mvl-sib / mvl-sib.py
fdschmidt93's picture
chore: copy mvl-sib200.py to mvl-sib.py
05c1d1d
import csv
import random
from itertools import combinations
from pathlib import Path
from typing import Any, Dict, List, Union
import datasets
import numpy as np
import pandas as pd
# fmt: off
LANGS = [
"ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab",
"aka_Latn", "als_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "arb_Latn", "ars_Arab",
"ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab",
"azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng",
"bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl",
"cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn",
"dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn",
"epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "fij_Latn", "fin_Latn",
"fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gaz_Latn", "gla_Latn", "gle_Latn",
"glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva",
"hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn",
"isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn",
"kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "kaz_Cyrl", "kbp_Latn", "kea_Latn",
"khk_Cyrl", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kmr_Latn",
"knc_Arab", "knc_Latn", "kon_Latn", "kor_Hang", "lao_Laoo", "lij_Latn", "lim_Latn",
"lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn",
"luo_Latn", "lus_Latn", "lvs_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva",
"min_Arab", "min_Latn", "mkd_Cyrl", "mlt_Latn", "mni_Beng", "mos_Latn", "mri_Latn",
"mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nqo_Nkoo", "nso_Latn",
"nus_Latn", "nya_Latn", "oci_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn",
"pbt_Arab", "pes_Arab", "plt_Latn", "pol_Latn", "por_Latn", "prs_Arab", "quy_Latn",
"ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Olck", "scn_Latn",
"shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab",
"som_Latn", "sot_Latn", "spa_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn",
"swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "taq_Latn", "taq_Tfng", "tat_Cyrl",
"tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "tpi_Latn", "tsn_Latn",
"tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab",
"ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn",
"wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant",
"zsm_Latn", "zul_Latn"
]
# fmt: on
# For interactive usage:
# Attempt to find the script directory if __file__ is defined, otherwise default to current working directory.
try:
cwd = Path(__file__).parent
except NameError as _:
cwd = Path.cwd()
SEED: int = 42
N: int = 1004 # length of pooled train, dev, and test splits
UPSAMPLING_FACTOR: int = 3
NUM_NEGATIVES: int = 3
NUM_REFERENCES: int = 5
NUM_EXAMPLES_PER_OPTION: int = 1
CATEGORIES: List[str] = [
"entertainment",
"geography",
"health",
"politics",
"science",
"sports",
"travel",
]
# URLs for downloading SIB .tsv data and images.
_SIB_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/sib200/{lang}/{split}.tsv"
_IMG_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/images/sib200/{category}_{no}.jpg"
# Placeholder for dataset description: fill or extend as needed.
_DESCRIPTION: str = (
"MVLSIB is a multilingual dataset designed to provide sentence-image pairs "
"spanning multiple languages and categories. The goal is to support tasks such as "
"multimodal classification, cross-lingual information retrieval, and more. "
"Each row contains a textual entry (sentence) along with category information, "
"and the dataset also includes image references for the same set of categories."
)
def read_tsv_to_dict_list(file_path: Union[str, Path]) -> List[Dict[str, Any]]:
"""
Reads a TSV file with columns 'index_id', 'category', and 'text' into a list of dictionaries.
The TSV is expected to have the following columns (in order):
1. index_id
2. category
3. text
Parameters
----------
file_path : Union[str, Path]
The path to the TSV file.
Returns
-------
List[Dict[str, Any]]
A list of dictionaries, where each element has keys:
- 'index_id': int
- 'category': str
- 'text': str
Raises
------
ValueError
If the TSV headers do not match the expected format.
"""
data: List[Dict[str, Any]] = []
expected_headers = ["index_id", "category", "text"]
with open(file_path, mode="r", encoding="utf-8") as tsvfile:
reader = csv.DictReader(tsvfile, delimiter="\t")
# Validate headers
if reader.fieldnames != expected_headers:
raise ValueError(
f"Expected headers {expected_headers}, but got {reader.fieldnames}"
)
# Start enumerating from line 2 to account for the header line
for _, row in enumerate(reader, start=2):
#
if all(
(row[key].strip() == key) or (row[key].strip() == "")
for key in expected_headers
):
continue
# Convert index_id to integer
index_id = int(row["index_id"])
# Strip leading/trailing whitespace
category = row["category"].strip()
text = row["text"].strip()
# Append the processed row to data
data.append({"index_id": index_id, "category": category, "text": text})
return data
def read_lang_tsv(filepaths: List[str]) -> List[Dict[str, Any]]:
"""
Reads a list of TSV file paths containing SIB data in the same language
and merges them into a single, sorted list of dictionaries.
