Rob Kopel
commited on
Commit
·
4c1155b
1
Parent(s):
574738a
added dataset loader
Browse files
open_australian_legal_embeddings_openai.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Rob Kopel.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
"""An extension of Umar Butler's open-australian-legal-corpus dataset to include 1024 long embeddings from OpenAI's text-embedding-3-large model"""
|
| 15 |
+
|
| 16 |
+
import json
|
| 17 |
+
import datasets
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
_CITATION = """\
|
| 21 |
+
@misc{open-australian-legal-embeddings-openai,
|
| 22 |
+
title = {Open Australian Legal Embeddings OpenAI},
|
| 23 |
+
author={Rob Kopel},
|
| 24 |
+
year={2024},
|
| 25 |
+
version={1.0}
|
| 26 |
+
url={https://huggingface.co/datasets/R0bk/open-australian-legal-embeddings-openai}
|
| 27 |
+
}
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
_DESCRIPTION = """\
|
| 31 |
+
An extension of Umar Butler's open-australian-legal-corpus dataset to include 1024 long embeddings from OpenAI's text-embedding-3-large model.
|
| 32 |
+
If you wish to explore or deploy in your environment it can be used with open-australian-legal-explorer on github.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
_HOMEPAGE = "https://huggingface.co/datasets/R0bk/open-australian-legal-embeddings-openai"
|
| 36 |
+
|
| 37 |
+
_LICENSE = """
|
| 38 |
+
Please see the open-australian-legal-corpus licence [Open Australian Legal Corpus](https://huggingface.co/datasets/umarbutler/open-australian-legal-corpus/blob/main/LICENCE.md).
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
_URLS = {
|
| 42 |
+
'metadatas' : 'data/metadatas.jsonl',
|
| 43 |
+
'texts' : 'data/texts.jsonl',
|
| 44 |
+
'embeddings' : 'data/embeddings.jsonl',
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
class OpenAustralianLegalEmbeddingsOpenai(datasets.GeneratorBasedBuilder):
|
| 48 |
+
"""An extension of Umar Butler's open-australian-legal-corpus dataset to include 1024 long embeddings from OpenAI's text-embedding-3-large model"""
|
| 49 |
+
|
| 50 |
+
VERSION = datasets.Version("1.0.0")
|
| 51 |
+
|
| 52 |
+
DEFAULT_CONFIG_NAME = "train"
|
| 53 |
+
|
| 54 |
+
def _info(self):
|
| 55 |
+
return datasets.DatasetInfo(
|
| 56 |
+
description=_DESCRIPTION,
|
| 57 |
+
features=datasets.Features(
|
| 58 |
+
{
|
| 59 |
+
'version_id' : datasets.Value('string'),
|
| 60 |
+
'type' : datasets.Value('string'),
|
| 61 |
+
'jurisdiction' : datasets.Value('string'),
|
| 62 |
+
'source' : datasets.Value('string'),
|
| 63 |
+
'citation' : datasets.Value('string'),
|
| 64 |
+
'url' : datasets.Value('string'),
|
| 65 |
+
'is_last_chunk' : datasets.Value('bool'),
|
| 66 |
+
'chunk_index' : datasets.Value('int'),
|
| 67 |
+
'text' : datasets.Value('string'),
|
| 68 |
+
'embedding' : [datasets.Value('float32')]
|
| 69 |
+
}
|
| 70 |
+
),
|
| 71 |
+
homepage=_HOMEPAGE,
|
| 72 |
+
license=_LICENSE,
|
| 73 |
+
citation=_CITATION,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
def _split_generators(self, dl_manager):
|
| 77 |
+
dl_files = dl_manager.download_and_extract(_URLS)
|
| 78 |
+
return [
|
| 79 |
+
datasets.SplitGenerator(
|
| 80 |
+
name=datasets.Split.TRAIN,
|
| 81 |
+
gen_kwargs={
|
| 82 |
+
'metadatas_path' : dl_files['metadatas'],
|
| 83 |
+
'texts_path' : dl_files['texts'],
|
| 84 |
+
'embeddings_path' : dl_files['embeddings'],
|
| 85 |
+
}
|
| 86 |
+
)
|
| 87 |
+
]
|
| 88 |
+
|
| 89 |
+
def _generate_examples(self, embed_path, metas_path, texts_path):
|
| 90 |
+
with open(embed_path, 'r') as embeds, \
|
| 91 |
+
open(metas_path, 'r') as metas, \
|
| 92 |
+
open(texts_path, 'r') as texts:
|
| 93 |
+
|
| 94 |
+
for key, (embed, meta, text) in enumerate(zip(embeds, metas, texts)):
|
| 95 |
+
yield key, {
|
| 96 |
+
**json.loads(meta),
|
| 97 |
+
'text': json.loads(text),
|
| 98 |
+
'embedding': json.loads(embed)
|
| 99 |
+
}
|