Datasets:
File size: 6,457 Bytes
e204166 ef17ab1 e204166 85592a6 e204166 3631bf4 e204166 85592a6 e204166 85592a6 e204166 ccefdad e204166 ccefdad e204166 ccefdad e204166 85592a6 e204166 b96cd83 8a7c5c9 b96cd83 e204166 85592a6 e204166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
pretty_name: MWS Vision Bench
dataset_name: mws-vision-bench
language:
- ru
license: mit
tags:
- benchmark
- multimodal
- ocr
- kie
- grounding
- vlm
- business
- russian
- document
- visual-question-answering
- document-question-answering
task_categories:
- visual-question-answering
- document-question-answering
size_categories:
- 1K<n<10K
annotations_creators:
- expert-generated
dataset_creators:
- MTS AI Research
papers:
- title: "MWS Vision Bench: The First Russian Business-OCR Benchmark for Multimodal Models"
authors: ["MTS AI Research Team"]
year: 2025
status: "in preparation"
note: "Paper coming soon"
homepage: https://huggingface.co/datasets/MTSAIR/MWS-Vision-Bench
repository: https://github.com/mts-ai/MWS-Vision-Bench
organization: MTSAIR
---
# MWS-Vision-Bench
> 🇷🇺 *Русскоязычное описание ниже / Russian summary below.*
**MWS Vision Bench** — the first **Russian-language business-OCR benchmark** designed for multimodal large language models (MLLMs).
This is the validation split - publicly available for open evaluation and comparison.
🧩 **Paper is coming soon.**
🔗 **Official repository:** [github.com/mts-ai/MWS-Vision-Bench](https://github.com/mts-ai/MWS-Vision-Bench)
🏢 **Organization:** [MTSAIR on Hugging Face](https://huggingface.co/MTSAIR)
📰 **Article on Habr (in Russian):** [“MWS Vision Bench — the first Russian business-OCR benchmark”](https://habr.com/ru/companies/mts_ai/articles/953292/)
---
## 📊 Dataset Statistics
- **Total samples:** 1,302
- **Unique images:** 400
- **Task types:** 5
---
## 🖼️ Dataset Preview

*Examples of diverse document types in the benchmark: business documents, handwritten notes, technical drawings, receipts, and more.*
---
## 📁 Repository Structure
```
MWS-Vision-Bench/
├── metadata.jsonl # Dataset annotations
├── images/ # Image files organized by category
│ ├── business/
│ │ ├── scans/
│ │ ├── sheets/
│ │ ├── plans/
│ │ └── diagramms/
│ └── personal/
│ ├── hand_documents/
│ ├── hand_notebooks/
│ └── hand_misc/
└── README.md # This file
```
---
## 📋 Data Format
Each line in `metadata.jsonl` contains one JSON object:
```python
{
"file_name": "images/image_0.jpg", # Path to the image
"id": "1", # Unique identifier
"type": "text grounding ru", # Task type
"dataset_name": "business", # Subdataset name
"question": "...", # Question in Russian
"answers": ["398", "65", ...] # List of valid answers (as strings)
}
```
---
## 🎯 Task Types
| Task | Description | Count |
|------|--------------|-------|
| `document parsing ru` | Parsing structured documents | 243 |
| `full-page OCR ru` | End-to-end OCR on full pages | 144 |
| `key information extraction ru` | Extracting key fields | 119 |
