Datasets:
ArXiv:
License:
package exam; | |
import java.util.Deque; | |
import java.util.LinkedList; | |
import java.util.Stack; | |
import java.util.Queue; | |
public class Graphs{ | |
public static class Unigraph{ | |
private final int V; | |
private int E; | |
private LinkedList<Integer>[] adj; | |
Unigraph(int v){ | |
V = v; | |
adj = (LinkedList<Integer>[]) new LinkedList[v]; | |
for(int i = 0; i< V; i++) adj[i] = new LinkedList<Integer>(); | |
} | |
public int V(){return V;} | |
public int E(){return E;} | |
public void addEdge(int v, int w){ | |
adj[v].add(w); | |
adj[w].add(v); | |
E++; | |
} | |
Iterable<Integer> adj(int v){ | |
return adj[v]; | |
} | |
} | |
public static class Digraph{ | |
private final int V; | |
private int E; | |
private LinkedList<Integer>[] adj; | |
Digraph(int v){ | |
V = v; | |
adj = (LinkedList<Integer>[]) new LinkedList[v]; | |
for(int i = 0; i< V; i++) adj[i] = new LinkedList<Integer>(); | |
} | |
public int V(){return V;} | |
public int E(){return E;} | |
public void addEdge(int v, int w){ | |
adj[v].add(w); | |
E++; | |
} | |
Iterable<Integer> adj(int v){ | |
return adj[v]; | |
} | |
public Digraph reverse(){ | |
Digraph r = new Digraph(V); | |
for (int v = 0; v <V; v++){ | |
for(int w: adj(v)){ | |
r.addEdge(w, v); | |
} | |
} | |
return r; | |
} | |
} | |
public static class Edge implements Comparable<Edge>{ | |
private final int v; | |
private final int w; | |
private final double weight; | |
Edge(int v, int w, double weight){ | |
this.v = v; | |
this.w = w; | |
this.weight = weight; | |
} | |
double weight(){return weight;} | |
int either(){return v;} | |
int other(int v){ | |
if (this.v == v){ | |
return w; | |
} | |
else if (this.w == v) { | |
return this.v; | |
} | |
else{ | |
throw new IllegalArgumentException(); | |
} | |
} | |
public int compareTo(Edge that) { | |
if (this.weight < that.weight) return -1; | |
else if (this.weight > that.weight) return 1; | |
else return 0; | |
} | |
} | |
public static class WeightedUnigraph{ | |
private final int V; | |
private int E; | |
private LinkedList<Edge>[] adj; | |
WeightedUnigraph(int v){ | |
V = v; | |
adj = (LinkedList<Edge>[]) new LinkedList[v]; | |
for(int i = 0; i< V; i++) adj[i] = new LinkedList<Edge>(); | |
} | |
public int V(){return V;} | |
public int E(){return E;} | |
public void addEdge(Edge e){ | |
int v = e.either(); | |
int w = e.other(v); | |
adj[v].add(e); | |
adj[w].add(e); | |
E++; | |
} | |
public Iterable<Edge> adj(int v){ | |
return adj[v]; | |
} | |
public Iterable<Edge> edges(){ | |
LinkedList<Edge> ll = new LinkedList<Edge>(); | |
for(int v=0; v<V; v++){ | |
for(Edge e: adj[v]){ | |
if(e.other(v)>v){ | |
ll.add(e); | |
} | |
} | |
} | |
return ll; | |
} | |
} | |
public static class Diedge{ | |
private final int v; | |
private final int w; | |
private final long weight; | |
Diedge(int v, int w, long weight){ | |
this.v = v; | |
this.w = w; | |
this.weight = weight; | |
} | |
long weight(){return weight;} | |
int from(){return v;} | |
int to(){return w;} | |
} | |
public static class WeightedDigraph{ | |
private final int V; | |
private int E; | |
private LinkedList<Diedge>[] adj; | |
