File size: 6,457 Bytes
e204166
 
 
 
 
ef17ab1
e204166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85592a6
 
e204166
 
 
 
3631bf4
 
 
 
 
 
 
 
e204166
 
 
 
85592a6
e204166
 
 
 
 
 
85592a6
 
 
 
e204166
 
 
 
 
 
 
ccefdad
e204166
 
 
ccefdad
e204166
 
 
 
ccefdad
e204166
 
 
 
 
 
 
 
 
85592a6
 
 
 
 
e204166
 
 
b96cd83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7c5c9
b96cd83
 
e204166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85592a6
e204166
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
pretty_name: MWS Vision Bench
dataset_name: mws-vision-bench
language:
  - ru
license: mit
tags:
  - benchmark
  - multimodal
  - ocr
  - kie
  - grounding
  - vlm
  - business
  - russian
  - document
  - visual-question-answering
  - document-question-answering
task_categories:
  - visual-question-answering
  - document-question-answering
size_categories:
  - 1K<n<10K
annotations_creators:
  - expert-generated
dataset_creators:
  - MTS AI Research
papers:
  - title: "MWS Vision Bench: The First Russian Business-OCR Benchmark for Multimodal Models"
    authors: ["MTS AI Research Team"]
    year: 2025
    status: "in preparation"
    note: "Paper coming soon"
homepage: https://huggingface.co/datasets/MTSAIR/MWS-Vision-Bench
repository: https://github.com/mts-ai/MWS-Vision-Bench
organization: MTSAIR
---
# MWS-Vision-Bench

> 🇷🇺 *Русскоязычное описание ниже / Russian summary below.*

**MWS Vision Bench** — the first **Russian-language business-OCR benchmark** designed for multimodal large language models (MLLMs).  
This is the validation split - publicly available for open evaluation and comparison.  
🧩 **Paper is coming soon.**

🔗 **Official repository:** [github.com/mts-ai/MWS-Vision-Bench](https://github.com/mts-ai/MWS-Vision-Bench)  
🏢 **Organization:** [MTSAIR on Hugging Face](https://huggingface.co/MTSAIR)  
📰 **Article on Habr (in Russian):** [“MWS Vision Bench — the first Russian business-OCR benchmark”](https://habr.com/ru/companies/mts_ai/articles/953292/)

---

## 📊 Dataset Statistics

- **Total samples:** 1,302  
- **Unique images:** 400  
- **Task types:** 5  

---

## 🖼️ Dataset Preview

![Dataset Examples](preview.jpg)

*Examples of diverse document types in the benchmark: business documents, handwritten notes, technical drawings, receipts, and more.*

---

## 📁 Repository Structure

```
MWS-Vision-Bench/
├── metadata.jsonl       # Dataset annotations
├── images/              # Image files organized by category
│   ├── business/
│   │   ├── scans/
│   │   ├── sheets/
│   │   ├── plans/
│   │   └── diagramms/
│   └── personal/
│       ├── hand_documents/
│       ├── hand_notebooks/
│       └── hand_misc/
└── README.md            # This file
```

---

## 📋 Data Format

Each line in `metadata.jsonl` contains one JSON object:

```python
{
  "file_name": "images/image_0.jpg",   # Path to the image
  "id": "1",                           # Unique identifier
  "type": "text grounding ru",         # Task type
  "dataset_name": "business",          # Subdataset name
  "question": "...",                   # Question in Russian
  "answers": ["398", "65", ...]        # List of valid answers (as strings)
}
```

---

## 🎯 Task Types

| Task | Description | Count |
|------|--------------|-------|
| `document parsing ru` | Parsing structured documents | 243 |
| `full-page OCR ru` | End-to-end OCR on full pages | 144 |
| `key information extraction ru` | Extracting key fields | 119 |
| `reasoning VQA ru` | Visual reasoning in Russian | 400 |
| `text grounding ru` | Text–region alignment | 396 |

