|
|
|
|
|
""" |
|
Created on Mon Aug 7 14:20:34 2023 |
|
|
|
@author: mohamedazizbhouri |
|
""" |
|
|
|
import numpy as onp |
|
import time |
|
|
|
from matplotlib import pyplot as plt |
|
plt.close('all') |
|
|
|
plt.rcParams.update(plt.rcParamsDefault) |
|
plt.rc('font', family='serif') |
|
plt.rcParams.update({'font.size': 32, |
|
'lines.linewidth': 2, |
|
'axes.labelsize': 32, |
|
'axes.titlesize': 32, |
|
'xtick.labelsize': 32, |
|
'ytick.labelsize': 32, |
|
'legend.fontsize': 32, |
|
'axes.linewidth': 2, |
|
"pgf.texsystem": "pdflatex" |
|
}) |
|
|
|
dim_y = 48 |
|
dim_heat = 26 |
|
dim_moist = 22 |
|
n_remove = 4 |
|
ind_input = onp.concatenate( (onp.arange(26),n_remove+26+onp.arange(26-n_remove),onp.array([52,53,54,55])) ) |
|
dim_xH = ind_input.shape[0] |
|
dim_xL = ind_input.shape[0] |
|
|
|
ind_output_heat = onp.arange(26) |
|
ind_output_moist = n_remove+onp.arange(26-n_remove) |
|
|
|
mu_error_out = onp.concatenate((onp.zeros((1,dim_heat),dtype=onp.float32), |
|
onp.zeros((1,dim_moist),dtype=onp.float32)),axis=1) |
|
|
|
sigma_error_out = onp.concatenate((1/1004.6*onp.ones((1,dim_heat),dtype=onp.float32), |
|
1/2.26e6*onp.ones((1,dim_moist),dtype=onp.float32)),axis=1) |
|
|
|
is_reshape_single_pred = 1 |
|
|
|
is_MF = 0 |
|
is_LF = 0 |
|
is_SF = 1 |
|
|
|
if is_reshape_single_pred == 1: |
|
|
|
test_SPCAM =['2003_02_06','2003_02_12','2003_02_18','2003_02_24','2003_02_28', |
|
'2003_03_06','2003_03_12','2003_03_18','2003_03_24','2003_03_30','2003_03_31', |
|
'2003_04_06','2003_04_12','2003_04_18','2003_04_24','2003_04_30', |
|
'2003_05_06','2003_05_12','2003_05_18','2003_05_24','2003_05_30','2003_05_31', |
|
'2003_06_06','2003_06_12','2003_06_18','2003_06_24','2003_06_30', |
|
'2003_07_06','2003_07_12','2003_07_18','2003_07_24','2003_07_30','2003_07_31', |
|
'2003_08_06','2003_08_12','2003_08_18','2003_08_24','2003_08_30','2003_08_31', |
|
'2003_09_06','2003_09_12','2003_09_18','2003_09_24','2003_09_30', |
|
'2003_10_06','2003_10_12','2003_10_18','2003_10_24','2003_10_30','2003_10_31', |
|
'2003_11_06','2003_11_12','2003_11_18','2003_11_24','2003_11_30', |
|
'2003_12_06','2003_12_12','2003_12_18','2003_12_24','2003_12_30','2003_12_31', |
|
'2004_01_06','2004_01_12','2004_01_18','2004_01_24','2004_01_30','2004_01_31'] |
|
|
|
Npts_per_file = onp.load('data_SPCAM5_4K/Npts_per_file_test.npy') |
|
|
|
def reshape_loc_onp(pred, dim_y): |
|
pred_loc = pred[:Npts_per_file[0],:] |
|
pred = pred[Npts_per_file[0]:,:] |
|
nt_total = pred_loc.shape[0]//(lat*lon) |
|
pred_array = onp.reshape(pred_loc.T, (dim_y,nt_total,lat,lon)) |
|
|
|
for i in range(len(test_SPCAM)-1): |
|
print(i,len(test_SPCAM)-1) |
|
pred_loc = pred[:Npts_per_file[i+1],:] |
|
pred = pred[Npts_per_file[i+1]:,:] |
|
nt_total = pred_loc.shape[0]//(lat*lon) |
|
|
|
