Datasets:

Languages:
Vietnamese
ArXiv:
License:
File size: 5,726 Bytes
6bde449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Dict, List, Tuple
import datasets
import pandas

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """
@InProceedings{10.1007/978-3-030-79457-6_35,
author="Luu, Son T.
and Nguyen, Kiet Van
and Nguyen, Ngan Luu-Thuy",
editor="Fujita, Hamido
and Selamat, Ali
and Lin, Jerry Chun-Wei
and Ali, Moonis",
title="A Large-Scale Dataset for Hate Speech Detection on Vietnamese Social Media Texts",
booktitle="Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices",
year="2021",
publisher="Springer International Publishing",
address="Cham",
pages="415--426",
abstract="In recent years, Vietnam witnesses the mass development of social network users on different social
platforms such as Facebook, Youtube, Instagram, and Tiktok. On social media, hate speech has become a critical
problem for social network users. To solve this problem, we introduce the ViHSD - a human-annotated dataset for
automatically detecting hate speech on the social network. This dataset contains over 30,000 comments, each comment
in the dataset has one of three labels: CLEAN, OFFENSIVE, or HATE. Besides, we introduce the data creation process
for annotating and evaluating the quality of the dataset. Finally, we evaluate the dataset by deep learning and transformer models.",
isbn="978-3-030-79457-6"
}
"""

_LOCAL = False
_LANGUAGES = ["vie"]
_DATASETNAME = "uit_vihsd"
_DESCRIPTION = """
The ViHSD dataset consists of comments collected from Facebook pages and YouTube channels that have a
high-interactive rate, and do not restrict comments. This dataset is used for hate speech detection on
Vietnamese language. Data is anonymized, and labeled as either HATE, OFFENSIVE, or CLEAN.
"""

_HOMEPAGE = "https://github.com/sonlam1102/vihsd/"
_LICENSE = Licenses.UNKNOWN.value
_URL = "https://raw.githubusercontent.com/sonlam1102/vihsd/main/data/vihsd.zip"

_Split_Path = {
    "train": "vihsd/train.csv",
    "validation": "vihsd/dev.csv",
    "test": "vihsd/test.csv",
}

_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class UiTVihsdDataset(datasets.GeneratorBasedBuilder):
    """
    The SeaCrowd dataloader for the dataset Vietnamese Hate Speech Detection (UIT-ViHSD).
    """

    CLASS_LABELS = ["CLEAN", "OFFENSIVE", "HATE"]  # 0:CLEAN, 1:OFFENSIVE, 2:HATE
    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=datasets.Version(_SOURCE_VERSION),
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_text",
            version=datasets.Version(_SEACROWD_VERSION),
            description=f"{_DATASETNAME} SEACrowd schema ",
            schema="seacrowd_text",
            subset_id=f"{_DATASETNAME}",
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "text": datasets.Value("string"),
                    "label": datasets.Value("string"),
                }
            )

        elif self.config.schema == "seacrowd_text":
            features = schemas.text_features(label_names=self.CLASS_LABELS)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        file_paths = dl_manager.download_and_extract(_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["train"])},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["validation"])},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["test"])},
            ),
        ]

    def _generate_examples(self, filepath) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        data_lines = pandas.read_csv(filepath)
        for row in data_lines.itertuples():
            if self.config.schema == "source":
                example = {"id": str(row.Index), "text": row.free_text, "label": row.label_id}
            if self.config.schema == "seacrowd_text":
                example = {"id": str(row.Index), "text": row.free_text, "label": self.CLASS_LABELS[int(row.label_id)]}
            yield row.Index, example