbidden: None. Cannot access content at: https://hf.co/api/s3proxy?GET=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf6568724a6928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250dc638786f22bf1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D621e731d4fd6d08afbf568379797746ab394b853b6728ff5e1122fef6e56880b%26X-Amz-SignedHeaders%3Dhost%26response-content-disposition%3Dinline%253B%2520filename%252A%253DUTF-8%2527%2527bn_validated_1.tar%253B%2520filename%253D%2522bn_validated_1.tar%2522%253B%26response-content-type%3Dapplication%252Fx-tar%26x-id%3DGetObject&HEAD=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf65687ab76928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250d2338866f222f1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D15254fb79d30b0dc36b94a28138e675e0e00bb475b8a3ae774418500b095a661%26X-Amz-SignedHeaders%3Dhost&sign=eyJhbGciOiJIUzI1NiJ9.eyJyZWRpcmVjds9kb21haW4iOiJoZi1odWItbGZzLXVzLWVhc3QtMS5zMy51cy1lYXN0LTEuYW1hem9uYXdzLmNvbSIsImlhdCI6MTc0NDExOT2yNSwiZXhwIjoxNzQ0MjA2MjI1LCJpc3MiOiJodHRwczovL2h1Z2dpbmdmYWNlLmNvIn0.5sJzudFDU3SmOdOLlwmQdOfQFf2r7y9590HoX8WBkRk. Make sure your token has the correct permissions. **What's wrong with the code?** Please note that the error is happening only when I am running from my office network due to probably proxy. Which URL, I need to take a proxy exception?
open
https://github.com/huggingface/datasets/issues/7505
2025-04-08T14:08:40
2025-04-08T14:08:40
null
{ "login": "hissain", "id": 1412262, "type": "User" }
[]
false
[]
2,979,410,641
7,504
BuilderConfig ParquetConfig(...) doesn't have a 'use_auth_token' key.
### Describe the bug Trying to run the following fine-tuning script (based on this page [here](https://github.com/huggingface/instruction-tuned-sd)): ``` ! accelerate launch /content/instruction-tuned-sd/finetune_instruct_pix2pix.py \ --pretrained_model_name_or_path=${MODEL_ID} \ --dataset_name=${DATASET_NAME} \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=512 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=500 \ --checkpointing_steps=25 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --max_grad_norm=1 --lr_warmup_steps=20 \ --conditioning_dropout_prob=0.1 \ --mixed_precision=fp16 \ --seed=42 \ --output_dir=${OUTPUT_DIR} \ --original_image_column=before \ --edit_prompt=prompt \ --edited_image=after ``` but I keep getting the following error: ``` Traceback (most recent call last): File "/content/instruction-tuned-sd/finetune_instruct_pix2pix.py", line 1137, in <module> main() File "/content/instruction-tuned-sd/finetune_instruct_pix2pix.py", line 652, in main dataset = load_dataset( ^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/load.py", line 2129, in load_dataset builder_instance = load_dataset_builder( ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/load.py", line 1886, in load_dataset_builder builder_instance: DatasetBuilder = builder_cls( ^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/builder.py", line 342, in __init__ self.config, self.config_id = self._create_builder_config( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/builder.py", line 590, in _create_builder_config raise ValueError(f"BuilderConfig {builder_config} doesn't have a '{key}' key.") ValueError: BuilderConfig ParquetConfig(name='default', version=0.0.0, data_dir=None, data_files={'train': ['data/train-*']}, description=None, batch_size=None, columns=None, features=None, filters=None) doesn't have a 'use_auth_token' key. Traceback (most recent call last): File "/usr/local/bin/accelerate", line 10, in <module> sys.exit(main()) ^^^^^^ ``` Any ideas? `datasets` version should be `3.2.0`. ### Steps to reproduce the bug Just running the script above. ### Expected behavior No errors ### Environment info Python 3.11.11 datasets==3.2.0
open
https://github.com/huggingface/datasets/issues/7504
2025-04-08T10:55:03
2025-06-28T09:18:09
null
{ "login": "tteguayco", "id": 20015750, "type": "User" }
[]
false
[]
