YFanwang commited on
Commit
84ed515
Β·
verified Β·
1 Parent(s): ab64070

Upload folder using huggingface_hub

Browse files
Files changed (29) hide show
  1. logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.3_2e-1_connector-3.0_1.3_2e-1_ablation_20251013_213724.log +0 -0
  2. logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.5_2e-1_connector-3.0_1.5_2e-1_ablation_20251013_214412.log +0 -0
  3. logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.7_2e-1_connector-3.0_1.7_2e-1_ablation_20251013_215018.log +0 -0
  4. logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.9_2e-1_connector-3.0_1.9_2e-1_ablation_20251013_215700.log +0 -0
  5. logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.1_2e-1_connector-3.0_2.1_2e-1_ablation_20251013_220444.log +0 -0
  6. logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation_20251013_221214.log +92 -0
  7. logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.5_2e-1_connector-3.0_2.5_2e-1_ablation_20251013_221228.log +0 -0
  8. logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.7_2e-1_connector-3.0_2.7_2e-1_ablation_20251013_221828.log +0 -0
  9. logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.9_2e-1_connector-3.0_2.9_2e-1_ablation_20251013_222533.log +0 -0
  10. logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_0.7_2e-1_connector-5.0_0.7_2e-1_ablation_20251013_223153.log +681 -0
  11. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.3_2e-1_connector-3.0_1.3_2e-1_ablation_20251013_065736.log +0 -0
  12. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.5_2e-1_connector-3.0_1.5_2e-1_ablation_20251013_073153.log +0 -0
  13. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.7_2e-1_connector-3.0_1.7_2e-1_ablation_20251013_080601.log +0 -0
  14. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.9_2e-1_connector-3.0_1.9_2e-1_ablation_20251013_104850.log +0 -0
  15. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.1_2e-1_connector-3.0_2.1_2e-1_ablation_20251013_113216.log +0 -0
  16. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation_20251013_130305.log +0 -0
  17. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.5_2e-1_connector-3.0_2.5_2e-1_ablation_20251013_143914.log +0 -0
  18. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.7_2e-1_connector-3.0_2.7_2e-1_ablation_20251013_151303.log +0 -0
  19. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.9_2e-1_connector-3.0_2.9_2e-1_ablation_20251013_154739.log +0 -0
  20. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_0.7_2e-1_connector-5.0_0.7_2e-1_ablation_20251013_162143.log +0 -0
  21. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_0.9_2e-1_connector-5.0_0.9_2e-1_ablation_20251013_165603.log +0 -0
  22. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_1.1_2e-1_connector-5.0_1.1_2e-1_ablation_20251013_173027.log +0 -0
  23. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_1.3_2e-1_connector-5.0_1.3_2e-1_ablation_20251013_180430.log +0 -0
  24. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_1.5_2e-1_connector-5.0_1.5_2e-1_ablation_20251013_183828.log +0 -0
  25. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_1.7_2e-1_connector-5.0_1.7_2e-1_ablation_20251013_191236.log +0 -0
  26. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_1.9_2e-1_connector-5.0_1.9_2e-1_ablation_20251013_194705.log +0 -0
  27. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_2.1_2e-1_connector-5.0_2.1_2e-1_ablation_20251013_202134.log +0 -0
  28. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_2.3_2e-1_connector-5.0_2.3_2e-1_ablation_20251013_205557.log +0 -0
  29. logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_2.5_2e-1_connector-5.0_2.5_2e-1_ablation_20251013_213037.log +0 -0
logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.3_2e-1_connector-3.0_1.3_2e-1_ablation_20251013_213724.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.5_2e-1_connector-3.0_1.5_2e-1_ablation_20251013_214412.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.7_2e-1_connector-3.0_1.7_2e-1_ablation_20251013_215018.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.9_2e-1_connector-3.0_1.9_2e-1_ablation_20251013_215700.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.1_2e-1_connector-3.0_2.1_2e-1_ablation_20251013_220444.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation_20251013_221214.log ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ==== STARTING EXPERIMENT: eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation ====
2
+ Log File: eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation_20251013_221214.log
3
+ Timestamp: 2025-10-13 22:12:14
4
+ =====================================
5
+ Processing: /nfs/ywang29/TinyLLaVA/checkpoints/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation
6
+ /opt/conda/envs/tinyllava/lib/python3.10/site-packages/torch/cuda/__init__.py:51: FutureWarning: The pynvml package is deprecated. Please install nvidia-ml-py instead. If you did not install pynvml directly, please report this to the maintainers of the package that installed pynvml for you.
7
+ import pynvml # type: ignore[import]
8
+ [2025-10-13 22:12:17,426] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
9
+ Traceback (most recent call last):
10
+ File "/nfs/ywang29/TinyLLaVA/scripts/apply_masks.py", line 488, in <module>
11
+ main()
12
+ File "/nfs/ywang29/TinyLLaVA/scripts/apply_masks.py", line 123, in main
13
+ config_mask = TinyLlavaConfig.from_pretrained(model_args.mask_model_name_or_path)
14
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/configuration_utils.py", line 602, in from_pretrained
15
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
16
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/configuration_utils.py", line 631, in get_config_dict
17
+ config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
18
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/configuration_utils.py", line 686, in _get_config_dict
19
+ resolved_config_file = cached_file(
20
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/utils/hub.py", line 369, in cached_file
21
+ raise EnvironmentError(
22
+ OSError: /nfs/ywang29/TinyLLaVA/checkpoints/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation does not appear to have a file named config.json. Checkout 'https://huggingface.co//nfs/ywang29/TinyLLaVA/checkpoints/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation/tree/main' for available files.
23
+ /opt/conda/envs/tinyllava/lib/python3.10/site-packages/torch/cuda/__init__.py:51: FutureWarning: The pynvml package is deprecated. Please install nvidia-ml-py instead. If you did not install pynvml directly, please report this to the maintainers of the package that installed pynvml for you.
24
+ import pynvml # type: ignore[import]
25
+ [2025-10-13 22:12:24,641] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
26
+ Traceback (most recent call last):
27
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/utils/hub.py", line 398, in cached_file
28
+ resolved_file = hf_hub_download(
29
+ File "/opt/conda/envs/tinyllava/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 106, in _inner_fn
30
+ validate_repo_id(arg_value)
31
+ File "/opt/conda/envs/tinyllava/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 154, in validate_repo_id
32
+ raise HFValidationError(
33
+ huggingface_hub.errors.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': '/nfs/ywang29/TinyLLaVA/checkpoints/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation/mask_applied'. Use `repo_type` argument if needed.
34
+
35
+ The above exception was the direct cause of the following exception:
36
+
37
+ Traceback (most recent call last):
38
+ File "/nfs/ywang29/TinyLLaVA/tinyllava/model/load_model.py", line 38, in load_pretrained_model
39
+ model = TinyLlavaForConditionalGeneration.from_pretrained(model_name_or_path,low_cpu_mem_usage=True)
40
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/modeling_utils.py", line 3015, in from_pretrained
41
+ resolved_config_file = cached_file(
42
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/utils/hub.py", line 462, in cached_file
43
+ raise EnvironmentError(
44
+ OSError: Incorrect path_or_model_id: '/nfs/ywang29/TinyLLaVA/checkpoints/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation/mask_applied'. Please provide either the path to a local folder or the repo_id of a model on the Hub.
45
+
46
+ During handling of the above exception, another exception occurred:
47
+
48
+ Traceback (most recent call last):
49
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/utils/hub.py", line 398, in cached_file
50
+ resolved_file = hf_hub_download(
51
+ File "/opt/conda/envs/tinyllava/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 106, in _inner_fn
52
+ validate_repo_id(arg_value)
53
+ File "/opt/conda/envs/tinyllava/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 154, in validate_repo_id
54
+ raise HFValidationError(
55
+ huggingface_hub.errors.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': '/nfs/ywang29/TinyLLaVA/checkpoints/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation/mask_applied'. Use `repo_type` argument if needed.
56
+
57
+ The above exception was the direct cause of the following exception:
58
+
59
+ Traceback (most recent call last):
60
+ File "/opt/conda/envs/tinyllava/lib/python3.10/runpy.py", line 196, in _run_module_as_main
61
+ return _run_code(code, main_globals, None,
62
+ File "/opt/conda/envs/tinyllava/lib/python3.10/runpy.py", line 86, in _run_code
63
+ exec(code, run_globals)
64
+ File "/nfs/ywang29/TinyLLaVA/tinyllava/eval/model_vqa_mmmu.py", line 180, in <module>
65
+ eval_model(args)
66
+ File "/nfs/ywang29/TinyLLaVA/tinyllava/eval/model_vqa_mmmu.py", line 88, in eval_model
67
+ model, tokenizer, image_processor, context_len = load_pretrained_model(model_path)
68
+ File "/nfs/ywang29/TinyLLaVA/tinyllava/model/load_model.py", line 40, in load_pretrained_model
69
+ model_config = TinyLlavaConfig.from_pretrained(model_name_or_path)
70
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/configuration_utils.py", line 602, in from_pretrained
71
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
72
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/configuration_utils.py", line 631, in get_config_dict
73
+ config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
74
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/configuration_utils.py", line 686, in _get_config_dict
75
+ resolved_config_file = cached_file(
76
+ File "/nfs/ywang29/TinyLLaVA/transformers/src/transformers/utils/hub.py", line 462, in cached_file
77
+ raise EnvironmentError(
78
+ OSError: Incorrect path_or_model_id: '/nfs/ywang29/TinyLLaVA/checkpoints/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation/mask_applied'. Please provide either the path to a local folder or the repo_id of a model on the Hub.
