File size: 3,027 Bytes
cf246c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34c44fc
cf246c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import datasets
import pandas as pd

class TWEETS(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        features = datasets.Features(
            {
                "ID": datasets.Value("string"),
                "tweet": datasets.Value("string"),
                "unnecessary": datasets.Value("bool"),
                "mandatory": datasets.Value("bool"),
                "pharma": datasets.Value("bool"),
                "conspiracy": datasets.Value("bool"),
                "political": datasets.Value("bool"),
                "country": datasets.Value("bool"),
                "rushed": datasets.Value("bool"),
                "ingredients": datasets.Value("bool"),
                "side-effect": datasets.Value("bool"),
                "ineffective": datasets.Value("bool"),
                "religious": datasets.Value("bool"),
                "none": datasets.Value("bool"),
            }
        )

        return datasets.DatasetInfo(
            features=features,
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = os.path.join(dl_manager.download_and_extract("https://drive.google.com/u/0/uc?id=1e_QaxcG0zSv4UWqncXjDA0ZqBjzg3oVP&export=download"))
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join( data_dir, "data/train_data.csv"), "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join( data_dir, "data/val_data.csv"), "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join( data_dir, "data/val_data.csv"), "split": "validation",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples as (key, example) tuples."""

        with open(filepath, encoding="utf-8") as f:
            next(f)  # skip header
            for id_, row in enumerate(f):
                data = row.split(",")
                yield id_, {
                    "ID": data[0],
                    "tweet": data[1],
                    "unnecessary": int(data[2]),
                    "mandatory": int(data[3]),
                    "pharma": int(data[4]),
                    "conspiracy": int(data[5]),
                    "political": int(data[6]),
                    "country": int(data[7]),
                    "rushed": int(data[8]),
                    "ingredients": int(data[9]),
                    "side-effect": int(data[10]),
                    "ineffective": int(data[11]),
                    "religious": int(data[12]),
                    "none": int(data[13]),
                }