2,978,512,625
7,503
Inconsistency between load_dataset and load_from_disk functionality
## Issue Description I've encountered confusion when using `load_dataset` and `load_from_disk` in the datasets library. Specifically, when working offline with the gsm8k dataset, I can load it using a local path: ```python import datasets ds = datasets.load_dataset('/root/xxx/datasets/gsm8k', 'main') ``` output: ```text DatasetDict({ train: Dataset({ features: ['question', 'answer'], num_rows: 7473 }) test: Dataset({ features: ['question', 'answer'], num_rows: 1319 }) }) ``` This works as expected. However, after processing the dataset (converting answer format from #### to \boxed{}) ```python import datasets ds = datasets.load_dataset('/root/xxx/datasets/gsm8k', 'main') ds_train = ds['train'] ds_test = ds['test'] import re def convert(sample): solution = sample['answer'] solution = re.sub(r'####\s*(\S+)', r'\\boxed{\1}', solution) sample = { 'problem': sample['question'], 'solution': solution } return sample ds_train = ds_train.map(convert, remove_columns=['question', 'answer']) ds_test = ds_test.map(convert,remove_columns=['question', 'answer']) ``` I saved it using save_to_disk: ```python from datasets.dataset_dict import DatasetDict data_dict = DatasetDict({ 'train': ds_train, 'test': ds_test }) data_dict.save_to_disk('/root/xxx/datasets/gsm8k-new') ``` But now I can only load it using load_from_disk: ```python new_ds = load_from_disk('/root/xxx/datasets/gsm8k-new') ``` output: ```text DatasetDict({ train: Dataset({ features: ['problem', 'solution'], num_rows: 7473 }) test: Dataset({ features: ['problem', 'solution'], num_rows: 1319 }) }) ``` Attempting to use load_dataset produces unexpected results: ```python new_ds = load_dataset('/root/xxx/datasets/gsm8k-new') ``` output: ```text DatasetDict({ train: Dataset({ features: ['_data_files', '_fingerprint', '_format_columns', '_format_kwargs', '_format_type', '_output_all_columns', '_split'], num_rows: 1 }) test: Dataset({ features: ['_data_files', '_fingerprint', '_format_columns', '_format_kwargs', '_format_type', '_output_all_columns', '_split'], num_rows: 1 }) }) ``` Questions 1. Why is it designed such that after using `save_to_disk`, the dataset cannot be loaded with `load_dataset`? For small projects with limited code, it might be relatively easy to change all instances of `load_dataset` to `load_from_disk`. However, for complex frameworks like TRL or lighteval, diving into the framework code to change `load_dataset` to `load_from_disk` is extremely tedious and error-prone. Additionally, `load_from_disk` cannot load datasets directly downloaded from the hub, which means that if you need to modify a dataset, you have to choose between using `load_from_disk` or `load_dataset`. This creates an unnecessary dichotomy in the API and complicates workflow when working with modified datasets. 2. What's the recommended approach for this use case? Should I manually process my gsm8k-new dataset to make it compatible with load_dataset? Is there a standard way to convert between these formats? thanks~
open
https://github.com/huggingface/datasets/issues/7503
2025-04-08T03:46:22
2025-06-28T08:51:16
null
{ "login": "zzzzzec", "id": 60975422, "type": "User" }
[]
false
[]
2,977,453,814
7,502
`load_dataset` of size 40GB creates a cache of >720GB
Hi there, I am trying to load a dataset from the Hugging Face Hub and split it into train and validation splits. Somehow, when I try to do it with `load_dataset`, it exhausts my disk quota. So, I tried manually downloading the parquet files from the hub and loading them as follows: ```python ds = DatasetDict( { "train": load_dataset( "parquet", data_dir=f"{local_dir}/{tok}", cache_dir=cache_dir, num_proc=min(12, os.cpu_count()), # type: ignore split=ReadInstruction("train", from_=0, to=NUM_TRAIN, unit="abs"), # type: ignore ), "validation": load_dataset( "parquet", data_dir=f"{local_dir}/{tok}", cache_dir=cache_dir, num_proc=min(12, os.cpu_count()), # type: ignore split=ReadInstruction("train", from_=NUM_TRAIN, unit="abs"), # type: ignore ) } ) ``` which still strangely creates 720GB of cache. In addition, if I remove the raw parquet file folder (`f"{local_dir}/{tok}"` in this example), I am not able to load anything. So, I am left wondering what this cache is doing. Am I missing something? Is there a solution to this problem? Thanks a lot in advance for your help! A related issue: https://github.com/huggingface/transformers/issues/10204#issue-809007443. --- Python: 3.11.11 datasets: 3.5.0