79
+ Traceback (most recent call last):
80
+ File "/nfs/ywang29/TinyLLaVA/scripts/convert_answer_to_mmmu.py", line 31, in <module>
81
+ eval_model(args)
82
+ File "/nfs/ywang29/TinyLLaVA/scripts/convert_answer_to_mmmu.py", line 7, in eval_model
83
+ answers = [json.loads(q) for q in open(os.path.expanduser(args.answers_file), "r")]
84
+ FileNotFoundError: [Errno 2] No such file or directory: '/s3-code/ywang29/datasets/tinyllava/eval/MMMU/answers/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation-mask_applied.jsonl'
85
+ Traceback (most recent call last):
86
+ File "/s3-code/ywang29/datasets/tinyllava/eval/MMMU/eval/main_eval_only.py", line 19, in <module>
87
+ output_dict = json.load(open(args.output_path))
88
+ FileNotFoundError: [Errno 2] No such file or directory: '/s3-code/ywang29/datasets/tinyllava/eval/MMMU/answers/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation-mask_applied_output.json'
89
+ ==== EXPERIMENT COMPLETED: eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation ====
90
+ Log File: eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation_20251013_221214.log
91
+ Timestamp: 2025-10-13 22:12:28
92
+ =====================================
logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.5_2e-1_connector-3.0_2.5_2e-1_ablation_20251013_221228.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.7_2e-1_connector-3.0_2.7_2e-1_ablation_20251013_221828.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.9_2e-1_connector-3.0_2.9_2e-1_ablation_20251013_222533.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_0.7_2e-1_connector-5.0_0.7_2e-1_ablation_20251013_223153.log ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/900 [00:00<?, ?it/s]/nfs/ywang29/TinyLLaVA/transformers/src/transformers/generation/configuration_utils.py:492: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
 
 
1
  0%| | 1/900 [00:01<18:03, 1.21s/it]
2
  0%| | 2/900 [00:22<3:15:05, 13.04s/it]
3
  0%| | 3/900 [00:43<4:11:40, 16.83s/it]
4
  0%| | 4/900 [01:04<4:34:51, 18.41s/it]
5
  1%| | 5/900 [01:26<4:51:03, 19.51s/it]
6
  1%| | 6/900 [01:47<5:00:27, 20.17s/it]
7
  1%| | 7/900 [02:09<5:06:18, 20.58s/it]
8
  1%| | 8/900 [02:30<5:09:58, 20.85s/it]
9
  1%| | 9/900 [02:51<5:09:22, 20.83s/it]
10
  1%| | 10/900 [03:12<5:10:43, 20.95s/it]
11
  1%| | 11/900 [03:33<5:09:33, 20.89s/it]
12
  1%|▏ | 12/900 [03:54<5:11:16, 21.03s/it]
13
  1%|▏ | 13/900 [04:15<5:12:20, 21.13s/it]
14
  2%|▏ | 14/900 [04:36<5:10:25, 21.02s/it]
15
  2%|▏ | 15/900 [04:57<5:08:40, 20.93s/it]
16
  2%|▏ | 16/900 [05:18<5:10:11, 21.05s/it]
17
  2%|▏ | 17/900 [05:40<5:10:57, 21.13s/it]
18
  2%|▏ | 18/900 [05:45<4:01:16, 16.41s/it]
19
  2%|▏ | 19/900 [06:05<4:18:29, 17.60s/it]
20
  2%|▏ | 20/900 [06:26<4:30:42, 18.46s/it]
21
  2%|▏ | 21/900 [06:47<4:41:25, 19.21s/it]
22
  2%|▏ | 22/900 [07:07<4:46:27, 19.58s/it]
23
  3%|β–Ž | 23/900 [07:28<4:50:56, 19.90s/it]
24
  3%|β–Ž | 24/900 [07:49<4:56:14, 20.29s/it]
25
  3%|β–Ž | 25/900 [08:10<4:59:48, 20.56s/it]
26
  3%|β–Ž | 26/900 [08:32<5:02:27, 20.76s/it]
27
  3%|β–Ž | 27/900 [08:52<5:01:32, 20.72s/it]
28
  3%|β–Ž | 28/900 [09:13<5:03:24, 20.88s/it]
29
  3%|β–Ž | 29/900 [09:35<5:04:40, 20.99s/it]
30
  3%|β–Ž | 30/900 [09:56<5:05:11, 21.05s/it]
31
  3%|β–Ž | 31/900 [10:18<5:08:07, 21.27s/it]
32
  4%|β–Ž | 32/900 [10:19<3:43:36, 15.46s/it]
33
  4%|β–Ž | 33/900 [10:21<2:41:37, 11.19s/it]
34
  4%|▍ | 34/900 [10:42<3:27:21, 14.37s/it]
35
  4%|▍ | 35/900 [11:03<3:54:17, 16.25s/it]
36
  4%|▍ | 36/900 [11:24<4:12:42, 17.55s/it]
37
  4%|▍ | 37/900 [11:45<4:29:55, 18.77s/it]
38
  4%|▍ | 38/900 [12:07<4:43:01, 19.70s/it]
39
  4%|▍ | 39/900 [12:08<3:23:13, 14.16s/it]
40
  4%|▍ | 40/900 [12:09<2:25:49, 10.17s/it]
41
  5%|▍ | 41/900 [12:10<1:46:12, 7.42s/it]
42
  5%|▍ | 42/900 [12:31<2:42:32, 11.37s/it]
43
  5%|▍ | 43/900 [12:32<1:59:27, 8.36s/it]
44
  5%|▍ | 44/900 [12:35<1:34:38, 6.63s/it]
45
  5%|β–Œ | 45/900 [12:36<1:12:46, 5.11s/it]
46
  5%|β–Œ | 46/900 [12:37<55:07, 3.87s/it]
47
  5%|β–Œ | 47/900 [12:38<42:41, 3.00s/it]
48
  5%|β–Œ | 48/900 [12:39<34:31, 2.43s/it]
49
  5%|β–Œ | 49/900 [12:42<36:29, 2.57s/it]
50
  6%|β–Œ | 50/900 [12:44<32:01, 2.26s/it]
51
  6%|β–Œ | 51/900 [12:46<30:32, 2.16s/it]
52
  6%|β–Œ | 52/900 [12:49<34:42, 2.46s/it]
53
  6%|β–Œ | 53/900 [12:51<32:50, 2.33s/it]
54
  6%|β–Œ | 54/900 [12:52<28:44, 2.04s/it]
55
  6%|β–Œ | 55/900 [12:53<24:04, 1.71s/it]
56
  6%|β–Œ | 56/900 [12:54<19:58, 1.42s/it]
57
  6%|β–‹ | 57/900 [12:55<17:37, 1.25s/it]
58
  6%|β–‹ | 58/900 [12:56<15:02, 1.07s/it]
59
  7%|β–‹ | 59/900 [12:57<15:53, 1.13s/it]
60
  7%|β–‹ | 60/900 [12:58<17:06, 1.22s/it]
61
  7%|β–‹ | 61/900 [13:19<1:40:16, 7.17s/it]
62
  7%|β–‹ | 62/900 [13:40<2:38:14, 11.33s/it]
63
  7%|β–‹ | 63/900 [14:02<3:20:31, 14.37s/it]
64
  7%|β–‹ | 64/900 [14:23<3:48:24, 16.39s/it]
65
  7%|β–‹ | 65/900 [14:44<4:07:51, 17.81s/it]
66
  7%|β–‹ | 66/900 [15:05<4:21:03, 18.78s/it]
67
  7%|β–‹ | 67/900 [15:26<4:30:00, 19.45s/it]
68
  8%|β–Š | 68/900 [15:47<4:36:33, 19.94s/it]
69
  8%|β–Š | 69/900 [15:48<3:16:38, 14.20s/it]
70
  8%|β–Š | 70/900 [16:08<3:41:50, 16.04s/it]
71
  8%|β–Š | 71/900 [16:30<4:03:29, 17.62s/it]
72
  8%|β–Š | 72/900 [16:51<4:18:21, 18.72s/it]
73
  8%|β–Š | 73/900 [17:12<4:28:41, 19.49s/it]
74
  8%|β–Š | 74/900 [17:33<4:35:39, 20.02s/it]
75
  8%|β–Š | 75/900 [17:38<3:29:36, 15.24s/it]
76
  8%|β–Š | 76/900 [17:59<3:54:29, 17.07s/it]
77
  9%|β–Š | 77/900 [18:01<2:53:21, 12.64s/it]
78
  9%|β–Š | 78/900 [18:05<2:16:32, 9.97s/it]
79
  9%|β–‰ | 79/900 [18:06<1:40:34, 7.35s/it]
80
  9%|β–‰ | 80/900 [18:27<2:37:43, 11.54s/it]
81
  9%|β–‰ | 81/900 [18:49<3:17:46, 14.49s/it]
82
  9%|β–‰ | 82/900 [19:10<3:45:28, 16.54s/it]
83
  9%|β–‰ | 83/900 [19:31<4:04:28, 17.95s/it]
84
  9%|β–‰ | 84/900 [19:53<4:17:51, 18.96s/it]
85
  9%|β–‰ | 85/900 [20:14<4:26:55, 19.65s/it]
86
  10%|β–‰ | 86/900 [20:35<4:33:43, 20.18s/it]
87
  10%|β–‰ | 87/900 [20:57<4:38:17, 20.54s/it]
88
  10%|β–‰ | 88/900 [21:18<4:41:13, 20.78s/it]
89
  10%|β–‰ | 89/900 [21:39<4:43:09, 20.95s/it]
90
  10%|β–ˆ | 90/900 [22:01<4:44:36, 21.08s/it]
91
  10%|β–ˆ | 91/900 [22:02<3:22:41, 15.03s/it]
92
  10%|β–ˆ | 92/900 [22:23<3:47:16, 16.88s/it]
93
  10%|β–ˆ | 93/900 [22:44<4:05:15, 18.23s/it]
94
  10%|β–ˆ | 94/900 [23:06<4:17:50, 19.19s/it]
95
  11%|β–ˆ | 95/900 [23:08<3:10:29, 14.20s/it]
96
  11%|β–ˆ | 96/900 [23:30<3:39:35, 16.39s/it]
97
  11%|β–ˆ | 97/900 [23:30<2:35:50, 11.64s/it]
98
  11%|β–ˆ | 98/900 [23:31<1:51:39, 8.35s/it]
99
  11%|β–ˆ | 99/900 [23:32<1:21:50, 6.13s/it]