WeightedDigraph(int v){ | |
V = v; | |
adj = (LinkedList<Diedge>[]) new LinkedList[v]; | |
for(int i = 0; i< V; i++) adj[i] = new LinkedList<Diedge>(); | |
} | |
public int V(){return V;} | |
public int E(){return E;} | |
public void addEdge(Diedge e){ | |
adj[e.from()].add(e); | |
E++; | |
} | |
public Iterable<Diedge> adj(int v){ | |
return adj[v]; | |
} | |
public Iterable<Diedge> edges(){ | |
LinkedList<Diedge> ll = new LinkedList<Diedge>(); | |
for(int v=0; v<V; v++){ | |
for(Diedge e: adj[v]){ | |
ll.add(e); | |
} | |
} | |
return ll; | |
} | |
} | |
public static class DepthFirstPaths{ | |
private boolean[] marked; | |
private int[] edgeTo; | |
private final int s; | |
public DepthFirstPaths(Unigraph g, int s){ | |
marked = new boolean[g.V()]; | |
edgeTo = new int[g.V()]; | |
this.s = s; | |
dfs(g, s); | |
} | |
private void dfs(Unigraph g, int v){ | |
marked[v] = true; | |
for (int w: g.adj(v)){ | |
if(!marked[w]){ | |
edgeTo[w]=v; | |
dfs(g, w); | |
} | |
} | |
} | |
public DepthFirstPaths(Digraph g, int s){ | |
marked = new boolean[g.V()]; | |
edgeTo = new int[g.V()]; | |
this.s = s; | |
dfs(g, s); | |
} | |
private void dfs(Digraph g, int v){ | |
marked[v] = true; | |
for (int w: g.adj(v)){ | |
if(!marked[w]){ | |
edgeTo[w]=v; | |
dfs(g, w); | |
} | |
} | |
} | |
public DepthFirstPaths(Digraph g, int s, int t){ | |
marked = new boolean[g.V()]; | |
edgeTo = new int[g.V()]; | |
this.s = s; | |
dfs(g, s, t); | |
} | |
private void dfs(Digraph g, int v, int t){ | |
marked[v] = true; | |
for (int w: g.adj(v)){ | |
if(!marked[w]){ | |
edgeTo[w]=v; | |
if ( w!=t ) dfs(g, w); | |
} | |
} | |
} | |
public boolean hasPathTo(int v){return marked[v];} | |
public Iterable<Integer> reachable(){ | |
LinkedList<Integer> r = new LinkedList<>(); | |
for(int i=0; i<marked.length; i++) if (marked[i]) r.add(i); | |
return r; | |
} | |
public boolean[] marked(){ | |
return marked; | |
} | |
public Iterable<Integer> pathTo(int v){ | |
if(!hasPathTo(v)) return null; | |
LinkedList<Integer> path = new LinkedList<>(); | |
for(int x = v; x != s; x = edgeTo[x]) path.push(x); | |
path.push(s); | |
return path; | |
} | |
} | |
public static class ShortestPathDijkstra{ | |
private Diedge[] edgeTo; | |
private long[] distTo; | |
private IndexMinPQ<Long> pq; | |
public ShortestPathDijkstra(WeightedDigraph g, int s){ | |
edgeTo = new Diedge[g.V()]; | |
distTo = new long[g.V()]; | |
pq = new IndexMinPQ<Long>(g.V()); | |
for(int v = 0; v < g.V(); v++) distTo[v] = Long.MAX_VALUE; | |
distTo[s] = 0; | |
pq.add(s, 0L); | |
while(!pq.isEmpty()) relax(g, pq.poll()); | |
} | |
private void relax( WeightedDigraph g, int v){ | |
for (Diedge e : g.adj(v)){ | |
int w = e.to(); | |
if(distTo[w] > distTo[v] + e.weight()){ | |
distTo[w] = distTo[v] + e.weight(); | |
edgeTo[w] = e; | |
if (pq.contains(w)) pq.changeKey(w, distTo[w]); | |
else pq.add(w, distTo[w]); | |
} | |
} | |
} | |
public ShortestPathDijkstra(WeightedDigraph g, int s, int t){ | |
edgeTo = new Diedge[g.V()]; | |
distTo = new long[g.V()]; | |
pq = new IndexMinPQ<Long>(g.V()); | |
for(int v = 0; v < g.V(); v++) distTo[v] = Long.MAX_VALUE; | |
