Datasets:
File size: 8,207 Bytes
4265513 e504b8b 4265513 01a94d4 4265513 e504b8b 4265513 cea5fa9 7731073 cea5fa9 4265513 e504b8b 4265513 e504b8b 4265513 294b16a 4265513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
license: other
license_name: lo-license
license_link: >-
https://customers.livingoptics.com/hubfs/Outbound/Legal/Living%20Optics%20EULA.pdf
task_categories:
- image-segmentation
- image-classification
language:
- en
tags:
- forensics
- blood detection
- blood classification
- hyperspectral
size_categories:
- 10K<n<100K
---
# Living Optics Forensics Dataset

## Overview
This dataset contains **224 images** captured during a **forensics application investigation** using the **Living Optics Camera**.
The data includes:
- **RGB images**
- **Sparse spectral samples**
- **Instance segmentation masks**
- **White reference spectra**
- **Libary spectra**
It is derived from over **200 unique raw files**, corresponding to 224 frames. The dataset has **not** been split into training/validation sets — the choice of split is left to the developer.
Annotation example can be seen below:

### Contents
- **249 instances** of horse blood captured on various surfaces.
- **167 instances** of blood confusers (e.g., fake blood, ketchup) across **22 different surfaces**.
- A **total of 416 labeled instances**.
Additionally, the dataset contains **library spectra** captured with a spectrometer covering the wavelength range **350–1000 nm**, sampled at a higher resolution than the Living Optics camera.
These spectra can be used for:
- Spectral lookup–style algorithms
- Outlier filtering
- **Negative sampling** when spectra do not fall within labeled segmentation masks
Extra **unlabeled data** is available upon request.
## Classes
The dataset contains **25 classes**:
| ID | Class Name |
|-------|------------|
| 104 | Horse blood (sample) |
| 103 | Tomato ketchup (sample) |
| 106 | Red food dye (sample) |
| 107 | Fake blood (sample) |
| 1015 | 100% Cotton Shirt (White) (surface) |
| 1013 | 100% Cotton Shirt (Black) (surface) |
| 1012 | Light Fabric Lined Plywood (EF64) – 3 mm (surface) |
| 1010 | PVC (EF9) Black Plywood – 3 mm (surface) |
| 1007 | PVC (EF50) Light Woodgrain Plywood – 3 mm (surface) |
| 1016 | 100% Cotton Shirt (Brown) (surface) |
| 1011 | Normal Plywood – 3 mm (surface) |
| 1008 | PVC Walnut Woodgrain Plywood (EF326) – 3 mm (surface) |
| 1006 | PVC Leather (Black) (surface) |
| 1005 | PVC Leather (White) (surface) |
| 1004 | PVC Leather (Brown) (surface) |
| 1003 | PVC Leather (Red) (surface) |
| 1019 | Skinny Jeans (Light Blue) (surface) |
| 1024 | Dri-fit Shirt (Brown) (surface) |
| 1022 | Dri-fit Shirt (White) (surface) |
| 1018 | Skinny Jeans (Black) (surface) |
| 1017 | Skinny Jeans (Grey) (surface) |
| 1021 | Dri-fit Shirt (Red) (surface) |
| 1020 | Skinny Jeans (Dark Blue) (surface) |
| 1009 | PVC White Plywood – 3 mm (surface) |
| 1023 | Dri-fit Shirt (Black) (surface) |
| 1014 | 100% Cotton Shirt (Maroon) (surface) |
Unlabeled or background regions can be grouped into a single `"background"` class.
## Visualization