100
  11%|β–ˆ | 100/900 [23:53<2:19:47, 10.48s/it]
101
  11%|β–ˆ | 101/900 [23:54<1:43:14, 7.75s/it]
102
  11%|β–ˆβ– | 102/900 [23:56<1:21:01, 6.09s/it]
103
  11%|β–ˆβ– | 103/900 [23:57<59:40, 4.49s/it]
104
  12%|β–ˆβ– | 104/900 [23:59<50:44, 3.82s/it]
105
  12%|β–ˆβ– | 105/900 [24:21<2:00:46, 9.12s/it]
106
  12%|β–ˆβ– | 106/900 [24:22<1:29:13, 6.74s/it]
107
  12%|β–ˆβ– | 107/900 [24:42<2:23:21, 10.85s/it]
108
  12%|β–ˆβ– | 108/900 [24:43<1:44:31, 7.92s/it]
109
  12%|β–ˆβ– | 109/900 [24:44<1:15:29, 5.73s/it]
110
  12%|β–ˆβ– | 110/900 [24:45<55:56, 4.25s/it]
111
  12%|β–ˆβ– | 111/900 [25:06<2:04:14, 9.45s/it]
112
  12%|β–ˆβ– | 112/900 [25:08<1:31:24, 6.96s/it]
113
  13%|β–ˆβ–Ž | 113/900 [25:09<1:08:01, 5.19s/it]
114
  13%|β–ˆβ–Ž | 114/900 [25:10<51:38, 3.94s/it]
115
  13%|β–ˆβ–Ž | 115/900 [25:31<1:59:11, 9.11s/it]
116
  13%|β–ˆβ–Ž | 116/900 [25:32<1:26:55, 6.65s/it]
117
  13%|β–ˆβ–Ž | 117/900 [25:33<1:05:51, 5.05s/it]
118
  13%|β–ˆβ–Ž | 118/900 [25:54<2:07:31, 9.78s/it]
119
  13%|β–ˆβ–Ž | 119/900 [25:55<1:34:28, 7.26s/it]
120
  13%|β–ˆβ–Ž | 120/900 [26:17<2:28:58, 11.46s/it]
121
  13%|β–ˆβ–Ž | 121/900 [26:17<1:47:35, 8.29s/it]
122
  14%|β–ˆβ–Ž | 122/900 [26:19<1:22:40, 6.38s/it]
123
  14%|β–ˆβ–Ž | 123/900 [26:22<1:07:29, 5.21s/it]
124
  14%|β–ˆβ– | 124/900 [26:23<50:57, 3.94s/it]
125
  14%|β–ˆβ– | 125/900 [26:44<1:58:00, 9.14s/it]
126
  14%|β–ˆβ– | 126/900 [26:46<1:28:31, 6.86s/it]
127
  14%|β–ˆβ– | 127/900 [26:47<1:08:37, 5.33s/it]
128
  14%|β–ˆβ– | 128/900 [26:48<51:29, 4.00s/it]
129
  14%|β–ˆβ– | 129/900 [26:49<39:29, 3.07s/it]
130
  14%|β–ˆβ– | 130/900 [27:10<1:49:29, 8.53s/it]
131
  15%|β–ˆβ– | 131/900 [27:31<2:35:58, 12.17s/it]
132
  15%|β–ˆβ– | 132/900 [27:33<1:58:03, 9.22s/it]
133
  15%|β–ˆβ– | 133/900 [27:54<2:42:06, 12.68s/it]
134
  15%|β–ˆβ– | 134/900 [28:16<3:16:11, 15.37s/it]
135
  15%|β–ˆβ–Œ | 135/900 [28:17<2:20:35, 11.03s/it]
136
  15%|β–ˆβ–Œ | 136/900 [28:38<2:58:54, 14.05s/it]
137
  15%|β–ˆβ–Œ | 137/900 [28:59<3:23:50, 16.03s/it]
138
  15%|β–ˆβ–Œ | 138/900 [29:01<2:30:47, 11.87s/it]
139
  15%|β–ˆβ–Œ | 139/900 [29:02<1:50:18, 8.70s/it]
140
  16%|β–ˆβ–Œ | 140/900 [29:03<1:21:09, 6.41s/it]
141
  16%|β–ˆβ–Œ | 141/900 [29:24<2:15:34, 10.72s/it]
142
  16%|β–ˆβ–Œ | 142/900 [29:45<2:53:29, 13.73s/it]
143
  16%|β–ˆβ–Œ | 143/900 [29:45<2:04:31, 9.87s/it]
144
  16%|β–ˆβ–Œ | 144/900 [29:47<1:33:06, 7.39s/it]
145
  16%|β–ˆβ–Œ | 145/900 [29:49<1:12:35, 5.77s/it]
146
  16%|β–ˆβ–Œ | 146/900 [30:10<2:08:54, 10.26s/it]
147
  16%|β–ˆβ–‹ | 147/900 [30:31<2:50:14, 13.57s/it]
148
  16%|β–ˆβ–‹ | 148/900 [30:52<3:19:15, 15.90s/it]
149
  17%|β–ˆβ–‹ | 149/900 [30:54<2:26:11, 11.68s/it]
150
  17%|β–ˆβ–‹ | 150/900 [31:16<3:02:14, 14.58s/it]
151
  17%|β–ˆβ–‹ | 151/900 [31:16<2:09:28, 10.37s/it]
152
  17%|β–ˆβ–‹ | 152/900 [31:18<1:35:49, 7.69s/it]
153
  17%|β–ˆβ–‹ | 153/900 [31:19<1:12:40, 5.84s/it]
154
  17%|β–ˆβ–‹ | 154/900 [31:40<2:10:14, 10.47s/it]
155
  17%|β–ˆβ–‹ | 155/900 [32:01<2:48:21, 13.56s/it]
156
  17%|β–ˆβ–‹ | 156/900 [32:22<3:15:14, 15.74s/it]
157
  17%|β–ˆβ–‹ | 157/900 [32:43<3:35:15, 17.38s/it]
158
  18%|β–ˆβ–Š | 158/900 [33:04<3:47:14, 18.37s/it]
159
  18%|β–ˆβ–Š | 159/900 [33:25<3:57:34, 19.24s/it]
160
  18%|β–ˆβ–Š | 160/900 [33:46<4:02:08, 19.63s/it]
161
  18%|β–ˆβ–Š | 161/900 [34:07<4:08:00, 20.14s/it]
162
  18%|β–ˆβ–Š | 162/900 [34:08<2:56:35, 14.36s/it]
163
  18%|β–ˆβ–Š | 163/900 [34:29<3:21:04, 16.37s/it]
164
  18%|β–ˆβ–Š | 164/900 [34:50<3:36:27, 17.65s/it]
165
  18%|β–ˆβ–Š | 165/900 [35:10<3:47:01, 18.53s/it]
166
  18%|β–ˆβ–Š | 166/900 [35:11<2:42:52, 13.31s/it]/opt/conda/envs/tinyllava/lib/python3.10/site-packages/PIL/Image.py:1047: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
 
 
167
  19%|β–ˆβ–Š | 167/900 [35:32<3:11:28, 15.67s/it]
168
  19%|β–ˆβ–Š | 168/900 [35:53<3:28:49, 17.12s/it]
169
  19%|β–ˆβ–‰ | 169/900 [35:54<2:29:24, 12.26s/it]
170
  19%|β–ˆβ–‰ | 170/900 [35:55<1:48:03, 8.88s/it]
171
  19%|β–ˆβ–‰ | 171/900 [36:16<2:30:54, 12.42s/it]
172
  19%|β–ˆβ–‰ | 172/900 [36:37<3:03:09, 15.10s/it]
173
  19%|β–ˆβ–‰ | 173/900 [36:57<3:22:18, 16.70s/it]
174
  19%|β–ˆβ–‰ | 174/900 [37:18<3:37:55, 18.01s/it]
175
  19%|β–ˆβ–‰ | 175/900 [37:39<3:47:03, 18.79s/it]
176
  20%|β–ˆβ–‰ | 176/900 [37:40<2:40:48, 13.33s/it]
177
  20%|β–ˆβ–‰ | 177/900 [38:01<3:08:02, 15.60s/it]
178
  20%|β–ˆβ–‰ | 178/900 [38:21<3:26:44, 17.18s/it]
179
  20%|β–ˆβ–‰ | 179/900 [38:22<2:27:14, 12.25s/it]
180
  20%|β–ˆβ–ˆ | 180/900 [38:43<2:57:13, 14.77s/it]
181
  20%|β–ˆβ–ˆ | 181/900 [39:04<3:19:07, 16.62s/it]
182
  20%|β–ˆβ–ˆ | 182/900 [39:25<3:35:20, 18.00s/it]
183
  20%|β–ˆβ–ˆ | 183/900 [39:29<2:45:15, 13.83s/it]
184
  20%|β–ˆβ–ˆ | 184/900 [39:49<3:08:39, 15.81s/it]
185
  21%|β–ˆβ–ˆ | 185/900 [40:11<3:27:49, 17.44s/it]
186
  21%|β–ˆβ–ˆ | 186/900 [40:32<3:40:42, 18.55s/it]
187
  21%|β–ˆβ–ˆ | 187/900 [40:53<3:48:31, 19.23s/it]
188
  21%|β–ˆβ–ˆ | 188/900 [41:13<3:53:38, 19.69s/it]
189
  21%|β–ˆβ–ˆ | 189/900 [41:35<3:59:57, 20.25s/it]
190
  21%|β–ˆβ–ˆ | 190/900 [41:56<4:04:08, 20.63s/it]
191
  21%|β–ˆβ–ˆ | 191/900 [42:17<4:04:21, 20.68s/it]
192
  21%|β–ˆβ–ˆβ– | 192/900 [42:39<4:07:10, 20.95s/it]
193
  21%|β–ˆβ–ˆβ– | 193/900 [43:00<4:08:28, 21.09s/it]
194
  22%|β–ˆβ–ˆβ– | 194/900 [43:21<4:06:55, 20.99s/it]
195
  22%|β–ˆβ–ˆβ– | 195/900 [43:22<2:55:45, 14.96s/it]
196
  22%|β–ˆβ–ˆβ– | 196/900 [43:43<3:16:59, 16.79s/it]
197
  22%|β–ˆβ–ˆβ– | 197/900 [44:04<3:29:56, 17.92s/it]
198
  22%|β–ˆβ–ˆβ– | 198/900 [44:24<3:39:12, 18.74s/it]
199
  22%|β–ˆβ–ˆβ– | 199/900 [44:45<3:45:35, 19.31s/it]
200
  22%|β–ˆβ–ˆβ– | 200/900 [45:06<3:51:26, 19.84s/it]
201
  22%|β–ˆβ–ˆβ– | 201/900 [45:27<3:54:10, 20.10s/it]
202
  22%|β–ˆβ–ˆβ– | 202/900 [45:47<3:56:02, 20.29s/it]
203
  23%|β–ˆβ–ˆβ–Ž | 203/900 [46:08<3:57:03, 20.41s/it]
204
  23%|β–ˆβ–ˆβ–Ž | 204/900 [46:09<2:48:37, 14.54s/it]
205
  23%|β–ˆβ–ˆβ–Ž | 205/900 [46:29<3:08:29, 16.27s/it]
206
  23%|β–ˆβ–ˆβ–Ž | 206/900 [46:50<3:25:37, 17.78s/it]
207
  23%|β–ˆβ–ˆβ–Ž | 207/900 [47:12<3:37:02, 18.79s/it]
208
  23%|β–ˆβ–ˆβ–Ž | 208/900 [47:33<3:45:21, 19.54s/it]
209
  23%|β–ˆβ–ˆβ–Ž | 209/900 [47:54<3:48:46, 19.86s/it]
210
  23%|β–ˆβ–ˆβ–Ž | 210/900 [47:59<2:57:15, 15.41s/it]
211
  23%|β–ˆβ–ˆβ–Ž | 211/900 [47:59<2:05:33, 10.93s/it]
212
  24%|β–ˆβ–ˆβ–Ž | 212/900 [48:20<2:40:08, 13.97s/it]
213
  24%|β–ˆβ–ˆβ–Ž | 213/900 [48:41<3:05:21, 16.19s/it]
214
  24%|β–ˆβ–ˆβ– | 214/900 [49:02<3:20:33, 17.54s/it]
215
  24%|β–ˆβ–ˆβ– | 215/900 [49:24<3:33:32, 18.70s/it]
216
  24%|β–ˆβ–ˆβ– | 216/900 [49:45<3:42:31, 19.52s/it]
217
  24%|β–ˆβ–ˆβ– | 217/900 [50:06<3:48:38, 20.09s/it]