Specifically:
1. Calls `read_tsv_to_dict_list` for each file path.
2. Merges all resulting dictionaries.
3. Sorts by 'index_id'.
Also normalizes the category "science/technology" to "science" for internal consistency.
Parameters
----------
filepaths : List[str]
A list of TSV file paths for a specific language.
Returns
-------
List[Dict[str, Any]]
A list of dictionaries sorted by 'index_id' with normalized categories.
"""
# Read each file into a list of dicts
dicos = [read_tsv_to_dict_list(path) for path in filepaths]
# Flatten and sort by index_id
out: List[Dict[str, Any]] = sorted(
[line for dico in dicos for line in dico], key=lambda row: row["index_id"]
)
# Normalize "science/technology" to "science"
for line in out:
if line["category"] == "science/technology":
line["category"] = "science"
return out
def replicate_and_negatives(
df: pd.DataFrame,
num_replicates: int = 3,
num_negatives: int = 4,
num_positives: int = 4,
seed: int = 42,
) -> pd.DataFrame:
"""
Create multiple replicated rows from the input DataFrame `df` and
sample negative and positive examples for each row.
*Negative* samples are drawn from rows whose category is different
from the row's category. **Additionally, each negative example for
a given row is drawn from a distinct category among the negatives,
if there are enough categories to do so without replacement.**
*Positive* samples are drawn from rows of the same category (excluding
the row's own 'index_id').
Parameters
----------
df : pd.DataFrame
The original input DataFrame with columns ['index_id', 'category', 'text'].
num_replicates : int, optional
Number of times to replicate each row, by default 2.
num_negatives : int, optional
Number of negative samples to pick for each row, by default 2.
num_positives : int, optional
Number of positive samples to pick for each row, by default 2.
seed : int, optional
Seed for random operations, by default 42.
Returns
-------
pd.DataFrame
A new DataFrame containing replicated rows plus columns:
- neg_id_i, neg_cat_i, neg_text_i for i in [0 .. num_negatives-1]
- pos_id_i, pos_cat_i, pos_text_i for i in [0 .. num_positives-1]
Notes
-----
- Negative examples for a row are taken from distinct categories
(other than the row's category) if enough categories exist. If
fewer categories exist than `num_negatives`, we sample categories
with replacement, so some duplicates may appear.
- Positive sampling excludes the row's own 'index_id'.
If there are fewer available positives than `num_positives`,
we sample with replacement.
"""
rng = np.random.default_rng(seed=seed)
# --- 1) Replicate the DataFrame k (=num_replicates) times ---
df_new = pd.concat([df] * num_replicates, ignore_index=True)
# --- 2) Create empty columns for negative and positive samples ---
for i in range(num_negatives):
df_new[f"neg_id_{i}"] = None
df_new[f"neg_cat_{i}"] = None
df_new[f"neg_text_{i}"] = None
for i in range(num_positives):
df_new[f"pos_id_{i}"] = None
df_new[f"pos_cat_{i}"] = None
df_new[f"pos_text_{i}"] = None
# --- Precompute a dictionary of all rows by category (for negatives sampling) ---
# Key: category -> DataFrame of that category
unique_cats = df_new["category"].unique()
cat_to_df: Dict[str, pd.DataFrame] = {}
for c in unique_cats:
cat_to_df[c] = df_new[df_new["category"] == c].reset_index(drop=True)
# --- 4) Build a "positive pool" dictionary by category ---
# For positive sampling, we exclude the row's own 'index_id' in each row's step
pos_pool_by_cat = {}
for c in unique_cats:
pos_pool_by_cat[c] = df.loc[
df["category"] == c, ["index_id", "category", "text"]
].reset_index(drop=True)
# --- 5) Group df_new by category and populate negative/positive samples ---
grouped = df_new.groupby("category", group_keys=False)
output_chunks: List[pd.DataFrame] = []
for cat, group_df in grouped:
g_size = len(group_df)
# The preallocated arrays for negative and positive columns will be filled for each row individually, i.e., sampling of negative categories and samples will be done per row
# Prepare arrays for final negative columns
neg_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
neg_cat_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
neg_text_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
# Prepare arrays for final positive columns
pos_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]
pos_cat_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]
pos_text_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]
# For convenience, get all categories *except* the current one (cat)
# We'll sample from these as negative categories
negative_candidate_cats = [c for c in unique_cats if c != cat]
# For each row in the current group
row_ids_for_group = group_df["index_id"].to_numpy()
for i_row in range(g_size):
row_id = row_ids_for_group[i_row]
