File size: 1,926 Bytes
8ea78cc
c38d3ab
8ea78cc
 
 
 
 
 
 
 
 
 
 
c38d3ab
8ea78cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c38d3ab
8ea78cc
 
 
c38d3ab
 
8ea78cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c38d3ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: cc-by-nc-4.0
task_categories:
- automatic-speech-recognition
language:
- az
tags:
- speech
- audio
- azerbaijani
- asr
size_categories:
- 100K<n<1M
pretty_name: Azerbaijani ASR Dataset
---

# Azerbaijani ASR Dataset

## Dataset Description

This dataset contains Azerbaijani speech data for Automatic Speech Recognition (ASR) tasks.

### Dataset Summary

- **Language**: Azerbaijani (az)
- **Task**: Automatic Speech Recognition
- **Total Duration**: ~334 hours
- **Total Samples**: ~351,000 audio-text pairs
- **Audio Format**: WAV, 16kHz sampling rate
- **License**: CC-BY-NC-4.0

### Dataset Structure

Each audio segment is specially numbered so that you can merge them if you need to create longer segments.

```python
DatasetDict({
    train: Dataset({
        features: ['audio', 'text', 'duration', 'audio_file'],
        num_rows: [total_samples]
    })
})
```

### Features

- `audio`: Audio file (WAV format, 16kHz)
- `text`: Transcription of the audio (Azerbaijani text)
- `duration`: Duration of audio clip in seconds
- `audio_file`: Original filename of the audio segment

### Usage

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("LocalDoc/azerbaijani_asr")

# Access train split
train_dataset = dataset["train"]

# Example usage
for example in train_dataset:
    audio = example["audio"]
    text = example["text"]
    duration = example["duration"]
```

### Duration Distribution

- 0-2 sec: 36.1%
- 2-5 sec: 47.2% 
- 5-10 sec: 14.6%
- 10-20 sec: 2.0%
- 20+ sec: 0.1%

### Use Cases

- Fine-tuning Whisper models for Azerbaijani
- Training new ASR models for Azerbaijani language
- Benchmarking ASR performance on Azerbaijani

### Citation

If you use this dataset, please cite:

```
@dataset{azerbaijani_asr_2025,
  title={Azerbaijani ASR Dataset},
  author={LocalDoc},
  year={2025},
  url={https://huggingface.co/datasets/LocalDoc/azerbaijani_asr}
}
```