218
  24%|β–ˆβ–ˆβ– | 218/900 [50:28<3:52:17, 20.44s/it]
219
  24%|β–ˆβ–ˆβ– | 219/900 [50:28<2:44:02, 14.45s/it]
220
  24%|β–ˆβ–ˆβ– | 220/900 [50:49<3:03:57, 16.23s/it]
221
  25%|β–ˆβ–ˆβ– | 221/900 [51:10<3:20:09, 17.69s/it]
222
  25%|β–ˆβ–ˆβ– | 222/900 [51:11<2:25:28, 12.87s/it]
223
  25%|β–ˆβ–ˆβ– | 223/900 [51:32<2:51:49, 15.23s/it]
224
  25%|β–ˆβ–ˆβ– | 224/900 [51:53<3:12:06, 17.05s/it]
225
  25%|β–ˆβ–ˆβ–Œ | 225/900 [51:54<2:16:06, 12.10s/it]
226
  25%|β–ˆβ–ˆβ–Œ | 226/900 [52:14<2:44:05, 14.61s/it]
227
  25%|β–ˆβ–ˆβ–Œ | 227/900 [52:35<3:04:14, 16.43s/it]
228
  25%|β–ˆβ–ˆβ–Œ | 228/900 [52:56<3:18:27, 17.72s/it]
229
  25%|β–ˆβ–ˆβ–Œ | 229/900 [53:16<3:27:07, 18.52s/it]
230
  26%|β–ˆβ–ˆβ–Œ | 230/900 [53:37<3:33:28, 19.12s/it]
231
  26%|β–ˆβ–ˆβ–Œ | 231/900 [53:57<3:37:32, 19.51s/it]
232
  26%|β–ˆβ–ˆβ–Œ | 232/900 [54:19<3:44:12, 20.14s/it]
233
  26%|β–ˆβ–ˆβ–Œ | 233/900 [54:39<3:44:58, 20.24s/it]
234
  26%|β–ˆβ–ˆβ–Œ | 234/900 [54:59<3:45:12, 20.29s/it]
235
  26%|β–ˆβ–ˆβ–Œ | 235/900 [55:21<3:48:55, 20.65s/it]
236
  26%|β–ˆβ–ˆβ–Œ | 236/900 [55:41<3:47:43, 20.58s/it]
237
  26%|β–ˆβ–ˆβ–‹ | 237/900 [56:03<3:50:35, 20.87s/it]
238
  26%|β–ˆβ–ˆβ–‹ | 238/900 [56:24<3:49:51, 20.83s/it]
239
  27%|β–ˆβ–ˆβ–‹ | 239/900 [56:44<3:49:01, 20.79s/it]
240
  27%|β–ˆβ–ˆβ–‹ | 240/900 [57:05<3:48:19, 20.76s/it]
241
  27%|β–ˆβ–ˆβ–‹ | 241/900 [57:06<2:43:30, 14.89s/it]
242
  27%|β–ˆβ–ˆβ–‹ | 242/900 [57:28<3:04:34, 16.83s/it]
243
  27%|β–ˆβ–ˆβ–‹ | 243/900 [57:29<2:13:42, 12.21s/it]
244
  27%|β–ˆβ–ˆβ–‹ | 244/900 [57:30<1:36:10, 8.80s/it]
245
  27%|β–ˆβ–ˆβ–‹ | 245/900 [57:51<2:16:39, 12.52s/it]
246
  27%|β–ˆβ–ˆβ–‹ | 246/900 [58:12<2:42:53, 14.94s/it]
247
  27%|β–ˆβ–ˆβ–‹ | 247/900 [58:33<3:03:28, 16.86s/it]
248
  28%|β–ˆβ–ˆβ–Š | 248/900 [58:54<3:16:14, 18.06s/it]
249
  28%|β–ˆβ–ˆβ–Š | 249/900 [59:15<3:26:50, 19.06s/it]
250
  28%|β–ˆβ–ˆβ–Š | 250/900 [59:36<3:31:20, 19.51s/it]
251
  28%|β–ˆβ–ˆβ–Š | 251/900 [59:56<3:34:19, 19.81s/it]
252
  28%|β–ˆβ–ˆβ–Š | 252/900 [1:00:18<3:39:22, 20.31s/it]
253
  28%|β–ˆβ–ˆβ–Š | 253/900 [1:00:38<3:39:48, 20.38s/it]
254
  28%|β–ˆβ–ˆβ–Š | 254/900 [1:01:00<3:42:49, 20.70s/it]
255
  28%|β–ˆβ–ˆβ–Š | 255/900 [1:01:02<2:41:49, 15.05s/it]
256
  28%|β–ˆβ–ˆβ–Š | 256/900 [1:01:06<2:06:17, 11.77s/it]
257
  29%|β–ˆβ–ˆβ–Š | 257/900 [1:01:27<2:36:30, 14.60s/it]
258
  29%|β–ˆβ–ˆβ–Š | 258/900 [1:01:48<2:56:21, 16.48s/it]
259
  29%|β–ˆβ–ˆβ–‰ | 259/900 [1:01:49<2:07:10, 11.90s/it]
260
  29%|β–ˆβ–ˆβ–‰ | 260/900 [1:02:10<2:35:31, 14.58s/it]
261
  29%|β–ˆβ–ˆβ–‰ | 261/900 [1:02:31<2:54:38, 16.40s/it]
262
  29%|β–ˆβ–ˆβ–‰ | 262/900 [1:02:52<3:10:11, 17.89s/it]
263
  29%|β–ˆβ–ˆβ–‰ | 263/900 [1:02:53<2:14:54, 12.71s/it]
264
  29%|β–ˆβ–ˆβ–‰ | 264/900 [1:03:14<2:41:20, 15.22s/it]
265
  29%|β–ˆβ–ˆβ–‰ | 265/900 [1:03:34<2:58:08, 16.83s/it]
266
  30%|β–ˆβ–ˆβ–‰ | 266/900 [1:03:55<3:09:24, 17.93s/it]
267
  30%|β–ˆβ–ˆβ–‰ | 267/900 [1:03:56<2:17:56, 13.08s/it]
268
  30%|β–ˆβ–ˆβ–‰ | 268/900 [1:03:58<1:41:16, 9.61s/it]
269
  30%|β–ˆβ–ˆβ–‰ | 269/900 [1:04:20<2:18:41, 13.19s/it]
270
  30%|β–ˆβ–ˆβ–ˆ | 270/900 [1:04:20<1:39:47, 9.50s/it]
271
  30%|β–ˆβ–ˆβ–ˆ | 271/900 [1:04:41<2:14:34, 12.84s/it]
272
  30%|β–ˆβ–ˆβ–ˆ | 272/900 [1:05:02<2:39:19, 15.22s/it]
273
  30%|β–ˆβ–ˆβ–ˆ | 273/900 [1:05:23<2:58:18, 17.06s/it]
274
  30%|β–ˆβ–ˆβ–ˆ | 274/900 [1:05:50<3:28:33, 19.99s/it]
275
  31%|β–ˆβ–ˆβ–ˆ | 275/900 [1:06:17<3:49:18, 22.01s/it]
276
  31%|β–ˆβ–ˆβ–ˆ | 276/900 [1:06:38<3:46:58, 21.82s/it]
277
  31%|β–ˆβ–ˆβ–ˆ | 277/900 [1:06:59<3:42:34, 21.44s/it]
278
  31%|β–ˆβ–ˆβ–ˆ | 278/900 [1:07:19<3:39:16, 21.15s/it]
279
  31%|β–ˆβ–ˆβ–ˆ | 279/900 [1:07:41<3:39:44, 21.23s/it]
280
  31%|β–ˆβ–ˆβ–ˆ | 280/900 [1:08:02<3:39:48, 21.27s/it]
281
  31%|β–ˆβ–ˆβ–ˆ | 281/900 [1:08:23<3:39:37, 21.29s/it]
282
  31%|β–ˆβ–ˆβ–ˆβ– | 282/900 [1:08:45<3:39:25, 21.30s/it]
283
  31%|β–ˆβ–ˆβ–ˆβ– | 283/900 [1:09:06<3:39:12, 21.32s/it]
284
  32%|β–ˆβ–ˆβ–ˆβ– | 284/900 [1:09:27<3:36:37, 21.10s/it]
285
  32%|β–ˆβ–ˆβ–ˆβ– | 285/900 [1:09:47<3:34:48, 20.96s/it]
286
  32%|β–ˆβ–ˆβ–ˆβ– | 286/900 [1:10:08<3:33:08, 20.83s/it]
287
  32%|β–ˆβ–ˆβ–ˆβ– | 287/900 [1:10:28<3:31:55, 20.74s/it]
288
  32%|β–ˆβ–ˆβ–ˆβ– | 288/900 [1:10:49<3:31:02, 20.69s/it]
289
  32%|β–ˆβ–ˆβ–ˆβ– | 289/900 [1:11:09<3:29:54, 20.61s/it]
290
  32%|β–ˆβ–ˆβ–ˆβ– | 290/900 [1:11:31<3:32:28, 20.90s/it]
291
  32%|β–ˆβ–ˆβ–ˆβ– | 291/900 [1:11:52<3:34:04, 21.09s/it]
292
  32%|β–ˆβ–ˆβ–ˆβ– | 292/900 [1:12:14<3:34:57, 21.21s/it]
293
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 293/900 [1:12:35<3:35:29, 21.30s/it]
294
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 294/900 [1:12:57<3:36:05, 21.40s/it]
295
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 295/900 [1:13:18<3:34:11, 21.24s/it]
296
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 296/900 [1:13:39<3:32:46, 21.14s/it]
297
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 297/900 [1:14:00<3:31:35, 21.05s/it]
298
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 298/900 [1:14:01<2:31:17, 15.08s/it]
299
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 299/900 [1:14:07<2:03:47, 12.36s/it]
300
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 300/900 [1:14:28<2:30:48, 15.08s/it]
301
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 301/900 [1:14:29<1:48:02, 10.82s/it]
302
  34%|β–ˆβ–ˆβ–ˆβ–Ž | 302/900 [1:14:30<1:17:56, 7.82s/it]
303
  34%|β–ˆβ–ˆβ–ˆβ–Ž | 303/900 [1:14:51<1:56:15, 11.68s/it]
304
  34%|β–ˆβ–ˆβ–ˆβ– | 304/900 [1:15:12<2:25:18, 14.63s/it]
305
  34%|β–ˆβ–ˆβ–ˆβ– | 305/900 [1:15:14<1:45:58, 10.69s/it]
306
  34%|β–ˆβ–ˆβ–ˆβ– | 306/900 [1:15:34<2:14:56, 13.63s/it]
307
  34%|β–ˆβ–ˆβ–ˆβ– | 307/900 [1:15:35<1:36:15, 9.74s/it]
308
  34%|β–ˆβ–ˆβ–ˆβ– | 308/900 [1:15:56<2:10:41, 13.25s/it]
309
  34%|β–ˆβ–ˆβ–ˆβ– | 309/900 [1:15:57<1:33:56, 9.54s/it]
310
  34%|β–ˆβ–ˆβ–ˆβ– | 310/900 [1:15:58<1:07:26, 6.86s/it]
311
  35%|β–ˆβ–ˆβ–ˆβ– | 311/900 [1:16:19<1:49:46, 11.18s/it]
312
  35%|β–ˆβ–ˆβ–ˆβ– | 312/900 [1:16:20<1:18:44, 8.03s/it]
313
  35%|β–ˆβ–ˆβ–ˆβ– | 313/900 [1:16:20<57:08, 5.84s/it]
 
1
+ ==== STARTING EXPERIMENT: eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_0.7_2e-1_connector-5.0_0.7_2e-1_ablation ====
2
+ Log File: eval_qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_0.7_2e-1_connector-5.0_0.7_2e-1_ablation_20251013_223153.log
3
+ Timestamp: 2025-10-13 22:31:53
4
+ =====================================
5
+ Processing: /nfs/ywang29/TinyLLaVA/checkpoints/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_0.7_2e-1_connector-5.0_0.7_2e-1_ablation
6