---

## Leaderboard

| Model | Overall | img→text | img→markdown | Grounding | KIE (JSON) | VQA |
|-------|---------|----------|--------------|-----------|------------|-----|
| **Gemini-2.5-pro** | **0.682** | 0.836 | 0.745 | 0.084 | 0.891 | 0.853 |
| **Gemini-2.5-flash** | **0.644** | 0.796 | 0.683 | 0.067 | 0.841 | 0.833 |
| **gpt-4.1-mini** | **0.643** | 0.866 | 0.724 | 0.091 | 0.750 | 0.782 |
| **Claude-4.5-Sonnet** | **0.639** | 0.723 | 0.676 | 0.377 | 0.728 | 0.692 |
| **Cotype VL (32B 8 bit)** | **0.639** | 0.797 | 0.756 | 0.262 | 0.694 | 0.685 |
| gpt-5-mini | 0.632 | 0.797 | 0.678 | 0.126 | 0.784 | 0.776 |
| Qwen2.5-VL-72B | 0.631 | 0.848 | 0.712 | 0.220 | 0.644 | 0.732 |
| gpt-5-mini (responses) | 0.594 | 0.743 | 0.567 | 0.118 | 0.811 | 0.731 |
| Qwen3-VL-30B-A3B | 0.589 | 0.802 | 0.688 | 0.053 | 0.661 | 0.743 |
| gpt-4.1 | 0.587 | 0.709 | 0.693 | 0.086 | 0.662 | 0.784 |
| Qwen3-VL-30B-A3B-FP8 | 0.583 | 0.798 | 0.683 | 0.056 | 0.638 | 0.740 |
| Qwen2.5-VL-32B | 0.577 | 0.767 | 0.649 | 0.232 | 0.493 | 0.743 |
| gpt-5 (responses) | 0.573 | 0.746 | 0.650 | 0.080 | 0.687 | 0.704 |
| Qwen2.5-VL-7B | 0.549 | 0.779 | 0.704 | 0.185 | 0.426 | 0.651 |
| gpt-4.1-nano | 0.503 | 0.676 | 0.672 | 0.028 | 0.567 | 0.573 |
| gpt-5-nano | 0.503 | 0.487 | 0.583 | 0.091 | 0.661 | 0.693 |
| Qwen2.5-VL-3B | 0.402 | 0.613 | 0.654 | 0.045 | 0.203 | 0.494 |
| Pixtral-12B-2409 | 0.342 | 0.327 | 0.555 | 0.026 | 0.325 | 0.475 |


## 💻 Usage Example

```python
from datasets import load_dataset

# Load dataset (authorization required if private)
dataset = load_dataset("MTSAIR/MWS-Vision-Bench", token="hf_...")

# Example iteration
for item in dataset:
    print(f"ID: {item['id']}")
    print(f"Type: {item['type']}")
    print(f"Question: {item['question']}")
    print(f"Image: {item['image_path']}")
    print(f"Answers: {item['answers']}")
```

---

## 📄 License

**MIT License**  
© 2024 MTS AI  

See [LICENSE](https://github.com/MTSAIR/multimodalocr/blob/main/LICENSE.txt) for details.

---

## 📚 Citation

If you use this dataset in your research, please cite:

```bibtex
@misc{mwsvisionbench2024,
  title={MWS-Vision-Bench: Russian Multimodal OCR Benchmark},
  author={MTS AI Research},
  organization={MTSAIR},
  year={2025},
  url={https://huggingface.co/datasets/MTSAIR/MWS-Vision-Bench},
  note={Paper coming soon}
}
```

---

## 🤝 Contacts

- **Team:** [MTSAIR Research](https://huggingface.co/MTSAIR)  
- **Email:** [g.gaikov@mts.ai](mailto:g.gaikov@mts.ai)

---

## 🇷🇺 Краткое описание

**MWS Vision Bench** — первый русскоязычный бенчмарк для бизнес-OCR в эпоху мультимодальных моделей.  
Он включает 1302 примера и 5 типов задач, отражающих реальные сценарии обработки бизнес-документов и рукописных данных.  
Датасет создан для оценки и развития мультимодальных LLM в русскоязычном контексте.  
📄 *Научная статья в процессе подготовки (paper coming soon).*

---

**Made with ❤️ by MTS AI Research Team**