pred_array = onp.concatenate( (pred_array, onp.reshape(pred_loc.T, (dim_y,nt_total,lat,lon))),axis=1) |
|
return pred_array |
|
|
|
case_var = 'all' |
|
lat = 96 |
|
lon = 144 |
|
N_dt_day = 24 |
|
def daily_avg(test): |
|
test_daily = [] |
|
N_time_steps = test.shape[1] |
|
for i in range(test.shape[0]): |
|
test_daily.append( onp.mean( test[i,:,:,:].reshape( (N_time_steps//N_dt_day, N_dt_day, lat, lon) ), axis=1 ) ) |
|
return onp.array(test_daily) |
|
|
|
if is_MF == 1 or is_LF == 1: |
|
mu_SF_out = onp.concatenate((onp.load('norm/mu_y_heat_CAM5.npy')[None,ind_output_heat], |
|
onp.load('norm/mu_y_moist_CAM5.npy')[None,ind_output_moist]),axis=1) |
|
sigma_SF_out = onp.concatenate((onp.load('norm/sigma_y_heat_CAM5.npy')[None,ind_output_heat], |
|
onp.load('norm/sigma_y_moist_CAM5.npy')[None,ind_output_moist]),axis=1) |
|
|
|
if is_SF == 1: |
|
mu_SF_out = onp.concatenate((onp.load('norm/mu_y_heat_SPCAM5.npy')[None,ind_output_heat], |
|
onp.load('norm/mu_y_moist_SPCAM5.npy')[None,ind_output_moist]),axis=1) |
|
sigma_SF_out = onp.concatenate((onp.load('norm/sigma_y_heat_SPCAM5.npy')[None,ind_output_heat], |
|
onp.load('norm/sigma_y_moist_SPCAM5.npy')[None,ind_output_moist]),axis=1) |
|
|
|
tt = time.time() |
|
for i in range(32): |
|
ieff = i + 0 |
|
print(ieff,time.time()-tt) |
|
tt = time.time() |
|
if is_MF == 1: |
|
samples_test_H = onp.concatenate( (onp.load('MF_param/MF_param_'+str(ieff)+'/test_pred_1.npy')[0,:,:], |
|
onp.load('MF_param/MF_param_'+str(ieff)+'/test_pred_2.npy')[0,:,:]),axis=0) |
|
if is_SF == 1: |
|
samples_test_H = onp.concatenate( (onp.load('SF_param/SF_param_'+str(ieff)+'/test_pred_1.npy')[0,:,:], |
|
onp.load('SF_param/SF_param_'+str(ieff)+'/test_pred_1.npy')[0,:,:]),axis=0) |
|
if is_LF == 1: |
|
samples_test_H = onp.concatenate( (onp.load('MF_param/MF_param_'+str(ieff)+'/LF_test_pred_1.npy')[0,:,:], |
|
onp.load('MF_param/MF_param_'+str(ieff)+'/LF_test_pred_2.npy')[0,:,:]),axis=0) |
|
samples_test_H = mu_SF_out + sigma_SF_out * samples_test_H |
|
samples_test_H = (samples_test_H - mu_error_out) / sigma_error_out |
|
|
|
samples_test_H = reshape_loc_onp(samples_test_H, dim_y) |
|
samples_test_H = daily_avg(samples_test_H) |
|
samples_test_H = samples_test_H.reshape((dim_y, samples_test_H.shape[1]*lat*lon)) |
|
samples_test_H = samples_test_H.T |
|
print(samples_test_H.shape) |
|
|
|
if is_MF == 1: |
|
onp.save('MF_param/MF_param_'+str(ieff)+'/test_pred_reshaped.npy', samples_test_H) |
|
if is_SF == 1: |
|
onp.save('SF_param/SF_param_'+str(ieff)+'/test_pred_reshaped.npy', samples_test_H) |
|
if is_LF == 1: |
|
onp.save('MF_param/MF_param_'+str(ieff)+'/LF_test_pred_reshaped.npy', samples_test_H) |
|
|
|
test = onp.load('data_SPCAM5_4K/all_outputs_reshaped.npy') |
|
test = daily_avg(test) |
|
test = test.reshape((dim_y, test.shape[1]*lat*lon)) |