+ /opt/conda/envs/tinyllava/lib/python3.10/site-packages/torch/cuda/__init__.py:51: FutureWarning: The pynvml package is deprecated. Please install nvidia-ml-py instead. If you did not install pynvml directly, please report this to the maintainers of the package that installed pynvml for you.
7
+ import pynvml # type: ignore[import]
8
+ [2025-10-13 22:31:56,706] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
9
+ /opt/conda/envs/tinyllava/lib/python3.10/site-packages/huggingface_hub/file_download.py:945: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
10
+ warnings.warn(
11
+ config_mask.torch_dtype: torch.bfloat16
12
+ Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
13
+ Load mask model from /nfs/ywang29/TinyLLaVA/checkpoints/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_0.7_2e-1_connector-5.0_0.7_2e-1_ablation over.
14
+ TinyLlavaConfig {
15
+ "architectures": [
16
+ "TinyLlavaForConditionalGeneration"
17
+ ],
18
+ "backward_type_connector": "normal",
19
+ "cache_dir": null,
20
+ "connector_type": "mlp2x_gelu",
21
+ "hidden_size": 896,
22
+ "ignore_index": -100,
23
+ "image_aspect_ratio": "square",
24
+ "image_token_index": -200,
25
+ "llm_model_name_or_path": "Qwen/Qwen2.5-0.5B",
26
+ "mask_model": [
27
+ "llm",
28
+ "connector"
29
+ ],
30
+ "mask_type_connector": "soft",
31
+ "model_type": "tinyllava",
32
+ "num_queries": 128,
33
+ "num_resampler_layers": 3,
34
+ "pad_token": "<|endoftext|>",
35
+ "resampler_hidden_size": 768,
36
+ "sparsity_connector": null,
37
+ "subnet_type_connector": "global",
38
+ "temperature_connector": 0.7,
39
+ "text_config": {
40
+ "_name_or_path": "Qwen/Qwen2.5-0.5B",
41
+ "architectures": [
42
+ "Qwen2ForCausalLM"
43
+ ],
44
+ "backward_type": "normal",
45
+ "bos_token_id": 151643,
46
+ "eos_token_id": 151643,
47
+ "hidden_size": 896,
48
+ "intermediate_size": 4864,
49
+ "mask_type": "soft",
50
+ "masked_layers": "all",
51
+ "max_position_embeddings": 32768,
52
+ "max_window_layers": 24,
53
+ "model_type": "qwen2",
54
+ "num_attention_heads": 14,
55
+ "num_hidden_layers": 24,
56
+ "num_key_value_heads": 2,
57
+ "rope_theta": 1000000.0,
58
+ "sliding_window": 32768,
59
+ "subnet_mode": "both",
60
+ "subnet_type": "None",
61
+ "temperature_attn": 0.7,
62
+ "temperature_mlp": 0.7,
63
+ "tie_word_embeddings": true,
64
+ "torch_dtype": "bfloat16",
65
+ "use_mrope": false,
66
+ "use_sliding_window": false,
67
+ "vocab_size": 151936
68
+ },
69
+ "threshold_connector": null,
70
+ "tokenizer_model_max_length": 2048,
71
+ "tokenizer_name_or_path": "Qwen/Qwen2.5-0.5B",
72
+ "tokenizer_padding_side": "right",
73
+ "tokenizer_use_fast": false,
74
+ "torch_dtype": "bfloat16",
75
+ "transformers_version": "4.40.1",
76
+ "tune_type_connector": "full",
77
+ "tune_type_llm": "full",
78
+ "tune_type_vision_tower": "frozen",
79
+ "tune_vision_tower_from_layer": 0,
80
+ "use_cache": true,
81
+ "vision_config": {
82
+ "hidden_act": "gelu_pytorch_tanh",
83
+ "hidden_size": 1152,
84
+ "image_size": 384,
85
+ "intermediate_size": 4304,
86
+ "layer_norm_eps": 1e-06,
87
+ "model_name_or_path": "google/siglip-so400m-patch14-384",
88
+ "model_name_or_path2": "",
89
+ "model_type": "siglip_vision_model",
90
+ "num_attention_heads": 16,
91
+ "num_hidden_layers": 27,
92
+ "patch_size": 14
93
+ },
94
+ "vision_feature_layer": -2,
95
+ "vision_feature_select_strategy": "patch",
96
+ "vision_hidden_size": 1152,
97
+ "vision_model_name_or_path": "google/siglip-so400m-patch14-384",
98
+ "vision_model_name_or_path2": "",
99
+ "vocab_size": 151936
100
+ }
101
+
102
+ TinyLlavaForConditionalGeneration(
103
+ (language_model): Qwen2ForCausalLM(
104
+ (model): Qwen2Model(
105
+ (embed_tokens): Embedding(151936, 896)
106
+ (layers): ModuleList(
107
+ (0-23): 24 x Qwen2DecoderLayer(
108
+ (self_attn): Qwen2Attention(
109
+ (q_proj): SupermaskLinearSparsity_SoftForward_Normal(in_features=896, out_features=896, bias=True)
110
+ (k_proj): SupermaskLinearSparsity_SoftForward_Normal(in_features=896, out_features=128, bias=True)
111
+ (v_proj): SupermaskLinearSparsity_SoftForward_Normal(in_features=896, out_features=128, bias=True)
112
+ (o_proj): SupermaskLinearSparsity_SoftForward_Normal(in_features=896, out_features=896, bias=False)
113
+ (rotary_emb): Qwen2RotaryEmbedding()
114
+ )
115
+ (mlp): Qwen2MLP(
116
+ (gate_proj): SupermaskLinearSparsity_SoftForward_Normal(in_features=896, out_features=4864, bias=False)
117
+ (up_proj): SupermaskLinearSparsity_SoftForward_Normal(in_features=896, out_features=4864, bias=False)
118
+ (down_proj): SupermaskLinearSparsity_SoftForward_Normal(in_features=4864, out_features=896, bias=False)
119
+ (act_fn): SiLU()
120
+ )
121
+ (input_layernorm): Qwen2RMSNorm()
122
+ (post_attention_layernorm): Qwen2RMSNorm()
123
+ )
124
+ )
125
+ (norm): Qwen2RMSNorm()
126
+ )
127
+ (lm_head): Linear(in_features=896, out_features=151936, bias=False)
128
+ )
129
+ (vision_tower): SIGLIPVisionTower(
130
+ (_vision_tower): SiglipVisionModel(
131
+ (vision_model): SiglipVisionTransformer(
132
+ (embeddings): SiglipVisionEmbeddings(
133
+ (patch_embedding): Conv2d(3, 1152, kernel_size=(14, 14), stride=(14, 14), padding=valid)
134
+ (position_embedding): Embedding(729, 1152)
135
+ )
136
+ (encoder): SiglipEncoder(
137
+ (layers): ModuleList(
138
+ (0-26): 27 x SiglipEncoderLayer(
139
+ (self_attn): SiglipAttention(
140
+ (k_proj): Linear(in_features=1152, out_features=1152, bias=True)
141
+ (v_proj): Linear(in_features=1152, out_features=1152, bias=True)
142
+ (q_proj): Linear(in_features=1152, out_features=1152, bias=True)
143
+ (out_proj): Linear(in_features=1152, out_features=1152, bias=True)
144
+ )
145
+ (layer_norm1): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
146
+ (mlp): SiglipMLP(
147
+ (activation_fn): PytorchGELUTanh()
148
+ (fc1): Linear(in_features=1152, out_features=4304, bias=True)
149
+ (fc2): Linear(in_features=4304, out_features=1152, bias=True)
150
+ )
151
+ (layer_norm2): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
152
+ )
153
+ )
154
+ )
155
+ (post_layernorm): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
156
+ (head): SiglipMultiheadAttentionPoolingHead(
157
+ (attention): MultiheadAttention(
158
+ (out_proj): NonDynamicallyQuantizableLinear(in_features=1152, out_features=1152, bias=True)
159
+ )
160
+ (layernorm): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
161
+ (mlp): SiglipMLP(
162
+ (activation_fn): PytorchGELUTanh()
163
+ (fc1): Linear(in_features=1152, out_features=4304, bias=True)