# ------------- Negative Sampling -------------
# 1) Choose distinct categories if possible. If not enough categories
# exist to cover num_negatives, we sample categories with replacement.
replace_for_cats = len(negative_candidate_cats) < num_negatives
chosen_neg_cats = rng.choice(
negative_candidate_cats, size=num_negatives, replace=replace_for_cats
)
# 2) For each chosen negative category, pick a random row
for j, neg_cat in enumerate(chosen_neg_cats):
neg_pool = cat_to_df[neg_cat]
pick_idx = rng.integers(len(neg_pool)) # random index
neg_id_cols[j][i_row] = neg_pool["index_id"].iloc[pick_idx]
neg_cat_cols[j][i_row] = neg_pool["category"].iloc[pick_idx]
neg_text_cols[j][i_row] = neg_pool["text"].iloc[pick_idx]
# ------------- Positive Sampling -------------
pos_pool_cat = pos_pool_by_cat[cat]
# Exclude the row's own ID in the sampling
valid_mask = pos_pool_cat["index_id"] != row_id
valid_pos_pool = pos_pool_cat[valid_mask]
# If not enough positives remain, sample with replacement
replace_pos_for_row = len(valid_pos_pool) < num_positives
if len(valid_pos_pool) == 0:
# Edge case: if there's literally no other row of the same category,
# we won't be able to sample. You could decide to fill with NaN
# or replicate the single example. Here we do the "safe" approach
# of sampling from the entire cat's pool if possible.
valid_pos_pool = pos_pool_cat
replace_pos_for_row = True
valid_idx_array = valid_pos_pool.index.to_numpy()
chosen_indices = rng.choice(
valid_idx_array, size=num_positives, replace=replace_pos_for_row
)
for j in range(num_positives):
pick_idx = chosen_indices[j]
pos_id_cols[j][i_row] = valid_pos_pool["index_id"].loc[pick_idx]
pos_cat_cols[j][i_row] = valid_pos_pool["category"].loc[pick_idx]
pos_text_cols[j][i_row] = valid_pos_pool["text"].loc[pick_idx]
# Attach negative columns to group_df
for j in range(num_negatives):
group_df[f"neg_id_{j}"] = neg_id_cols[j]
group_df[f"neg_cat_{j}"] = neg_cat_cols[j]
group_df[f"neg_text_{j}"] = neg_text_cols[j]
# Attach positive columns to group_df
for j in range(num_positives):
group_df[f"pos_id_{j}"] = pos_id_cols[j]
group_df[f"pos_cat_{j}"] = pos_cat_cols[j]
group_df[f"pos_text_{j}"] = pos_text_cols[j]
output_chunks.append(group_df)
# --- 6) Combine all chunks and restore index order ---
df_out = pd.concat(output_chunks, axis=0)
df_out.sort_index(inplace=True)
return df_out
def get_reference_image_ids(
N: int, num_images: int, k: int, seed: int
) -> List[List[int]]:
"""
Generates reference image ID combinations for each row in a dataset of size N.
We pick (k)-combinations from the range [1 .. num_images-1]. Then we sample
from these combinations (with replacement) for each of N rows, and shuffle them
in a reproducible manner.
Parameters
----------
N : int
Number of rows in the dataset.
num_images : int
Total number of images available per category.
k : int
Number of images to select in each combination.
seed : int
Global seed for random operations.
Returns
-------
List[List[int]]
A list of length N, where each element is a list of k unique image IDs.
Notes
-----
- We use Python's `random.choices` to draw from all possible k-combinations.
- Each combination is then locally shuffled to remove ordering biases.
"""
all_combinations = list(combinations(range(0, num_images), k))
random.seed(seed)
sampled_combinations = [list(x) for x in random.choices(all_combinations, k=N)]
for i, tuple_ in enumerate(sampled_combinations):
# Use a unique seed for each shuffle to ensure reproducibility
random.seed(seed + i)
random.shuffle(tuple_)
return sampled_combinations
class MVLSIBConfig(datasets.BuilderConfig):
"""
Configuration class for the MVLSIB (Multilingual Visual Language SIB) dataset.