closed
https://github.com/huggingface/datasets/issues/7502
2025-04-07T16:52:34
2025-04-15T15:22:12
2025-04-15T15:22:11
{ "login": "pietrolesci", "id": 61748653, "type": "User" }
[]
false
[]
2,976,721,014
7,501
Nested Feature raises ArrowNotImplementedError: Unsupported cast using function cast_struct
### Describe the bug `datasets.Features` seems to be unable to handle json file that contains fields of `list[dict]`. ### Steps to reproduce the bug ```json // test.json {"a": 1, "b": [{"c": 2, "d": 3}, {"c": 4, "d": 5}]} {"a": 5, "b": [{"c": 7, "d": 8}, {"c": 9, "d": 10}]} ``` ```python import json from datasets import Dataset, Features, Value, Sequence, load_dataset annotation_feature = Features({ "a": Value("int32"), "b": Sequence({ "c": Value("int32"), "d": Value("int32"), }), }) annotation_dataset = load_dataset( "json", data_files="test.json", features=annotation_feature ) ``` ``` ArrowNotImplementedError: Unsupported cast from list<item: struct<c: int32, d: int32>> to struct using function cast_struct The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) Cell In[46], line 11 2 from datasets import Dataset, Features, Value, Sequence, load_dataset 4 annotation_feature = Features({ 5 "a": Value("int32"), 6 "b": Sequence({ (...) 9 }), 10 }) ---> 11 annotation_dataset = load_dataset( 12 "json", 13 data_files="test.json", 14 features=annotation_feature 15 ) ``` ### Expected behavior A `datasets.Datasets` instance should be initialized. ### Environment info - `datasets` version: 3.5.0 - Platform: Linux-6.11.0-21-generic-x86_64-with-glibc2.39 - Python version: 3.11.11 - `huggingface_hub` version: 0.30.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
closed
https://github.com/huggingface/datasets/issues/7501
2025-04-07T12:35:39
2025-04-07T12:43:04
2025-04-07T12:43:03
{ "login": "yaner-here", "id": 26623948, "type": "User" }
[]
false
[]
2,974,841,921
7,500
Make `with_format` correctly indicate that a `Dataset` is compatible with PyTorch's `Dataset` class
### Feature request Currently `datasets` does not correctly indicate to the Python type-checker (e.g. `pyright` / `Pylance`) that the output of `with_format` is compatible with PyTorch's `Dataloader` since it does not indicate that the HuggingFace `Dataset` is compatible with the PyTorch `Dataset` class. It would be great if we could get the typing to work nicely. ### Motivation To avoid casting types in our Python code. ### Your contribution I would be happy to contribute a PR if this is something that may be accepted and could work with the current approach. This doesn't have to be for just PyTorch, but I imagine that the same thing would be useful for `tensorflow` and such, but we only have a need for PyTorch at this stage.
open
https://github.com/huggingface/datasets/issues/7500
2025-04-06T09:56:09
2025-04-15T12:57:39
null
{ "login": "benglewis", "id": 3817460, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,973,489,126
7,499
Added cache dirs to load and file_utils
When adding "cache_dir" to datasets.load_dataset, the cache_dir gets lost in the function calls, changing the cache dir to the default path. This fixes a few of these instances.
closed
https://github.com/huggingface/datasets/pull/7499
2025-04-04T22:36:04
2025-05-07T14:07:34
2025-05-07T14:07:34
{ "login": "gmongaras", "id": 43501738, "type": "User" }
[]
true
[]
2,969,218,273
7,498
Extreme memory bandwidth.
