from collections.abc import Iterable from pathlib import Path from typing import Any from xml.etree import ElementTree as ET import datasets import numpy as np from datasets import Dataset from datasets.splits import NamedSplit from PIL import Image, ImageDraw from tqdm import tqdm # https://drive.google.com/file/d/1xYyQ31CHFRnvTCTuuHdconlJCMk2SK7Z/view?usp=sharing patient_data = { "TCGA-A7-A13E-01Z-00-DX1": "Breast", "TCGA-A7-A13F-01Z-00-DX1": "Breast", "TCGA-AR-A1AK-01Z-00-DX1": "Breast", "TCGA-AR-A1AS-01Z-00-DX1": "Breast", "TCGA-E2-A1B5-01Z-00-DX1": "Breast", "TCGA-E2-A14V-01Z-00-DX1": "Breast", "TCGA-B0-5711-01Z-00-DX1": "Kidney", "TCGA-HE-7128-01Z-00-DX1": "Kidney", "TCGA-HE-7129-01Z-00-DX1": "Kidney", "TCGA-HE-7130-01Z-00-DX1": "Kidney", "TCGA-B0-5710-01Z-00-DX1": "Kidney", "TCGA-B0-5698-01Z-00-DX1": "Kidney", "TCGA-18-5592-01Z-00-DX1": "Liver", "TCGA-38-6178-01Z-00-DX1": "Liver", "TCGA-49-4488-01Z-00-DX1": "Liver", "TCGA-50-5931-01Z-00-DX1": "Liver", "TCGA-21-5784-01Z-00-DX1": "Liver", "TCGA-21-5786-01Z-00-DX1": "Liver", "TCGA-G9-6336-01Z-00-DX1": "Prostate", "TCGA-G9-6348-01Z-00-DX1": "Prostate", "TCGA-G9-6356-01Z-00-DX1": "Prostate", "TCGA-G9-6363-01Z-00-DX1": "Prostate", "TCGA-CH-5767-01Z-00-DX1": "Prostate", "TCGA-G9-6362-01Z-00-DX1": "Prostate", "TCGA-DK-A2I6-01A-01-TS1": "Bladder", "TCGA-G2-A2EK-01A-02-TSB": "Bladder", "TCGA-AY-A8YK-01A-01-TS1": "Colon", "TCGA-NH-A8F7-01A-01-TS1": "Colon", "TCGA-KB-A93J-01A-01-TS1": "Stomach", "TCGA-RD-A8N9-01A-01-TS1": "Stomach", } def get_masks(path: Path, mask_size: tuple[int, int]) -> list[Image.Image]: masks = [] for region in ET.parse(path).getroot().findall("Annotation/Regions/Region"): polygon = [ (float(vertex.attrib["X"]), float(vertex.attrib["Y"])) for vertex in region.findall("Vertices/Vertex") ] if len(polygon) < 2: continue mask = Image.new("1", size=mask_size) canvas = ImageDraw.Draw(mask) canvas.polygon(xy=polygon, outline=True, fill=True) masks.append(mask) return masks def process_train(src: str) -> Iterable[dict[str, Any]]: files = list(Path(src).rglob("*.xml")) for file in tqdm(files): masks = get_masks(file, mask_size=(1000, 1000)) tissue_path = Path(str(file).replace("Annotations", "Tissue Images")) image = np.asarray(Image.open(tissue_path.with_suffix(".tif"))) yield { "patient": file.stem, "image": Image.fromarray(image.astype(np.uint8)), "instances": masks, "tissue": patient_data.get(file.stem, "Unknown"), } def process_test(src: str) -> Iterable[dict[str, Any]]: files = list(Path(src).rglob("*.xml")) for file in tqdm(files): masks = get_masks(file, mask_size=(1000, 1000)) image = np.asarray(Image.open(file.with_suffix(".tif"))) yield { "patient": file.stem, "image": Image.fromarray(image.astype(np.uint8)), "instances": masks, "tissue": patient_data.get(file.stem, "Unknown"), } features = datasets.Features( { "patient": datasets.Value("string"), "image": datasets.Image(mode="RGB"), "instances": datasets.Sequence(datasets.Image(mode="1")), "tissue": datasets.ClassLabel( names=[ "Unknown", "Breast", "Kidney", "Liver", "Prostate", "Bladder", "Colon", "Stomach", ] ), } ) if __name__ == "__main__": train = Dataset.from_generator( process_train, gen_kwargs={"src": "data/raw/MoNuSeg/MoNuSeg 2018 Training Data/Annotations"}, features=features, split=NamedSplit("train"), keep_in_memory=True, ) train.push_to_hub("RationAI/MoNuSeg") test = Dataset.from_generator( process_test, gen_kwargs={"src": "data/raw/MoNuSeg/MoNuSegTestData"}, features=features, split=NamedSplit("test"), keep_in_memory=True, ) test.push_to_hub("RationAI/MoNuSeg")