import os import tarfile import datasets import pandas as pd from typing import Dict, List import io from tqdm import tqdm import csv import os # TODO: Optionally update the description for your specific dataset _DESCRIPTION = """ This dataset consists of about 400 hours of audio extracted from various Filimo videos in the Persian language. Note: This dataset contains raw, unvalidated transcriptions. Users are advised to: 1. Perform their own quality assessment 2. Create their own train/validation/test splits based on their specific needs 3. Validate a subset of the data if needed for their use case """ # TODO: Update with your repository information or desired citation method _CITATION = """ Use this repo info/link for citation: https://huggingface.co/datasets/msghol/filimo-farsi """ _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" # Or your chosen license # TODO: Update HOMEPAGE to your dataset's Hugging Face page _HOMEPAGE = "https://huggingface.co/datasets/msghol/filimo-farsi" # TODO: Update BASE_URL to point to your dataset repository _BASE_URL = "https://huggingface.co/datasets/msghol/filimo-farsi/resolve/main/" _AUDIO_URL = _BASE_URL + "data/unvalidated_{shard_idx:03d}.tar" # This will now use your updated _BASE_URL # TODO: Consider renaming the class for clarity, e.g., FilimoFarsiASR class FilimoASRDataset(datasets.GeneratorBasedBuilder): # Or class FilimoFarsiASR(datasets.GeneratorBasedBuilder): DEFAULT_WRITER_BATCH_SIZE = 1000 VERSION = datasets.Version("1.0.0") # Update if desired def _info(self): return datasets.DatasetInfo( features=datasets.Features({ "audio": datasets.Audio(sampling_rate=16_000), # Adjust sampling rate if your audio is different "text": datasets.Value("string"), "file_name": datasets.Value("string"), }), supervised_keys=None, license=_LICENSE, citation=_CITATION, version=self.VERSION, description=_DESCRIPTION, homepage=_HOMEPAGE, # Added homepage here ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO: Adjust the range if you have a different number of tar shards # For example, if you have 10 shards (unvalidated_001.tar to unvalidated_010.tar): # archive_paths = [_AUDIO_URL.format(shard_idx=i) for i in range(1, 11)] archive_paths = [_AUDIO_URL.format(shard_idx=i) for i in range(1, 34)] # Default is 33 shards local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} return [ datasets.SplitGenerator( name="unvalidated", # You can rename this split if needed, e.g., datasets.Split.TRAIN gen_kwargs={ "local_extracted_archive_paths": local_extracted_archive_paths, "archives": [dl_manager.iter_archive(path) for path in archive_paths], "meta_path": _BASE_URL + "unvalidated.csv", # This will now use your updated _BASE_URL }, ), ] def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): """Yields examples.""" data_fields = list(self._info().features.keys()) metadata = {} # For remote CSV file, dl_manager.download_and_extract may be more robust # However, Hugging Face often handles direct HTTPS links for text files well. # If issues arise, consider: downloaded_meta_path = dl_manager.download_and_extract(meta_path) downloaded_meta_path = dl_manager.download(meta_path) # Download the csv file with open(downloaded_meta_path, encoding="utf-8") as f: # Open the downloaded file reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) for row in tqdm(reader, desc="Reading metadata..."): if not row["file_name"].endswith(".mp3"): row["file_name"] += ".mp3" if "sentence" in row: row['text'] = row['sentence'] # del row['sentence'] # Keep sentence column if you want it in final dataset else: # Ensure 'text' field exists if 'sentence' is not present row['text'] = row.get('text', '') # Ensure all defined features have at least a default value for field in data_fields: if field not in row: row[field] = "" metadata[row["file_name"]] = row for i, audio_archive in enumerate(archives): for path, file_obj in audio_archive: # Changed 'file' to 'file_obj' to avoid conflict with os.path.file _, filename = os.path.split(path) if filename in metadata: result = dict(metadata[filename]) # set the audio feature and the path to the extracted file # If streaming, path is the original path in archive, file_obj is a file-like object # If not streaming (local_extracted_archive_paths is populated), path needs to be joined if local_extracted_archive_paths: full_path_to_audio = os.path.join(local_extracted_archive_paths[i], path) result["audio"] = {"path": full_path_to_audio, "bytes": file_obj.read()} result["file_name"] = full_path_to_audio # Or keep original filename: filename else: # Streaming case result["audio"] = {"path": path, "bytes": file_obj.read()} # path is relative path in archive result["file_name"] = filename # Or path if you prefer relative path from archive root yield path, result # Path can be used as a unique key # else: # print(f"Warning: File {filename} from archive not found in metadata.") # Optional: for debugging