Parameters
----------
name : str
The configuration name, typically in the format "task.lang".
upsampling_factor : int, optional
How many times to replicate each row for additional sampling variety, default: 3.
num_references : int, optional
Number of positive references to sample for each row, default: 5.
num_negatives : int, optional
Number of negative samples to pair with each row, default: 3.
seed : int, optional
Seed for random operations, default: 42.
"""
def __init__(
self,
name: str,
upsampling_factor: int = UPSAMPLING_FACTOR,
num_references: int = NUM_REFERENCES,
num_negatives: int = NUM_NEGATIVES,
seed: int = SEED,
**kwargs: Any,
):
super(MVLSIBConfig, self).__init__(**kwargs)
self.name: str = name
self.task, self.lang = name.split(".")
self.upsampling_factor: int = upsampling_factor
self.num_references: int = num_references
self.num_negatives: int = num_negatives
self.seed: int = seed
def _builder_configs() -> List[MVLSIBConfig]:
"""
Internal helper to build the list of MVLSIBConfig objects
for all tasks ('img2sent', 'sent2img') and all available languages in LANGS.
Returns
-------
List[MVLSIBConfig]
A list of dataset configuration objects, each specifying a (task, language) pair.
"""
configs: List[MVLSIBConfig] = []
for task in ("img2sent", "sent2img"):
for lang in LANGS:
cfg = MVLSIBConfig(
name=f"{task}.{lang}",
version=datasets.Version("1.0.0"),
description=f"MVLSIB: {task}.{lang}",
)
configs.append(cfg)
return configs
class MVLSIB(datasets.GeneratorBasedBuilder):
"""
MVLSIB is a multilingual dataset that provides matched
(sentence -> image) or (image -> sentence) examples for
classification or retrieval tasks.
Each configuration is specified by a task (img2sent or sent2img)
and a language code, e.g. 'img2sent.eng_Latn'.
The dataset is structured such that each row includes:
- A set of reference items (images or sentences, depending on the task).
- A set of 4 possible answers (1 positive, 3 negative).
- A label indicating which of the 4 answers is correct.
"""
BUILDER_CONFIGS = _builder_configs()
BUILDER_CONFIG_CLASS = MVLSIBConfig
def _info(self) -> datasets.DatasetInfo:
"""
Returns the dataset metadata, including features.
The dataset has two major tasks:
- 'img2sent': Given reference images, choose the best matching sentence.
- 'sent2img': Given reference sentences, choose the best matching image.
Each example row in 'img2sent' includes:
- images (list of str URLs to images)
- sentences (list of str, one positive, three negatives)
- categories (list of str categories matching each sentence)
- label (int specifying which of the sentences is correct)
- id (an integer ID)
- index_id (the original row ID from the SIB .tsv)
Each example row in 'sent2img' includes:
- sentences (list of str, the positive reference sentences)
- images (list of str URLs to images, one positive, three negatives)
- categories (list of str categories matching each image)
- label (int specifying which of the images is correct)
- id (an integer ID)
- index_id (the original row ID from the SIB .tsv)
Returns
-------
datasets.DatasetInfo
The Hugging Face DatasetInfo object describing the dataset features,
licensing, homepage, citation, etc.
"""
from datasets import DatasetInfo, Features, Sequence, Value
img2sents = Features(
{
"images": Sequence(Value("string")),
"sentences": Sequence(Value("string")),
"categories": Sequence(Value("string")),
"label": Value("int8"),
"id": Value("int64"),
"index_id": Value("int64"),
}
)
sent2imgs = Features(
{
"sentences": Sequence(Value("string")),
"images": Sequence(Value("string")),
"categories": Sequence(Value("string")),
"label": Value("int8"),
"id": Value("int64"),
"index_id": Value("int64"),
}
)
features = {
"img2sent": img2sents,
"sent2img": sent2imgs,
}
return DatasetInfo(
description=_DESCRIPTION,
features=features[self.config.task],
supervised_keys=None,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager, *args: Any, **kwargs: Any
) -> List[datasets.SplitGenerator]:
"""
Defines the splits of the dataset. In this case, we only produce a single 'test' split,
but in principle, you can define train/dev/test or others.
Parameters
----------
dl_manager : datasets.DownloadManager
The Hugging Face DownloadManager used to download files.
Returns
-------
List[datasets.SplitGenerator]
A list of SplitGenerator objects. Each defines a split name
and a gen_kwargs dict for the `_generate_examples` method.
