| import csv | |
| import os | |
| from typing import Dict, List | |
| import datasets | |
| from nusacrowd.utils import schemas | |
| from nusacrowd.utils.configs import NusantaraConfig | |
| from nusacrowd.utils.constants import (DEFAULT_NUSANTARA_VIEW_NAME, | |
| DEFAULT_SOURCE_VIEW_NAME, Tasks) | |
| _DATASETNAME = "su_id_asr" | |
| _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME | |
| _UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME | |
| _LANGUAGES = ["sun"] | |
| _LOCAL = False | |
| _CITATION = """\ | |
| @inproceedings{sodimana18_sltu, | |
| author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha}, | |
| title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}}, | |
| year=2018, | |
| booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)}, | |
| pages={66--70}, | |
| doi={10.21437/SLTU.2018-14} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Sundanese ASR training data set containing ~220K utterances. | |
| This dataset was collected by Google in Indonesia. | |
| """ | |
| _HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr" | |
| _LICENSE = "Attribution-ShareAlike 4.0 International." | |
| _URLs = { | |
| "su_id_asr": "https://www.openslr.org/resources/36/asr_sundanese_{}.zip", | |
| } | |
| _SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] | |
| _SOURCE_VERSION = "1.0.0" | |
| _NUSANTARA_VERSION = "1.0.0" | |
| class SuIdASR(datasets.GeneratorBasedBuilder): | |
| """su_id contains ~220K utterances for Sundanese ASR training data.""" | |
| BUILDER_CONFIGS = [ | |
| NusantaraConfig( | |
| name="su_id_asr_source", | |
| version=datasets.Version(_SOURCE_VERSION), | |
| description="SU_ID_ASR source schema", | |
| schema="source", | |
| subset_id="su_id_asr", | |
| ), | |
| NusantaraConfig( | |
| name="su_id_asr_nusantara_sptext", | |
| version=datasets.Version(_NUSANTARA_VERSION), | |
| description="SU_ID_ASR Nusantara schema", | |
| schema="nusantara_sptext", | |
| subset_id="su_id_asr", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = "su_id_asr_source" | |
| def _info(self): | |
| if self.config.schema == "source": | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "speaker_id": datasets.Value("string"), | |
| "path": datasets.Value("string"), | |
| "audio": datasets.Audio(sampling_rate=16_000), | |
| "text": datasets.Value("string"), | |
| } | |
| ) | |
| elif self.config.schema == "nusantara_sptext": | |
| features = schemas.speech_text_features | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], | |
| ) | |
| def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
| base_path = {} | |
| for id in range(10): | |
| base_path[id] = dl_manager.download_and_extract(_URLs["su_id_asr"].format(str(id))) | |
| for id in ["a", "b", "c", "d", "e", "f"]: | |
| base_path[id] = dl_manager.download_and_extract(_URLs["su_id_asr"].format(str(id))) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepath": base_path}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath: Dict): | |
| if self.config.schema == "source" or self.config.schema == "nusantara_sptext": | |
| for key, each_filepath in filepath.items(): | |
| tsv_file = os.path.join(each_filepath, "asr_sundanese", "utt_spk_text.tsv") | |
| with open(tsv_file, "r") as file: | |
| tsv_file = csv.reader(file, delimiter="\t") | |
| for line in tsv_file: | |
| audio_id, speaker_id, transcription_text = line[0], line[1], line[2] | |
| wav_path = os.path.join(each_filepath, "asr_sundanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id)) | |
| if os.path.exists(wav_path): | |
| if self.config.schema == "source": | |
| ex = { | |
| "id": audio_id, | |
| "speaker_id": speaker_id, | |
| "path": wav_path, | |
| "audio": wav_path, | |
| "text": transcription_text, | |
| } | |
| yield audio_id, ex | |
| elif self.config.schema == "nusantara_sptext": | |
| ex = { | |
| "id": audio_id, | |
| "speaker_id": speaker_id, | |
| "path": wav_path, | |
| "audio": wav_path, | |
| "text": transcription_text, | |
| "metadata": { | |
| "speaker_age": None, | |
| "speaker_gender": None, | |
| }, | |
| } | |
| yield audio_id, ex | |
| else: | |
| raise ValueError(f"Invalid config: {self.config.name}") | |