164
+ (fc2): Linear(in_features=4304, out_features=1152, bias=True)
165
+ )
166
+ )
167
+ )
168
+ )
169
+ )
170
+ (connector): MLPConnector(
171
+ (_connector): Sequential(
172
+ (0): SupermaskLinearSparsity_SoftForward_Normal(in_features=1152, out_features=896, bias=True)
173
+ (1): GELU(approximate='none')
174
+ (2): SupermaskLinearSparsity_SoftForward_Normal(in_features=896, out_features=896, bias=True)
175
+ )
176
+ )
177
+ )
178
+ Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
179
+ /opt/conda/envs/tinyllava/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
180
+ return self.fget.__get__(instance, owner)()
181
+ loading language model from /nfs/ywang29/TinyLLaVA/checkpoints/tiny-llava-Qwen2.5-0.5B-siglip-so400m-patch14-384-pretrain/language_model
182
+ Loading vision tower from /nfs/ywang29/TinyLLaVA/checkpoints/tiny-llava-Qwen2.5-0.5B-siglip-so400m-patch14-384-pretrain/vision_tower
183
+ Loading connector from /nfs/ywang29/TinyLLaVA/checkpoints/tiny-llava-Qwen2.5-0.5B-siglip-so400m-patch14-384-pretrain/connector/pytorch_model.bin...
184
+ Load base model from /nfs/ywang29/TinyLLaVA/checkpoints/tiny-llava-Qwen2.5-0.5B-siglip-so400m-patch14-384-pretrain over.
185
+ TinyLlavaConfig {
186
+ "cache_dir": null,
187
+ "connector_type": "mlp2x_gelu",
188
+ "hidden_size": 896,
189
+ "ignore_index": -100,
190
+ "image_aspect_ratio": "square",
191
+ "image_token_index": -200,
192
+ "llm_model_name_or_path": "Qwen/Qwen2.5-0.5B",
193
+ "model_type": "tinyllava",
194
+ "num_queries": 128,
195
+ "num_resampler_layers": 3,
196
+ "pad_token": "<|endoftext|>",
197
+ "pad_token_id": 151643,
198
+ "resampler_hidden_size": 768,
199
+ "text_config": {
200
+ "_name_or_path": "Qwen/Qwen2.5-0.5B",
201
+ "architectures": [
202
+ "Qwen2ForCausalLM"
203
+ ],
204
+ "bos_token_id": 151643,
205
+ "eos_token_id": 151643,
206
+ "hidden_size": 896,
207
+ "intermediate_size": 4864,
208
+ "max_position_embeddings": 32768,
209
+ "max_window_layers": 24,
210
+ "model_type": "qwen2",
211
+ "num_attention_heads": 14,
212
+ "num_hidden_layers": 24,
213
+ "num_key_value_heads": 2,
214
+ "rope_theta": 1000000.0,
215
+ "sliding_window": 32768,
216
+ "tie_word_embeddings": true,
217
+ "use_mrope": false,
218
+ "use_sliding_window": false,
219
+ "vocab_size": 151936
220
+ },
221
+ "tokenizer_model_max_length": 2048,
222
+ "tokenizer_name_or_path": "Qwen/Qwen2.5-0.5B",
223
+ "tokenizer_padding_side": "right",
224
+ "tokenizer_use_fast": false,
225
+ "transformers_version": "4.40.1",
226
+ "tune_type_connector": "full",
227
+ "tune_type_llm": "frozen",
228
+ "tune_type_vision_tower": "frozen",
229
+ "tune_vision_tower_from_layer": 0,
230
+ "use_cache": true,
231
+ "vision_config": {
232
+ "hidden_act": "gelu_pytorch_tanh",
233
+ "hidden_size": 1152,
234
+ "image_size": 384,
235
+ "intermediate_size": 4304,
236
+ "layer_norm_eps": 1e-06,
237
+ "model_name_or_path": "google/siglip-so400m-patch14-384",
238
+ "model_name_or_path2": "",
239
+ "model_type": "siglip_vision_model",
240
+ "num_attention_heads": 16,
241
+ "num_hidden_layers": 27,
242
+ "patch_size": 14
243
+ },
244
+ "vision_feature_layer": -2,
245
+ "vision_feature_select_strategy": "patch",
246
+ "vision_hidden_size": 1152,
247
+ "vision_model_name_or_path": "google/siglip-so400m-patch14-384",
248
+ "vision_model_name_or_path2": "",
249
+ "vocab_size": 151936
250
+ }
251
+
252
+ TinyLlavaForConditionalGeneration(
253
+ (language_model): Qwen2ForCausalLM(
254
+ (model): Qwen2Model(
255
+ (embed_tokens): Embedding(151936, 896)
256
+ (layers): ModuleList(
257
+ (0-23): 24 x Qwen2DecoderLayer(
258
+ (self_attn): Qwen2Attention(
259
+ (q_proj): Linear(in_features=896, out_features=896, bias=True)
260
+ (k_proj): Linear(in_features=896, out_features=128, bias=True)
261
+ (v_proj): Linear(in_features=896, out_features=128, bias=True)
262
+ (o_proj): Linear(in_features=896, out_features=896, bias=False)
263
+ (rotary_emb): Qwen2RotaryEmbedding()
264
+ )
265
+ (mlp): Qwen2MLP(
266
+ (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
267
+ (up_proj): Linear(in_features=896, out_features=4864, bias=False)
268
+ (down_proj): Linear(in_features=4864, out_features=896, bias=False)
269
+ (act_fn): SiLU()
270
+ )
271
+ (input_layernorm): Qwen2RMSNorm()
272
+ (post_attention_layernorm): Qwen2RMSNorm()
273
+ )
274
+ )
275
+ (norm): Qwen2RMSNorm()
276
+ )
277
+ (lm_head): Linear(in_features=896, out_features=151936, bias=False)
278
+ )
279
+ (vision_tower): SIGLIPVisionTower(
280
+ (_vision_tower): SiglipVisionModel(
281
+ (vision_model): SiglipVisionTransformer(
282
+ (embeddings): SiglipVisionEmbeddings(
283
+ (patch_embedding): Conv2d(3, 1152, kernel_size=(14, 14), stride=(14, 14), padding=valid)
284
+ (position_embedding): Embedding(729, 1152)
285
+ )
286
+ (encoder): SiglipEncoder(
287
+ (layers): ModuleList(
288
+ (0-26): 27 x SiglipEncoderLayer(
289
+ (self_attn): SiglipAttention(
290
+ (k_proj): Linear(in_features=1152, out_features=1152, bias=True)
291
+ (v_proj): Linear(in_features=1152, out_features=1152, bias=True)
292
+ (q_proj): Linear(in_features=1152, out_features=1152, bias=True)
293
+ (out_proj): Linear(in_features=1152, out_features=1152, bias=True)
294
+ )
295
+ (layer_norm1): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
296
+ (mlp): SiglipMLP(
297
+ (activation_fn): PytorchGELUTanh()
298
+ (fc1): Linear(in_features=1152, out_features=4304, bias=True)
299
+ (fc2): Linear(in_features=4304, out_features=1152, bias=True)
300
+ )
301
+ (layer_norm2): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
302
+ )
303
+ )
304
+ )
305
+ (post_layernorm): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
306
+ (head): SiglipMultiheadAttentionPoolingHead(
307
+ (attention): MultiheadAttention(
308
+ (out_proj): NonDynamicallyQuantizableLinear(in_features=1152, out_features=1152, bias=True)
309
+ )
310
+ (layernorm): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
311
+ (mlp): SiglipMLP(
312
+ (activation_fn): PytorchGELUTanh()
313
+ (fc1): Linear(in_features=1152, out_features=4304, bias=True)
314
+ (fc2): Linear(in_features=4304, out_features=1152, bias=True)
315
+ )
316
+ )
317
+ )
318
+ )
319
+ )
320
+ (connector): MLPConnector(
321
+ (_connector): Sequential(
322
+ (0): Linear(in_features=1152, out_features=896, bias=True)
323
+ (1): GELU(approximate='none')
324
+ (2): Linear(in_features=896, out_features=896, bias=True)
325
+ )
326
+ )
327
+ )
328
+ Collect masks for language model over.
