Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 2,722 Bytes
a49fe61
64cc56f
a49fe61
 
 
 
 
 
 
 
64cc56f
a49fe61
64cc56f
 
a49fe61
 
 
 
 
64cc56f
 
 
 
 
 
 
 
 
 
 
a49fe61
64cc56f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28119f9
 
 
 
 
 
 
 
 
64cc56f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: apache-2.0
dataset_info:
  features:
  - name: image
    dtype: image
  - name: accessibility
    dtype: string
  splits:
  - name: train
    num_bytes: 653490753.125
    num_examples: 1127
  download_size: 618157948
  dataset_size: 653490753.125
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- object-detection
language:
- en
tags:
- accessibility
- macOS
- hierarchy
pretty_name: Screen2AX-Tree
size_categories:
- 1K<n<10K
---
# 📦 Screen2AX-Tree

Screen2AX-Tree is part of the **Screen2AX** dataset suite, a research-driven collection for advancing accessibility in macOS applications using computer vision and deep learning.

This dataset provides **hierarchical accessibility annotations** of macOS application screenshots, structured as serialized trees. It is designed for training models that reconstruct accessibility hierarchies from visual input.

---

## 🧠 Dataset Summary

Each sample in the dataset consists of:
- An application **screenshot** (`image`)
- A serialized **accessibility tree** (`accessibility`): A JSON-formatted string representing the UI structure, including roles, bounds, and child relationships.

**Task Category:**
- `object-detection` (structured / hierarchical)

**Language:**
- English (`en`)

---

## 📚 Usage

### Load with `datasets` library

```python
from datasets import load_dataset

dataset = load_dataset("MacPaw/Screen2AX-Tree")
```

### Example structure

```python
sample = dataset["train"][0]
print(sample.keys())
# dict_keys(['image', 'accessibility'])

print(sample["accessibility"])
# '{ "role": "AXWindow", "children": [ ... ] }'
```

You can parse the accessibility field as JSON to work with the structured hierarchy:

```python
import json

tree = json.loads(sample["accessibility"])
```

---

## 📜 License

This dataset is licensed under the **Apache 2.0 License**.

---

## 🔗 Related Projects

- [Screen2AX Main Project Page](https://github.com/MacPaw/Screen2AX)
- [Screen2AX HuggingFace Collection](https://huggingface.co/collections/MacPaw/screen2ax-687dfe564d50f163020378b8)

---

## ✍️ Citation

If you use this dataset, please cite the Screen2AX paper:

```bibtex
@misc{muryn2025screen2axvisionbasedapproachautomatic,
      title={Screen2AX: Vision-Based Approach for Automatic macOS Accessibility Generation}, 
      author={Viktor Muryn and Marta Sumyk and Mariya Hirna and Sofiya Garkot and Maksym Shamrai},
      year={2025},
      eprint={2507.16704},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2507.16704}, 
}
```

---

## 🌐 MacPaw Research

Learn more at [https://research.macpaw.com](https://research.macpaw.com)