#!/usr/bin/env python3 import os import sys import argparse import json import datetime import numpy as np import soundfile as sf from mir_eval.separation import bss_eval_sources def verify_wav(path): """Check file exists, not empty, has valid extension, and can be read by soundfile.""" if not os.path.isfile(path): return False, f'File does not exist: {path}' if os.path.getsize(path) == 0: return False, f'File is empty: {path}' if not path.lower().endswith('.wav'): return False, f'Unsupported format (requires .wav): {path}' try: data, sr = sf.read(path, dtype='float32') if data.size == 0: return False, f'Read empty data: {path}' except Exception as e: return False, f'Unable to read audio: {path} ({e})' return True, '' def calc_snr(clean, est): """Calculate SNR = 10 log10( sum(clean^2) / sum((clean-est)^2) )""" noise = clean - est power_signal = np.sum(clean ** 2) power_noise = np.sum(noise ** 2) + 1e-8 return 10 * np.log10(power_signal / power_noise) def main(): p = argparse.ArgumentParser(description='Automated speech separation evaluation script') p.add_argument('--groundtruth', required=True, help='Groundtruth directory containing input_original.wav, infer_boy.wav, infer_girl.wav') p.add_argument('--output', required=True, help='Output directory containing output_01.wav, output_02.wav') p.add_argument('--snr_threshold', type=float, default=12.0, help='SNR threshold (dB)') p.add_argument('--sdr_threshold', type=float, default=8.0, help='SDR threshold (dB)') p.add_argument('--result', required=True, help='Result JSONL path (append mode)') args = p.parse_args() # Locate required files in groundtruth directory mixed_wav = os.path.join(args.groundtruth, 'input_original.wav') clean_wav_1 = os.path.join(args.groundtruth, 'infer_boy.wav') clean_wav_2 = os.path.join(args.groundtruth, 'infer_girl.wav') process = True comments = [] # 1. Verify all input files for tag, path in [ ('mixed', mixed_wav), ('clean1', clean_wav_1), ('clean2', clean_wav_2) ]: ok, msg = verify_wav(path) if not ok: process = False comments.append(f'[{tag}] {msg}') # 2. Verify output directory and files if not os.path.isdir(args.output): process = False comments.append(f'estimated_dir is not a directory: {args.output}') else: est1 = os.path.join(args.output, 'output_01.wav') est2 = os.path.join(args.output, 'output_02.wav') for tag, path in [('est1', est1), ('est2', est2)]: ok, msg = verify_wav(path) if not ok: process = False comments.append(f'[{tag}] {msg}') snr_vals = [] sdr_vals = [] # 3. Calculate metrics (only if process==True) if process: try: # Read audio files mix, sr0 = sf.read(mixed_wav, dtype='float32') c1, sr1 = sf.read(clean_wav_1, dtype='float32') c2, sr2 = sf.read(clean_wav_2, dtype='float32') e1, sr3 = sf.read(est1, dtype='float32') e2, sr4 = sf.read(est2, dtype='float32') # Sample rate consistency check (doesn't affect process) rates = { 'mixed': sr0, 'clean1': sr1, 'clean2': sr2, 'est1': sr3, 'est2': sr4 } unique_rates = set(rates.values()) if len(unique_rates) != 1: comments.append("Sample rates differ: " + ", ".join(f"{k}={v}" for k, v in rates.items())) # Mono conversion function def mono(x): return np.mean(x, axis=1) if x.ndim > 1 else x mix_m = mono(mix) c1_m = mono(c1) c2_m = mono(c2) e1_m = mono(e1) e2_m = mono(e2) # Truncate to minimum length minlen = min(len(c1_m), len(c2_m), len(e1_m), len(e2_m)) c1_m = c1_m[:minlen] c2_m = c2_m[:minlen] e1_m = e1_m[:minlen] e2_m = e2_m[:minlen] # Construct reference and estimated matrices ref = np.vstack([c1_m, c2_m]) ests = np.vstack([e1_m, e2_m]) # Calculate SDR (automatic matching) sdr, sir, sar, perm = bss_eval_sources(ref, ests) sdr_vals = [float(v) for v in sdr] # Calculate SNR based on permutation snr_list = [] for i in range(2): ref_sig = ref[i] est_sig = ests[perm[i]] snr_list.append(float(calc_snr(ref_sig, est_sig))) snr_vals = snr_list # Record comments for i, v in enumerate(snr_vals, start=1): comments.append(f'SNR{i}={v:.2f} dB (threshold {args.snr_threshold})') for i, v in enumerate(sdr_vals, start=1): comments.append(f'SDR{i}={v:.2f} dB (threshold {args.sdr_threshold})') except Exception as e: process = False comments.append(f'Metric calculation error: {e}') # 4. Determine pass/fail result_flag = ( process and all(v >= args.snr_threshold for v in snr_vals) and all(v >= args.sdr_threshold for v in sdr_vals) ) # 5. Write JSONL entry = { "Process": process, "Result": result_flag, "TimePoint": datetime.datetime.now().isoformat(sep='T', timespec='seconds'), "comments": "; ".join(comments) } print("; ".join(comments)) os.makedirs(os.path.dirname(args.result) or '.', exist_ok=True) with open(args.result, 'a', encoding='utf-8') as f: f.write(json.dumps(entry, ensure_ascii=False, default=str) + "\n") # 6. Output final status (replaces original exit logic) print("Test complete - Status: " + ("PASS" if result_flag else "FAIL")) if __name__ == "__main__": main()