329
+ Collect masks for connector over.
330
+ Applying mask on model.layers.0.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
331
+ Applied soft mask on model.layers.0.self_attn.q_proj.
332
+ Applying mask on model.layers.0.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
333
+ Applied soft mask on model.layers.0.self_attn.k_proj.
334
+ Applying mask on model.layers.0.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
335
+ Applied soft mask on model.layers.0.self_attn.v_proj.
336
+ Applying mask on model.layers.0.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
337
+ Applied soft mask on model.layers.0.self_attn.o_proj.
338
+ Applying mask on model.layers.0.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
339
+ Applied soft mask on model.layers.0.mlp.gate_proj.
340
+ Applying mask on model.layers.0.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
341
+ Applied soft mask on model.layers.0.mlp.up_proj.
342
+ Applying mask on model.layers.0.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
343
+ Applied soft mask on model.layers.0.mlp.down_proj.
344
+ Applying mask on model.layers.1.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
345
+ Applied soft mask on model.layers.1.self_attn.q_proj.
346
+ Applying mask on model.layers.1.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
347
+ Applied soft mask on model.layers.1.self_attn.k_proj.
348
+ Applying mask on model.layers.1.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
349
+ Applied soft mask on model.layers.1.self_attn.v_proj.
350
+ Applying mask on model.layers.1.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
351
+ Applied soft mask on model.layers.1.self_attn.o_proj.
352
+ Applying mask on model.layers.1.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
353
+ Applied soft mask on model.layers.1.mlp.gate_proj.
354
+ Applying mask on model.layers.1.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
355
+ Applied soft mask on model.layers.1.mlp.up_proj.
356
+ Applying mask on model.layers.1.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
357
+ Applied soft mask on model.layers.1.mlp.down_proj.
358
+ Applying mask on model.layers.2.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
359
+ Applied soft mask on model.layers.2.self_attn.q_proj.
360
+ Applying mask on model.layers.2.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
361
+ Applied soft mask on model.layers.2.self_attn.k_proj.
362
+ Applying mask on model.layers.2.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
363
+ Applied soft mask on model.layers.2.self_attn.v_proj.
364
+ Applying mask on model.layers.2.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
365
+ Applied soft mask on model.layers.2.self_attn.o_proj.
366
+ Applying mask on model.layers.2.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
367
+ Applied soft mask on model.layers.2.mlp.gate_proj.
368
+ Applying mask on model.layers.2.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
369
+ Applied soft mask on model.layers.2.mlp.up_proj.
370
+ Applying mask on model.layers.2.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
371
+ Applied soft mask on model.layers.2.mlp.down_proj.
372
+ Applying mask on model.layers.3.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
373
+ Applied soft mask on model.layers.3.self_attn.q_proj.
374
+ Applying mask on model.layers.3.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
375
+ Applied soft mask on model.layers.3.self_attn.k_proj.
376
+ Applying mask on model.layers.3.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
377
+ Applied soft mask on model.layers.3.self_attn.v_proj.
378
+ Applying mask on model.layers.3.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
379
+ Applied soft mask on model.layers.3.self_attn.o_proj.
380
+ Applying mask on model.layers.3.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
381
+ Applied soft mask on model.layers.3.mlp.gate_proj.
382
+ Applying mask on model.layers.3.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
383
+ Applied soft mask on model.layers.3.mlp.up_proj.
384
+ Applying mask on model.layers.3.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
385
+ Applied soft mask on model.layers.3.mlp.down_proj.
386
+ Applying mask on model.layers.4.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
387
+ Applied soft mask on model.layers.4.self_attn.q_proj.
388
+ Applying mask on model.layers.4.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
389
+ Applied soft mask on model.layers.4.self_attn.k_proj.
390
+ Applying mask on model.layers.4.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
391
+ Applied soft mask on model.layers.4.self_attn.v_proj.
392
+ Applying mask on model.layers.4.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
393
+ Applied soft mask on model.layers.4.self_attn.o_proj.
394
+ Applying mask on model.layers.4.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
395
+ Applied soft mask on model.layers.4.mlp.gate_proj.
396
+ Applying mask on model.layers.4.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
397
+ Applied soft mask on model.layers.4.mlp.up_proj.
398
+ Applying mask on model.layers.4.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
399
+ Applied soft mask on model.layers.4.mlp.down_proj.
400
+ Applying mask on model.layers.5.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
401
+ Applied soft mask on model.layers.5.self_attn.q_proj.
402
+ Applying mask on model.layers.5.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
403
+ Applied soft mask on model.layers.5.self_attn.k_proj.
404
+ Applying mask on model.layers.5.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
405
+ Applied soft mask on model.layers.5.self_attn.v_proj.
406
+ Applying mask on model.layers.5.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
407
+ Applied soft mask on model.layers.5.self_attn.o_proj.
408
+ Applying mask on model.layers.5.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
409
+ Applied soft mask on model.layers.5.mlp.gate_proj.
410
+ Applying mask on model.layers.5.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
411
+ Applied soft mask on model.layers.5.mlp.up_proj.
412
+ Applying mask on model.layers.5.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
413
+ Applied soft mask on model.layers.5.mlp.down_proj.
414
+ Applying mask on model.layers.6.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
415
+ Applied soft mask on model.layers.6.self_attn.q_proj.
416
+ Applying mask on model.layers.6.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
417
+ Applied soft mask on model.layers.6.self_attn.k_proj.
418
+ Applying mask on model.layers.6.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
419
+ Applied soft mask on model.layers.6.self_attn.v_proj.
420
+ Applying mask on model.layers.6.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
421
+ Applied soft mask on model.layers.6.self_attn.o_proj.
422
+ Applying mask on model.layers.6.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
423
+ Applied soft mask on model.layers.6.mlp.gate_proj.
424
+ Applying mask on model.layers.6.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
425
+ Applied soft mask on model.layers.6.mlp.up_proj.
426
+ Applying mask on model.layers.6.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
427
+ Applied soft mask on model.layers.6.mlp.down_proj.
428
+ Applying mask on model.layers.7.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
429
+ Applied soft mask on model.layers.7.self_attn.q_proj.
430
+ Applying mask on model.layers.7.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
431
+ Applied soft mask on model.layers.7.self_attn.k_proj.
432
+ Applying mask on model.layers.7.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
433
+ Applied soft mask on model.layers.7.self_attn.v_proj.
434
+ Applying mask on model.layers.7.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
435
+ Applied soft mask on model.layers.7.self_attn.o_proj.
436
+ Applying mask on model.layers.7.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
437
+ Applied soft mask on model.layers.7.mlp.gate_proj.
438
+ Applying mask on model.layers.7.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
439
+ Applied soft mask on model.layers.7.mlp.up_proj.
440
+ Applying mask on model.layers.7.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
441
+ Applied soft mask on model.layers.7.mlp.down_proj.
442
+ Applying mask on model.layers.8.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
443
+ Applied soft mask on model.layers.8.self_attn.q_proj.
444
+ Applying mask on model.layers.8.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
445
+ Applied soft mask on model.layers.8.self_attn.k_proj.
446
+ Applying mask on model.layers.8.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
447
+ Applied soft mask on model.layers.8.self_attn.v_proj.
448
+ Applying mask on model.layers.8.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
449
+ Applied soft mask on model.layers.8.self_attn.o_proj.
450
+ Applying mask on model.layers.8.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
451
+ Applied soft mask on model.layers.8.mlp.gate_proj.
452
+ Applying mask on model.layers.8.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
453
+ Applied soft mask on model.layers.8.mlp.up_proj.
454
+ Applying mask on model.layers.8.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
455
+ Applied soft mask on model.layers.8.mlp.down_proj.
456
+ Applying mask on model.layers.9.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
457
+ Applied soft mask on model.layers.9.self_attn.q_proj.
458
+ Applying mask on model.layers.9.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
459
+ Applied soft mask on model.layers.9.self_attn.k_proj.
460
+ Applying mask on model.layers.9.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
461
+ Applied soft mask on model.layers.9.self_attn.v_proj.
462
+ Applying mask on model.layers.9.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
463
+ Applied soft mask on model.layers.9.self_attn.o_proj.
464
+ Applying mask on model.layers.9.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
465
+ Applied soft mask on model.layers.9.mlp.gate_proj.
466
+ Applying mask on model.layers.9.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
467
+ Applied soft mask on model.layers.9.mlp.up_proj.
468
+ Applying mask on model.layers.9.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
469
+ Applied soft mask on model.layers.9.mlp.down_proj.
470
+ Applying mask on model.layers.10.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
471
+ Applied soft mask on model.layers.10.self_attn.q_proj.
472
+ Applying mask on model.layers.10.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
473
+ Applied soft mask on model.layers.10.self_attn.k_proj.
474
+ Applying mask on model.layers.10.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
475
+ Applied soft mask on model.layers.10.self_attn.v_proj.
476
+ Applying mask on model.layers.10.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
477
+ Applied soft mask on model.layers.10.self_attn.o_proj.
478
+ Applying mask on model.layers.10.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
479
+ Applied soft mask on model.layers.10.mlp.gate_proj.
480
+ Applying mask on model.layers.10.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
481
+ Applied soft mask on model.layers.10.mlp.up_proj.
482
+ Applying mask on model.layers.10.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
483
+ Applied soft mask on model.layers.10.mlp.down_proj.
484
+ Applying mask on model.layers.11.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
485
+ Applied soft mask on model.layers.11.self_attn.q_proj.
486
+ Applying mask on model.layers.11.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
487
+ Applied soft mask on model.layers.11.self_attn.k_proj.
488
+ Applying mask on model.layers.11.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
489
+ Applied soft mask on model.layers.11.self_attn.v_proj.
490
+ Applying mask on model.layers.11.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
491
+ Applied soft mask on model.layers.11.self_attn.o_proj.
492
+ Applying mask on model.layers.11.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
493
+ Applied soft mask on model.layers.11.mlp.gate_proj.
494
+ Applying mask on model.layers.11.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
495
+ Applied soft mask on model.layers.11.mlp.up_proj.