### Describe the bug When I use hf datasets on 4 GPU with 40 workers I get some extreme memory bandwidth of constant ~3GB/s. However, if I wrap the dataset in `IterableDataset`, this issue is gone and the data also loads way faster (4x faster training on 1 worker). It seems like the workers don't share memory and basically duplicate the data 4x40. ### Steps to reproduce the bug Trainer arguments: ``` dataloader_pin_memory=True, dataloader_num_workers=40, dataloader_prefetch_factor=2, dataloader_persistent_workers=True, ``` Call trainer: ``` trainer = Trainer( model=model, args=train_args, train_dataset=load_from_disk('..').with_fromat('torch'), ) ``` The dataset has 600GB and consists of 1225 files. ### Expected behavior The optimal bandwidth should be 100MB/s to keep up with GPU. ### Environment info Linux Python 3.11 datasets==3.2.0
open
https://github.com/huggingface/datasets/issues/7498
2025-04-03T11:09:08
2025-04-03T11:11:22
null
{ "login": "J0SZ", "id": 185079645, "type": "User" }
[]
false
[]
2,968,553,693
7,497
How to convert videos to images?
### Feature request Does someone know how to return the images from videos? ### Motivation I am trying to use openpi(https://github.com/Physical-Intelligence/openpi) to finetune my Lerobot dataset(V2.0 and V2.1). I find that although the codedaset is v2.0, they are different. It seems like Lerobot V2.0 has two version, one is data include images infos and another one is separate to data and videos. Does someone know how to return the images from videos?
open
https://github.com/huggingface/datasets/issues/7497
2025-04-03T07:08:39
2025-04-15T12:35:15
null
{ "login": "Loki-Lu", "id": 171649931, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,967,345,522
7,496
Json builder: Allow features to override problematic Arrow types
### Feature request In the JSON builder, use explicitly requested feature types before or while converting to Arrow. ### Motivation Working with JSON datasets is really hard because of Arrow. At the very least, it seems like it should be possible to work-around these problems by explicitly setting problematic columns's types. But it seems like this is not possible because the features are only used *after* converting to arrow. Here's a simple example where the Arrow error could potentially be avoided by converting the column to a string: https://colab.research.google.com/drive/16QHRdbUwKSrpwVfGwu8V8AHr8v2dv0dt?usp=sharing ### Your contribution Maybe with some guidance. I'm not very familiar with arrow or pandas.
open
https://github.com/huggingface/datasets/issues/7496
2025-04-02T19:27:16
2025-04-15T13:06:09
null
{ "login": "edmcman", "id": 1017189, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,967,034,060
7,495
Columns in the dataset obtained though load_dataset do not correspond to the one in the dataset viewer since 3.4.0
### Describe the bug I have noticed that on my dataset named [BrunoHays/Accueil_UBS](https://huggingface.co/datasets/BrunoHays/Accueil_UBS), since the version 3.4.0, every column except audio is missing when I load the dataset. Interestingly, the dataset viewer still shows the correct columns ### Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset("BrunoHays/Accueil_UBS", streaming=True) print(next(iter(ds["test"])).keys()) ``` With datasets >= 3.4.0: -> dict_keys(['audio']) With datasets == 3.3.2: -> dict_keys(['audio', 'id', 'speaker', 'sentence', 'raw_sentence', 'start_timestamp', 'end_timestamp', 'overlap']) ### Expected behavior All the columns should be present ### Environment info - `datasets` version: 3.3.2 - Platform: macOS-14.6.1-x86_64-i386-64bit - Python version: 3.10.15 - `huggingface_hub` version: 0.30.1 - PyArrow version: 16.1.0 - Pandas version: 1.5.3 - `fsspec` version: 2023.10.0
closed
https://github.com/huggingface/datasets/issues/7495
2025-04-02T17:01:11
2025-07-02T23:24:57
2025-07-02T23:24:57
{ "login": "bruno-hays", "id": 48770768, "type": "User" }
[]
false
[]