import os import datasets import pandas as pd class TWEETS(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") def _info(self): features = datasets.Features( { "ID": datasets.Value("string"), "tweet": datasets.Value("string"), "unnecessary": datasets.Value("bool"), "mandatory": datasets.Value("bool"), "pharma": datasets.Value("bool"), "conspiracy": datasets.Value("bool"), "political": datasets.Value("bool"), "country": datasets.Value("bool"), "rushed": datasets.Value("bool"), "ingredients": datasets.Value("bool"), "side-effect": datasets.Value("bool"), "ineffective": datasets.Value("bool"), "religious": datasets.Value("bool"), "none": datasets.Value("bool"), } ) return datasets.DatasetInfo( features=features, supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = os.path.join(dl_manager.download_and_extract("https://drive.google.com/u/0/uc?id=1e_QaxcG0zSv4UWqncXjDA0ZqBjzg3oVP&export=download")) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join( data_dir, "data/train_data.csv"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join( data_dir, "data/val_data.csv"), "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": os.path.join( data_dir, "data/val_data.csv"), "split": "validation", }, ), ] def _generate_examples(self, filepath, split): """Yields examples as (key, example) tuples.""" with open(filepath, encoding="utf-8") as f: next(f) # skip header for id_, row in enumerate(f): data = row.split(",") yield id_, { "ID": data[0], "tweet": data[1], "unnecessary": int(data[2]), "mandatory": int(data[3]), "pharma": int(data[4]), "conspiracy": int(data[5]), "political": int(data[6]), "country": int(data[7]), "rushed": int(data[8]), "ingredients": int(data[9]), "side-effect": int(data[10]), "ineffective": int(data[11]), "religious": int(data[12]), "none": int(data[13]), }