--- pretty_name: MWS Vision Bench dataset_name: mws-vision-bench language: - ru license: mit tags: - benchmark - multimodal - ocr - kie - grounding - vlm - business - russian - document - visual-question-answering - document-question-answering task_categories: - visual-question-answering - document-question-answering size_categories: - 1K 🇷🇺 *Русскоязычное описание ниже / Russian summary below.* **MWS Vision Bench** — the first **Russian-language business-OCR benchmark** designed for multimodal large language models (MLLMs). This is the validation split - publicly available for open evaluation and comparison. 🧩 **Paper is coming soon.** 🔗 **Official repository:** [github.com/mts-ai/MWS-Vision-Bench](https://github.com/mts-ai/MWS-Vision-Bench) 🏢 **Organization:** [MTSAIR on Hugging Face](https://huggingface.co/MTSAIR) 📰 **Article on Habr (in Russian):** [“MWS Vision Bench — the first Russian business-OCR benchmark”](https://habr.com/ru/companies/mts_ai/articles/953292/) --- ## 📊 Dataset Statistics - **Total samples:** 1,302 - **Unique images:** 400 - **Task types:** 5 --- ## 🖼️ Dataset Preview ![Dataset Examples](preview.jpg) *Examples of diverse document types in the benchmark: business documents, handwritten notes, technical drawings, receipts, and more.* --- ## 📁 Repository Structure ``` MWS-Vision-Bench/ ├── metadata.jsonl # Dataset annotations ├── images/ # Image files organized by category │ ├── business/ │ │ ├── scans/ │ │ ├── sheets/ │ │ ├── plans/ │ │ └── diagramms/ │ └── personal/ │ ├── hand_documents/ │ ├── hand_notebooks/ │ └── hand_misc/ └── README.md # This file ``` --- ## 📋 Data Format Each line in `metadata.jsonl` contains one JSON object: ```python { "file_name": "images/image_0.jpg", # Path to the image "id": "1", # Unique identifier "type": "text grounding ru", # Task type "dataset_name": "business", # Subdataset name "question": "...", # Question in Russian "answers": ["398", "65", ...] # List of valid answers (as strings) } ``` --- ## 🎯 Task Types | Task | Description | Count | |------|--------------|-------| | `document parsing ru` | Parsing structured documents | 243 | | `full-page OCR ru` | End-to-end OCR on full pages | 144 | | `key information extraction ru` | Extracting key fields | 119 | | `reasoning VQA ru` | Visual reasoning in Russian | 400 | | `text grounding ru` | Text–region alignment | 396 | --- ## Leaderboard | Model | Overall | img→text | img→markdown | Grounding | KIE (JSON) | VQA | |-------|---------|----------|--------------|-----------|------------|-----| | **Gemini-2.5-pro** | **0.682** | 0.836 | 0.745 | 0.084 | 0.891 | 0.853 | | **Gemini-2.5-flash** | **0.644** | 0.796 | 0.683 | 0.067 | 0.841 | 0.833 | | **gpt-4.1-mini** | **0.643** | 0.866 | 0.724 | 0.091 | 0.750 | 0.782 | | **Claude-4.5-Sonnet** | **0.639** | 0.723 | 0.676 | 0.377 | 0.728 | 0.692 | | **Cotype VL (32B 8 bit)** | **0.639** | 0.797 | 0.756 | 0.262 | 0.694 | 0.685 | | gpt-5-mini | 0.632 | 0.797 | 0.678 | 0.126 | 0.784 | 0.776 | | Qwen2.5-VL-72B | 0.631 | 0.848 | 0.712 | 0.220 | 0.644 | 0.732 | | gpt-5-mini (responses) | 0.594 | 0.743 | 0.567 | 0.118 | 0.811 | 0.731 | | Qwen3-VL-30B-A3B | 0.589 | 0.802 | 0.688 | 0.053 | 0.661 | 0.743 | | gpt-4.1 | 0.587 | 0.709 | 0.693 | 0.086 | 0.662 | 0.784 | | Qwen3-VL-30B-A3B-FP8 | 0.583 | 0.798 | 0.683 | 0.056 | 0.638 | 0.740 | | Qwen2.5-VL-32B | 0.577 | 0.767 | 0.649 | 0.232 | 0.493 | 0.743 | | gpt-5 (responses) | 0.573 | 0.746 | 0.650 | 0.080 | 0.687 | 0.704 | | Qwen2.5-VL-7B | 0.549 | 0.779 | 0.704 | 0.185 | 0.426 | 0.651 | | gpt-4.1-nano | 0.503 | 0.676 | 0.672 | 0.028 | 0.567 | 0.573 | | gpt-5-nano | 0.503 | 0.487 | 0.583 | 0.091 | 0.661 | 0.693 | | Qwen2.5-VL-3B | 0.402 | 0.613 | 0.654 | 0.045 | 0.203 | 0.494 | | Pixtral-12B-2409 | 0.342 | 0.327 | 0.555 | 0.026 | 0.325 | 0.475 | ## 💻 Usage Example ```python from datasets import load_dataset # Load dataset (authorization required if private) dataset = load_dataset("MTSAIR/MWS-Vision-Bench", token="hf_...") # Example iteration for item in dataset: print(f"ID: {item['id']}") print(f"Type: {item['type']}") print(f"Question: {item['question']}") print(f"Image: {item['image_path']}") print(f"Answers: {item['answers']}") ``` --- ## 📄 License **MIT License** © 2024 MTS AI See [LICENSE](https://github.com/MTSAIR/multimodalocr/blob/main/LICENSE.txt) for details. --- ## 📚 Citation If you use this dataset in your research, please cite: ```bibtex @misc{mwsvisionbench2024, title={MWS-Vision-Bench: Russian Multimodal OCR Benchmark}, author={MTS AI Research}, organization={MTSAIR}, year={2025}, url={https://huggingface.co/datasets/MTSAIR/MWS-Vision-Bench}, note={Paper coming soon} } ``` --- ## 🤝 Contacts - **Team:** [MTSAIR Research](https://huggingface.co/MTSAIR) - **Email:** [g.gaikov@mts.ai](mailto:g.gaikov@mts.ai) --- ## 🇷🇺 Краткое описание **MWS Vision Bench** — первый русскоязычный бенчмарк для бизнес-OCR в эпоху мультимодальных моделей. Он включает 1302 примера и 5 типов задач, отражающих реальные сценарии обработки бизнес-документов и рукописных данных. Датасет создан для оценки и развития мультимодальных LLM в русскоязычном контексте. 📄 *Научная статья в процессе подготовки (paper coming soon).* --- **Made with ❤️ by MTS AI Research Team**