Datasets:

Modalities:
Text
Libraries:
Datasets
License:
File size: 4,000 Bytes
f846452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b55b6
f846452
 
 
 
 
 
 
 
 
 
 
 
7988678
f846452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eebd659
7988678
f846452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace NLP Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""tweetyface dataset."""


import json

import datasets

_DESCRIPTION = """\
DEBUG DATASET
"""

_HOMEPAGE = "https://github.com/ml-projects-kiel/OpenCampus-ApplicationofTransformers"

URL = "https://raw.githubusercontent.com/ml-projects-kiel/OpenCampus-ApplicationofTransformers/develop/data/"

_URLs = {
    "english": {
        "train": URL + "tweetyface_en/train.json",
        "validation": URL + "tweetyface_en/validation.json",
    },
    "german": {
        "train": URL + "tweetyface_de/train.json",
        "validation": URL + "tweetyface_de/validation.json",
    },
}

_VERSION = "0.4.0"

_LICENSE = """
Apache License Version 2.0
"""


class TweetyFaceConfig(datasets.BuilderConfig):
    """BuilderConfig for TweetyFace."""

    def __init__(self, **kwargs):
        """BuilderConfig for TweetyFace.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(TweetyFaceConfig, self).__init__(**kwargs)


class TweetyFace(datasets.GeneratorBasedBuilder):
    """tweetyface"""

    BUILDER_CONFIGS = [
        TweetyFaceConfig(
            name=lang,
            description=f"{lang.capitalize()} Twitter Users",
            version=datasets.Version(_VERSION),
        )
        for lang in _URLs.keys()
    ]

    def _info(self):
        if self.config.name == "english":
            names = [
                "MKBHD",
                "elonmusk",
                "alyankovic",
                "Cristiano",
                "katyperry",
                "neiltyson",
                "BillGates",
                "BillNye",
                "GretaThunberg",
                "BarackObama",
                "Trevornoah",
            ]
        else:
            names = [
                "OlafScholz",
                "Karl_Lauterbach",
                "janboehm",
                "Markus_Soeder",
            ]
        return datasets.DatasetInfo(
            description=_DESCRIPTION + self.config.description,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(names=names),
                    "idx": datasets.Value("string"),
                    "ref_tweet": datasets.Value("bool"),
                    "ref_type": datasets.Value("string"),
                    "reply_to": datasets.Value("string"),
                }
            ),
            homepage=_HOMEPAGE,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        my_urls = _URLs[self.config.name]
        data_dir = dl_manager.download_and_extract(my_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": data_dir["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": data_dir["validation"]},
            ),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form by iterating on all the files."""
        with open(filepath, encoding="utf-8") as f:
            for row in f:
                data = json.loads(row)
                idx = data["idx"]
                yield idx, data