File size: 3,486 Bytes
88305bd
 
 
 
 
 
5bf3409
88305bd
5bf3409
88305bd
 
 
 
79757ff
 
 
d92b686
 
 
79757ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d06d943
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: mit
language:
- en
configs:
  - config_name: raw
    data_files: "**/raw/*.csv"
  - config_name: fft
    data_files: "**/fft/*.csv"
tags:
- gestures
- classification
- robotics
---

# Real Time Gesture Recognition Dataset
This repository contains the dataset for the [Real-Time-Gesture-Control-System-for-Precision-Control](https://github.com/Incomprehensible/Real-Time-Gesture-Control-System-for-Precision-Control) project that focuses on the development of a real-time gesture control system using the [uMyo EMG sensors](https://hackaday.io/project/186038-umyo-wearable-emg-sensor-with-wetdry-electrodes).

## Description
The dataset is divided into two folders: `dynamic_gestures` and `static_gestures`. The first contains loosely-timed sessions of gesture recordings where the gesture is repeated several times between intervals of rest. The second contains a single recording of each gesture, where the gesture is held for a few seconds. The gestures are: `baseline`, `fist`, `up`, `down`, `peace`, and `lift`. New gesture recordings and more gestures will be uploaded soon.
Every subject has two types of recordings: the raw EMG data in the `raw` folder and the FFT data in the `fft` folder.
Each individual recording is a CSV file dedicated to a single gesture performed by a subject.

## Structure
```
dynamic_gestures
β”œβ”€β”€ session-DD_MM_YY
β”‚   β”œβ”€β”€ subject1
β”‚   β”‚   β”œβ”€β”€ fft
β”‚   β”‚   β”‚   β”œβ”€β”€ fft_subject1_baseline.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ fft_subject1_fist.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ fft_subject1_up.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ raw
β”‚   β”‚   β”‚   β”œβ”€β”€ subject1_baseline.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ subject1_fist.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ subject1_up.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ subject2
β”‚   └── ...
β”œβ”€β”€ session-DD_MM_YY
└── ...
static_gestures
β”œβ”€β”€ session-DD_MM_YY
β”‚   β”œβ”€β”€ subject1
β”‚   β”‚   β”œβ”€β”€ fft
β”‚   β”‚   β”‚   β”œβ”€β”€ fft_subject1_baseline.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ fft_subject1_fist.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ fft_subject1_up.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ raw
β”‚   β”‚   β”‚   β”œβ”€β”€ subject1_baseline.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ subject1_fist.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ subject1_up.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ subject2
β”‚   └── ...
β”œβ”€β”€ session-DD_MM_YY
└── ...
```

## Contents
## Raw EMG Data
The raw EMG data is a header-less CSV file with the columns containing 8 successive EMG readings from the corresponding sensor:
```
      [sensor 1]  [sensor 2]  [sensor 3]  [sensor 4]  [sensor 5]
[0]:  [8 readings][8 readings][8 readings][8 readings][8 readings]
[1]:  [8 readings][8 readings][8 readings][8 readings][8 readings]
[2]:  [8 readings][8 readings][8 readings][8 readings][8 readings]
[3]:  [8 readings][8 readings][8 readings][8 readings][8 readings]
...
```
Each row can be treated as a single 5-dimensional data unit in time.

## FFT EMG Data
The FFT EMG data is a header-less CSV file with the columns containing 4 FFT bins with ~143 Hz resolution from the corresponding sensor:
```
      [sensor 1] [sensor 2] [sensor 3] [sensor 4] [sensor 5]
[0]:  [4 bins]   [4 bins]   [4 bins]   [4 bins]   [4 bins]
[1]:  [4 bins]   [4 bins]   [4 bins]   [4 bins]   [4 bins]
[2]:  [4 bins]   [4 bins]   [4 bins]   [4 bins]   [4 bins]
[3]:  [4 bins]   [4 bins]   [4 bins]   [4 bins]   [4 bins]
...
```