Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,007 Bytes
293002e
1dca7ca
293002e
 
 
 
 
 
 
 
 
 
 
 
 
1dca7ca
293002e
 
1dca7ca
293002e
 
1dca7ca
293002e
1dca7ca
 
293002e
 
 
 
 
 
 
 
 
1dca7ca
 
 
 
 
293002e
1dca7ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b792674
 
 
 
 
 
 
 
 
1dca7ca
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: apache-2.0
dataset_info:
  features:
  - name: image
    dtype: image
  - name: objects
    struct:
    - name: bbox
      list:
        list: int32
    - name: category
      list: string
  splits:
  - name: train
    num_bytes: 121301432
    num_examples: 678
  - name: test
    num_bytes: 26238185
    num_examples: 158
  - name: valid
    num_bytes: 23829914
    num_examples: 150
  download_size: 119387398
  dataset_size: 171369531
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
  - split: valid
    path: data/valid-*
task_categories:
- object-detection
pretty_name: Screen2AX-Element
size_categories:
- n<1K
---
# 📦 Screen2AX-Element

Screen2AX-Element is part of the **Screen2AX** dataset suite, a research-driven collection for advancing accessibility in macOS applications using computer vision and deep learning.

This dataset focuses on **UI element detection** from macOS application screenshots and is designed for training and evaluating object detection models.

---

## 🧠 Dataset Summary

Each sample in the dataset consists of:
- An application **screenshot** (`image`)
- A dictionary of **UI elements** (`objects`) with 2 keys:
  - `bbox` (`List[List[int]]`): List of bounding box coordinates in `[x_min, y_min, x_max, y_max]` format
  - `category` (`List[str]`): List of labels indicating the UI element type (`AXButton`, `AXDisclosureTriangle`, `AXLink`, `AXTextArea`, `AXImage`)

The dataset supports training deep learning models for object detection tasks specifically tuned for graphical user interfaces (GUIs) on macOS.

**Splits:**
- `train`
- `valid`
- `test`

**Task Category:**
- `object-detection`

---

## 📚 Usage

### Load with `datasets` library

```python
from datasets import load_dataset

dataset = load_dataset("MacPaw/Screen2AX-Element")
```

### Example structure

```python
sample = dataset["train"][0]
print(sample.keys())
# dict_keys(['image', 'objects'])

print(sample["objects"])
# {'bbox': [[x_min, y_min, x_max, y_max], ...], 'category': ['AXButton', ...]}
```

---

## 📜 License

This dataset is licensed under the **Apache 2.0 License**.

---

## 🔗 Related Projects

- [Screen2AX Main Project Page](https://github.com/MacPaw/Screen2AX)
- [Screen2AX HuggingFace Collection](https://huggingface.co/collections/MacPaw/screen2ax-687dfe564d50f163020378b8)

---

## ✍️ Citation

If you use this dataset, please cite the Screen2AX paper:

```bibtex
@misc{muryn2025screen2axvisionbasedapproachautomatic,
      title={Screen2AX: Vision-Based Approach for Automatic macOS Accessibility Generation}, 
      author={Viktor Muryn and Marta Sumyk and Mariya Hirna and Sofiya Garkot and Maksym Shamrai},
      year={2025},
      eprint={2507.16704},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2507.16704}, 
}
```

---

## 🌐 MacPaw Research

Learn more at [https://research.macpaw.com](https://research.macpaw.com)