| `reasoning VQA ru` | Visual reasoning in Russian | 400 |
| `text grounding ru` | Text–region alignment | 396 |
---
## Leaderboard
| Model | Overall | img→text | img→markdown | Grounding | KIE (JSON) | VQA |
|-------|---------|----------|--------------|-----------|------------|-----|
| **Gemini-2.5-pro** | **0.682** | 0.836 | 0.745 | 0.084 | 0.891 | 0.853 |
| **Gemini-2.5-flash** | **0.644** | 0.796 | 0.683 | 0.067 | 0.841 | 0.833 |
| **gpt-4.1-mini** | **0.643** | 0.866 | 0.724 | 0.091 | 0.750 | 0.782 |
| **Claude-4.5-Sonnet** | **0.639** | 0.723 | 0.676 | 0.377 | 0.728 | 0.692 |
| **Cotype VL (32B 8 bit)** | **0.639** | 0.797 | 0.756 | 0.262 | 0.694 | 0.685 |
| gpt-5-mini | 0.632 | 0.797 | 0.678 | 0.126 | 0.784 | 0.776 |
| Qwen2.5-VL-72B | 0.631 | 0.848 | 0.712 | 0.220 | 0.644 | 0.732 |
| gpt-5-mini (responses) | 0.594 | 0.743 | 0.567 | 0.118 | 0.811 | 0.731 |
| Qwen3-VL-30B-A3B | 0.589 | 0.802 | 0.688 | 0.053 | 0.661 | 0.743 |
| gpt-4.1 | 0.587 | 0.709 | 0.693 | 0.086 | 0.662 | 0.784 |
| Qwen3-VL-30B-A3B-FP8 | 0.583 | 0.798 | 0.683 | 0.056 | 0.638 | 0.740 |
| Qwen2.5-VL-32B | 0.577 | 0.767 | 0.649 | 0.232 | 0.493 | 0.743 |
| gpt-5 (responses) | 0.573 | 0.746 | 0.650 | 0.080 | 0.687 | 0.704 |
| Qwen2.5-VL-7B | 0.549 | 0.779 | 0.704 | 0.185 | 0.426 | 0.651 |
| gpt-4.1-nano | 0.503 | 0.676 | 0.672 | 0.028 | 0.567 | 0.573 |
| gpt-5-nano | 0.503 | 0.487 | 0.583 | 0.091 | 0.661 | 0.693 |
| Qwen2.5-VL-3B | 0.402 | 0.613 | 0.654 | 0.045 | 0.203 | 0.494 |
| Pixtral-12B-2409 | 0.342 | 0.327 | 0.555 | 0.026 | 0.325 | 0.475 |
## 💻 Usage Example
```python
from datasets import load_dataset
# Load dataset (authorization required if private)
dataset = load_dataset("MTSAIR/MWS-Vision-Bench", token="hf_...")
# Example iteration
for item in dataset:
print(f"ID: {item['id']}")
print(f"Type: {item['type']}")
print(f"Question: {item['question']}")
print(f"Image: {item['image_path']}")
print(f"Answers: {item['answers']}")
```
---
## 📄 License
**MIT License**
© 2024 MTS AI
See [LICENSE](https://github.com/MTSAIR/multimodalocr/blob/main/LICENSE.txt) for details.
---
## 📚 Citation
If you use this dataset in your research, please cite:
```bibtex
@misc{mwsvisionbench2024,
title={MWS-Vision-Bench: Russian Multimodal OCR Benchmark},
author={MTS AI Research},
organization={MTSAIR},
year={2025},
url={https://huggingface.co/datasets/MTSAIR/MWS-Vision-Bench},
note={Paper coming soon}
}
```
---
## 🤝 Contacts
- **Team:** [MTSAIR Research](https://huggingface.co/MTSAIR)
- **Email:** [g.gaikov@mts.ai](mailto:g.gaikov@mts.ai)
---
## 🇷🇺 Краткое описание
**MWS Vision Bench** — первый русскоязычный бенчмарк для бизнес-OCR в эпоху мультимодальных моделей.
Он включает 1302 примера и 5 типов задач, отражающих реальные сценарии обработки бизнес-документов и рукописных данных.
Датасет создан для оценки и развития мультимодальных LLM в русскоязычном контексте.
📄 *Научная статья в процессе подготовки (paper coming soon).*
---
**Made with ❤️ by MTS AI Research Team**
|