"""
# Download SIB tsv files for train, dev, and test
files = dl_manager.download(
[
_SIB_URL.format(lang=self.config.lang, split=split)
for split in ("train", "dev", "test")
]
)
# Download images for each category
images: Dict[str, List[str]] = {}
for cat in CATEGORIES:
images[cat] = []
for i in range(10):
images[cat].append(
dl_manager.download(_IMG_URL.format(category=cat, no=i))
)
return [
datasets.SplitGenerator(
name="test",
gen_kwargs={"sib_filepaths": files, "images_filepaths": images},
),
]
def _generate_examples(
self,
sib_filepaths: List[str],
images_filepaths: Dict[str, List[str]],
*args: Any,
**kwargs: Any,
) -> Any:
"""
Generator function that yields dataset examples in the format needed by
Hugging Face Datasets.
Depending on the task (img2sent or sent2img), the function constructs examples where:
- img2sent: reference images, 4 candidate sentences (1 positive, 3 negative)
- sent2img: reference sentences, 4 candidate images (1 positive, 3 negative)
Parameters
----------
sib_filepaths : List[str]
The downloaded .tsv file paths (train/dev/test) for the specified language.
images_filepaths : Dict[str, List[str]]
A dictionary from category -> list of 10 image URLs, as downloaded from `_split_generators`.
Yields
------
Tuple[int, Dict[str, Any]]
A tuple where the first element is an integer index,
and the second is a dictionary matching the features specification
of the dataset.
"""
# Read the SIB .tsv files for the given language and combine into a single DataFrame
records = read_lang_tsv(sib_filepaths)
df = pd.DataFrame.from_records(records)
# Expand the dataset with negative and positive samples
ext_df = replicate_and_negatives(
df,
num_replicates=self.config.upsampling_factor,
num_negatives=self.config.num_negatives,
# every line already has a positive
num_positives=self.config.num_references - 1,
seed=self.config.seed,
)
sent_ids = list(range(self.config.num_negatives + 1))
N = len(ext_df)
num_images = len(next(iter(images_filepaths.values()))) # e.g., 10 images/cat
if self.config.task == "img2sent":
# Pre-generate image ID combinations for each row
image_ids = get_reference_image_ids(
N=N,
num_images=num_images,
k=self.config.num_references,
seed=self.config.seed,
)
for i, row in ext_df.iterrows():
# Construct the list of candidate sentences (pos + neg)
text = [row["text"]]
categories = [row["category"]]
for j in range(self.config.num_negatives):
text.append(row[f"neg_text_{j}"])
categories.append(row[f"neg_cat_{j}"])
# Shuffle candidate sentences in a reproducible manner
random.seed(i)
random.shuffle(sent_ids)
label = sent_ids[0]
# Reorder sentences and categories according to the shuffled indices
_, categories_shuffled = zip(*sorted(zip(sent_ids, categories)))
_, sentences_shuffled = zip(*sorted(zip(sent_ids, text)))
# Fetch the reference images for the row
row_image_ids = image_ids[i]
cat = row["category"]
cat_images = images_filepaths[cat]
row_images = [
cat_images[row_image_ids[j]]
for j in range(self.config.num_references)
]
yield (
i,
{
"id": i,
"index_id": row["index_id"],
"images": row_images,
"categories": categories_shuffled,
"sentences": sentences_shuffled,
"label": label,
},
)
else:
# sent2img: We first sample image indices (pos + neg) for each row
rng = np.random.default_rng(seed=self.config.seed)
choice_image_ids = rng.integers(
0, num_images, (N, 1 + self.config.num_negatives)
).tolist()
for i, row in ext_df.iterrows():
# The positive text
pos_text = [row["text"]]
# For the negative categories, we gather them similarly
cats = [row["category"]]
for j in range(self.config.num_negatives):
cats.append(row[f"neg_cat_{j}"])
for j in range(self.config.num_references - 1):
pos_text.append(row[f"pos_text_{j}"])
random.seed(i)
random.shuffle(sent_ids)
label = sent_ids[0]
# Reorder categories based on the shuffled indices
# NOTE: positive text is quasi-shuffled already
_, categories_shuffled = zip(*sorted(zip(sent_ids, cats)))
# Match the categories to the sampled image indices
row_image_ids = choice_image_ids[i]
row_images = [
images_filepaths[cat][idx]
for idx, cat in zip(row_image_ids, categories_shuffled)
]
yield (
i,
{
"id": i,
"index_id": row["index_id"],
"images": row_images,
"categories": categories_shuffled,
"sentences": pos_text,
"label": label,
},
)