distTo[s] = 0; | |
pq.add(s, 0L); | |
while(!pq.isEmpty()) relax(g, pq.poll(), t); | |
} | |
private void relax( WeightedDigraph g, int v, int t){ | |
for (Diedge e : g.adj(v)){ | |
int w = e.to(); | |
if(distTo[v] + e.weight() > distTo[t]) continue; | |
if(distTo[w] > distTo[v] + e.weight()){ | |
distTo[w] = distTo[v] + e.weight(); | |
edgeTo[w] = e; | |
if (pq.contains(w)) pq.changeKey(w, distTo[w]); | |
else if(w != t) pq.add(w, distTo[w]); | |
} | |
} | |
} | |
public long distTo(int v){ return distTo[v]; } | |
public boolean hasPathTo(int v){ return distTo(v) < Long.MAX_VALUE; } | |
} | |
public static class DepthFirstOrder{ | |
private boolean[] marked; | |
Deque<Integer> pre; | |
Deque<Integer> post; | |
Deque<Integer> reversePost; | |
private void initialize(int v){ | |
pre = new LinkedList<Integer>(); | |
post = new LinkedList<Integer>(); | |
reversePost = new LinkedList<Integer>(); | |
marked = new boolean[v]; | |
} | |
public DepthFirstOrder(Digraph g){ | |
initialize(g.V()); | |
for (int v = 0; v < g.V(); v++) if (!marked[v]) dfs(g, v); | |
} | |
public DepthFirstOrder(Digraph g, Iterable<Integer> s){ | |
initialize(g.V()); | |
for (int v: s) if (!marked[v]) dfs(g, v); | |
} | |
public DepthFirstOrder(Digraph g, int s){ | |
initialize(g.V()); | |
dfs(g, s); | |
} | |
public DepthFirstOrder(Digraph g, boolean[] reachable){ | |
initialize(g.V()); | |
for (int v = 0; v < g.V(); v++) if (!marked[v] && reachable[v]) dfs(g, v); | |
} | |
private void dfs(Digraph g, int v){ | |
pre.addFirst(v); | |
marked[v] = true; | |
for(int w: g.adj(v)) if (!marked[w]) dfs(g, w); | |
post.addFirst(v); | |
reversePost.addLast(v); | |
} | |
public Iterable<Integer> preorder(){ return pre; } | |
public Iterable<Integer> postorder(){ return post; } | |
public Iterable<Integer> reversePostorder(){ return reversePost; } | |
} | |
public class DirectedCycle{ | |
private boolean[] marked; | |
private int[] edgeTo; | |
private Stack<Integer> cycle; | |
private boolean[] onStack; | |
private void initialize(int v){ | |
onStack = new boolean[v]; | |
edgeTo = new int[v]; | |
marked = new boolean[v]; | |
} | |
public DirectedCycle(Digraph g){ | |
initialize(g.V()); | |
for(int v = 0; v < g.V(); v++) if (!marked[v]) dfs(g, v); | |
} | |
private void dfs(Digraph g, int v){ | |
onStack[v] = true; | |
marked[v] = true; | |
for (int w: g.adj(v)){ | |
if (this.hasCycle()) return; | |
else if(!marked[w]){ | |
edgeTo[w] = v; | |
dfs(g, w); | |
} | |
else if(onStack[w]){ | |
cycle = new Stack<Integer>(); | |
for(int x = v; x != w; x = edgeTo[x]) cycle.push(x); | |
cycle.push(w); | |
cycle.push(v); | |
} | |
} | |
onStack[v] = false; | |
} | |
public boolean hasCycle(){ | |
return cycle != null; | |
} | |
} | |
public class TopologicalSort{ | |
private Iterable<Integer> order; | |
public TopologicalSort(Digraph g){ | |
DirectedCycle cyclefinder = new DirectedCycle(g); | |
if(!cyclefinder.hasCycle()){ | |
DepthFirstOrder dfs = new DepthFirstOrder(g); | |
order = dfs.reversePostorder(); | |
} | |
} | |
public Iterable<Integer> order(){return order;} | |
public boolean hasOrder(){return order != null;} | |
} | |
} |