## Requirements
- [lo-sdk](https://cloud.livingoptics.com/)
- [datareader](https://github.com/livingoptics/datareader.git)
## Download instructions
You can access this dataset via the [Living Optics Cloud Portal](https://cloud.livingoptics.com/shared-resources?downloadFile=data%2Fannotated-datasets%2FForensics-Dataset.zip).
See our [Spatial Spectral ML](https://github.com/livingoptics/spatial-spectral-ml) project for an example of how to train and run a segmentation and spectral classification algoirthm using this dataset.
## Usage
```python
import os
import numpy as np
import matplotlib.pyplot as plt
from lo_dataset_reader import DatasetReader, spectral_coordinate_indices_in_mask, rle_to_mask
os.environ["QT_QPA_PLATFORM"] = "xcb"
dataset_path = "/path/to/dataset"
dataset = DatasetReader(dataset_path, display_fig=True)
for idx, ((info, scene, spectra, unit, images_extern), (converted_spectra, converted_unit), annotations, library_spectra, labels) in enumerate(dataset):
for ann_idx, annotation in enumerate(annotations):
annotation["labels"] = labels
# Visualise the annotation on the scene
dataset.save_annotation_visualisation(scene, annotation, images_extern, ann_idx)
# Get spectrum stats from annotation
stats = annotation.get("extern", {}).get("stats", {})
label = stats.get("category")
mean_radiance_spectrum = stats.get("mean_radiance_spectrum")
mean_reflectance_spectrum = stats.get("mean_reflectance_spectrum")
# Get mask and spectral indices
mask = rle_to_mask(annotation["segmentation"], scene.shape)
spectral_indices = spectral_coordinate_indices_in_mask(mask, info.sampling_coordinates)
# Extract spectra and converted spectra
spec = spectra[spectral_indices, :]
if converted_spectra is not None:
conv_spec = converted_spectra[spectral_indices, :]
else:
conv_spec = None
# X-axis based on band index or wavelengths (optional)
x = np.arange(spec.shape[1])
if stats.get("wavelength_min") is not None and stats.get("wavelength_max") is not None:
x = np.linspace(stats["wavelength_min"], stats["wavelength_max"], spec.shape[1])
# Determine plot layout
if converted_spectra is not None:
fig, axs = plt.subplots(2, 2, figsize=(12, 8))
axs_top = axs[0]
axs_bottom = axs[1]
else:
fig, axs_top = plt.subplots(1, 2, figsize=(12, 4))
print(f"Warning: No converted_spectra for annotation '{label}'")
unit_label = unit.capitalize() if unit else "Radiance"
# (1,1) Individual spectra
for s in spec:
axs_top[0].plot(x, s, alpha=0.3)
axs_top[0].set_title(f"{unit_label.capitalize()} Spectra")
axs_top[0].set_xlabel("Wavelength")
axs_top[0].set_ylabel(f"{unit_label.capitalize()}")
# (1,2) Mean + Min/Max (Before conversion)
if mean_radiance_spectrum is not None:
spec_min = np.min(spec, axis=0)
spec_max = np.max(spec, axis=0)
axs_top[1].fill_between(x, spec_min, spec_max, color='lightblue', alpha=0.5, label='Min-Max Range')
axs_top[1].plot(x, mean_radiance_spectrum, color='blue', label=f'Mean {unit_label.capitalize()}')
axs_top[1].set_title(f"Extern Mean ± Range ({unit_label.capitalize()})")
axs_top[1].set_xlabel("Wavelength")
axs_top[1].set_ylabel(f"{unit_label.capitalize()}")
axs_top[1].legend()
# (2,1) and (2,2) Only if converted_spectra is available
if converted_spectra is not None and conv_spec is not None:
for s in conv_spec:
axs_bottom[0].plot(x, s, alpha=0.3)
axs_bottom[0].set_title(f"{converted_unit} Spectra")
axs_bottom[0].set_xlabel("Wavelength")
axs_bottom[0].set_ylabel(f"{converted_unit}")
if mean_reflectance_spectrum is not None:
conv_min = np.min(conv_spec, axis=0)
conv_max = np.max(conv_spec, axis=0)
axs_bottom[1].fill_between(x, conv_min, conv_max, color='lightgreen', alpha=0.5, label='Min-Max Range')
axs_bottom[1].plot(x, mean_reflectance_spectrum, color='green', label=f'Mean {converted_unit}')
axs_bottom[1].set_title(f"Extern Mean ± Range ({converted_unit})")
axs_bottom[1].set_xlabel("Wavelength")
axs_bottom[1].set_ylabel(f"{converted_unit}")
axs_bottom[1].legend()
fig.suptitle(f"Annotation {label}", fontsize=16)
plt.tight_layout()
plt.show()
```
For more details on the dataset format and reader see: [dataset format](https://github.com/livingoptics/datareader/blob/main/docs/lo_format_dataset.md)
## Citation
Raw data is available by request |