|
test = test.T |
|
test = (test - mu_error_out) / sigma_error_out |
|
onp.save('data_SPCAM5_4K/all_outputs_reshaped_temp_avg.npy', test) |
|
|
|
else: |
|
|
|
test = onp.load('data_SPCAM5_4K/all_outputs_reshaped_temp_avg.npy') |
|
test = onp.array(test,dtype=onp.float64) |
|
|
|
def crps(outputs, target, weights=None): |
|
""" |
|
Computes the Continuous Ranked Probability Score (CRPS) between the target and the ecdf for each output variable and then takes a weighted average over them. |
|
|
|
Input |
|
----- |
|
outputs - float[B, F, S] samples from the model |
|
target - float[B, F] ground truth target |
|
""" |
|
tt = time.time() |
|
n = outputs.shape[2] |
|
y_hats = onp.sort(outputs, axis=-1) |
|
print('sort',time.time()-tt) |
|
|
|
tt = time.time() |
|
|
|
mae = onp.abs(target[..., None] - y_hats).mean(axis=(0, -1)) |
|
print('abs',time.time()-tt) |
|
|
|
tt = time.time() |
|
|
|
diff = y_hats[..., 1:] - y_hats[..., :-1] |
|
print('abs2',time.time()-tt) |
|
|
|
tt = time.time() |
|
count = onp.arange(1, n) * onp.arange(n - 1, 0, -1) |
|
print('arange',time.time()-tt) |
|
|
|
tt = time.time() |
|
crps = mae - (diff * count).sum(axis=-1).mean(axis=0) / (2 * n * (n-1)) |
|
print('crps final',time.time()-tt) |
|
return crps |
|
|
|
if is_MF == 1: |
|
ieff = 0 |
|
pred_daily = onp.load('MF_param/MF_param_'+str(ieff)+'/test_pred_reshaped.npy')[:,:,None] |
|
for i in range(31): |
|
print(i) |
|
ieff = i+1 |
|
pred_daily = onp.concatenate( (pred_daily,onp.load('MF_param/MF_param_'+str(ieff)+'/test_pred_reshaped.npy')[:,:,None]),axis=2) |
|
pred_daily = onp.array(pred_daily,dtype=onp.float64) |
|
|
|
crps_f = crps(pred_daily, test) |
|
onp.save('glob_errors/crps_rpn_MF.npy',crps_f) |
|
|
|
if is_SF == 1: |
|
ieff = 0 |
|
pred_daily = onp.load('SF_param/SF_param_'+str(ieff)+'/test_pred_reshaped.npy')[:,:,None] |
|
for i in range(31): |
|
print(i) |
|
ieff = i+1 |
|
pred_daily = onp.concatenate( (pred_daily,onp.load('SF_param/SF_param_'+str(ieff)+'/test_pred_reshaped.npy')[:,:,None]),axis=2) |
|
pred_daily = onp.array(pred_daily,dtype=onp.float64) |
|
|
|
crps_f = crps(pred_daily, test) |
|
print(crps_f.shape) |
|
print(onp.array(crps_f).shape) |
|
onp.save('glob_errors/crps_rpn_SF.npy',crps_f) |
|
|
|
if is_LF == 1: |
|
ieff = 0 |
|
pred_daily = onp.load('MF_param/MF_param_'+str(ieff)+'/LF_test_pred_reshaped.npy')[:,:,None] |
|
for i in range(31): |
|
print(i) |
|
ieff = i+1 |
|
pred_daily = onp.concatenate( (pred_daily,onp.load('MF_param/MF_param_'+str(ieff)+'/LF_test_pred_reshaped.npy')[:,:,None]),axis=2) |
|
pred_daily = onp.array(pred_daily,dtype=onp.float64) |
|
|
|
crps_f = crps(pred_daily, test) |
|
print(crps_f.shape) |
|
print(onp.array(crps_f).shape) |
|
onp.save('glob_errors/crps_rpn_LF.npy',crps_f) |
|
|
|
|