496
+ Applying mask on model.layers.11.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
497
+ Applied soft mask on model.layers.11.mlp.down_proj.
498
+ Applying mask on model.layers.12.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
499
+ Applied soft mask on model.layers.12.self_attn.q_proj.
500
+ Applying mask on model.layers.12.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
501
+ Applied soft mask on model.layers.12.self_attn.k_proj.
502
+ Applying mask on model.layers.12.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
503
+ Applied soft mask on model.layers.12.self_attn.v_proj.
504
+ Applying mask on model.layers.12.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
505
+ Applied soft mask on model.layers.12.self_attn.o_proj.
506
+ Applying mask on model.layers.12.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
507
+ Applied soft mask on model.layers.12.mlp.gate_proj.
508
+ Applying mask on model.layers.12.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
509
+ Applied soft mask on model.layers.12.mlp.up_proj.
510
+ Applying mask on model.layers.12.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
511
+ Applied soft mask on model.layers.12.mlp.down_proj.
512
+ Applying mask on model.layers.13.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
513
+ Applied soft mask on model.layers.13.self_attn.q_proj.
514
+ Applying mask on model.layers.13.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
515
+ Applied soft mask on model.layers.13.self_attn.k_proj.
516
+ Applying mask on model.layers.13.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
517
+ Applied soft mask on model.layers.13.self_attn.v_proj.
518
+ Applying mask on model.layers.13.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
519
+ Applied soft mask on model.layers.13.self_attn.o_proj.
520
+ Applying mask on model.layers.13.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
521
+ Applied soft mask on model.layers.13.mlp.gate_proj.
522
+ Applying mask on model.layers.13.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
523
+ Applied soft mask on model.layers.13.mlp.up_proj.
524
+ Applying mask on model.layers.13.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
525
+ Applied soft mask on model.layers.13.mlp.down_proj.
526
+ Applying mask on model.layers.14.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
527
+ Applied soft mask on model.layers.14.self_attn.q_proj.
528
+ Applying mask on model.layers.14.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
529
+ Applied soft mask on model.layers.14.self_attn.k_proj.
530
+ Applying mask on model.layers.14.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
531
+ Applied soft mask on model.layers.14.self_attn.v_proj.
532
+ Applying mask on model.layers.14.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
533
+ Applied soft mask on model.layers.14.self_attn.o_proj.
534
+ Applying mask on model.layers.14.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
535
+ Applied soft mask on model.layers.14.mlp.gate_proj.
536
+ Applying mask on model.layers.14.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
537
+ Applied soft mask on model.layers.14.mlp.up_proj.
538
+ Applying mask on model.layers.14.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
539
+ Applied soft mask on model.layers.14.mlp.down_proj.
540
+ Applying mask on model.layers.15.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
541
+ Applied soft mask on model.layers.15.self_attn.q_proj.
542
+ Applying mask on model.layers.15.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
543
+ Applied soft mask on model.layers.15.self_attn.k_proj.
544
+ Applying mask on model.layers.15.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
545
+ Applied soft mask on model.layers.15.self_attn.v_proj.
546
+ Applying mask on model.layers.15.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
547
+ Applied soft mask on model.layers.15.self_attn.o_proj.
548
+ Applying mask on model.layers.15.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
549
+ Applied soft mask on model.layers.15.mlp.gate_proj.
550
+ Applying mask on model.layers.15.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
551
+ Applied soft mask on model.layers.15.mlp.up_proj.
552
+ Applying mask on model.layers.15.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
553
+ Applied soft mask on model.layers.15.mlp.down_proj.
554
+ Applying mask on model.layers.16.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
555
+ Applied soft mask on model.layers.16.self_attn.q_proj.
556
+ Applying mask on model.layers.16.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
557
+ Applied soft mask on model.layers.16.self_attn.k_proj.
558
+ Applying mask on model.layers.16.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
559
+ Applied soft mask on model.layers.16.self_attn.v_proj.
560
+ Applying mask on model.layers.16.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
561
+ Applied soft mask on model.layers.16.self_attn.o_proj.
562
+ Applying mask on model.layers.16.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
563
+ Applied soft mask on model.layers.16.mlp.gate_proj.
564
+ Applying mask on model.layers.16.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
565
+ Applied soft mask on model.layers.16.mlp.up_proj.
566
+ Applying mask on model.layers.16.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
567
+ Applied soft mask on model.layers.16.mlp.down_proj.
568
+ Applying mask on model.layers.17.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
569
+ Applied soft mask on model.layers.17.self_attn.q_proj.
570
+ Applying mask on model.layers.17.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
571
+ Applied soft mask on model.layers.17.self_attn.k_proj.
572
+ Applying mask on model.layers.17.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
573
+ Applied soft mask on model.layers.17.self_attn.v_proj.
574
+ Applying mask on model.layers.17.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
575
+ Applied soft mask on model.layers.17.self_attn.o_proj.
576
+ Applying mask on model.layers.17.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
577
+ Applied soft mask on model.layers.17.mlp.gate_proj.
578
+ Applying mask on model.layers.17.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
579
+ Applied soft mask on model.layers.17.mlp.up_proj.
580
+ Applying mask on model.layers.17.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
581
+ Applied soft mask on model.layers.17.mlp.down_proj.
582
+ Applying mask on model.layers.18.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
583
+ Applied soft mask on model.layers.18.self_attn.q_proj.
584
+ Applying mask on model.layers.18.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
585
+ Applied soft mask on model.layers.18.self_attn.k_proj.
586
+ Applying mask on model.layers.18.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
587
+ Applied soft mask on model.layers.18.self_attn.v_proj.
588
+ Applying mask on model.layers.18.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
589
+ Applied soft mask on model.layers.18.self_attn.o_proj.
590
+ Applying mask on model.layers.18.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
591
+ Applied soft mask on model.layers.18.mlp.gate_proj.
592
+ Applying mask on model.layers.18.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
593
+ Applied soft mask on model.layers.18.mlp.up_proj.
594
+ Applying mask on model.layers.18.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
595
+ Applied soft mask on model.layers.18.mlp.down_proj.
596
+ Applying mask on model.layers.19.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
597
+ Applied soft mask on model.layers.19.self_attn.q_proj.
598
+ Applying mask on model.layers.19.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
599
+ Applied soft mask on model.layers.19.self_attn.k_proj.
600
+ Applying mask on model.layers.19.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
601
+ Applied soft mask on model.layers.19.self_attn.v_proj.
602
+ Applying mask on model.layers.19.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
603
+ Applied soft mask on model.layers.19.self_attn.o_proj.
604
+ Applying mask on model.layers.19.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
605
+ Applied soft mask on model.layers.19.mlp.gate_proj.
606
+ Applying mask on model.layers.19.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
607
+ Applied soft mask on model.layers.19.mlp.up_proj.
608
+ Applying mask on model.layers.19.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
609
+ Applied soft mask on model.layers.19.mlp.down_proj.
610
+ Applying mask on model.layers.20.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
611
+ Applied soft mask on model.layers.20.self_attn.q_proj.
612
+ Applying mask on model.layers.20.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
613
+ Applied soft mask on model.layers.20.self_attn.k_proj.
614
+ Applying mask on model.layers.20.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
615
+ Applied soft mask on model.layers.20.self_attn.v_proj.
616
+ Applying mask on model.layers.20.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
617
+ Applied soft mask on model.layers.20.self_attn.o_proj.
618
+ Applying mask on model.layers.20.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
619
+ Applied soft mask on model.layers.20.mlp.gate_proj.
620
+ Applying mask on model.layers.20.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
621
+ Applied soft mask on model.layers.20.mlp.up_proj.
622
+ Applying mask on model.layers.20.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
623
+ Applied soft mask on model.layers.20.mlp.down_proj.
624
+ Applying mask on model.layers.21.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
625
+ Applied soft mask on model.layers.21.self_attn.q_proj.
626
+ Applying mask on model.layers.21.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
627
+ Applied soft mask on model.layers.21.self_attn.k_proj.
628
+ Applying mask on model.layers.21.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
629
+ Applied soft mask on model.layers.21.self_attn.v_proj.
630
+ Applying mask on model.layers.21.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
631
+ Applied soft mask on model.layers.21.self_attn.o_proj.
632
+ Applying mask on model.layers.21.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
633
+ Applied soft mask on model.layers.21.mlp.gate_proj.
634
+ Applying mask on model.layers.21.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
635
+ Applied soft mask on model.layers.21.mlp.up_proj.
636
+ Applying mask on model.layers.21.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
637
+ Applied soft mask on model.layers.21.mlp.down_proj.
638
+ Applying mask on model.layers.22.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
639
+ Applied soft mask on model.layers.22.self_attn.q_proj.
640
+ Applying mask on model.layers.22.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
641
+ Applied soft mask on model.layers.22.self_attn.k_proj.
642
+ Applying mask on model.layers.22.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
643
+ Applied soft mask on model.layers.22.self_attn.v_proj.
644
+ Applying mask on model.layers.22.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
645
+ Applied soft mask on model.layers.22.self_attn.o_proj.
646
+ Applying mask on model.layers.22.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
647
+ Applied soft mask on model.layers.22.mlp.gate_proj.
648
+ Applying mask on model.layers.22.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
649
+ Applied soft mask on model.layers.22.mlp.up_proj.
650
+ Applying mask on model.layers.22.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
651
+ Applied soft mask on model.layers.22.mlp.down_proj.
652
+ Applying mask on model.layers.23.self_attn.q_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
653
+ Applied soft mask on model.layers.23.self_attn.q_proj.
654
+ Applying mask on model.layers.23.self_attn.k_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
655
+ Applied soft mask on model.layers.23.self_attn.k_proj.
656
+ Applying mask on model.layers.23.self_attn.v_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
657
+ Applied soft mask on model.layers.23.self_attn.v_proj.
658
+ Applying mask on model.layers.23.self_attn.o_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
659
+ Applied soft mask on model.layers.23.self_attn.o_proj.
660
+ Applying mask on model.layers.23.mlp.gate_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
661
+ Applied soft mask on model.layers.23.mlp.gate_proj.
662
+ Applying mask on model.layers.23.mlp.up_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
663
+ Applied soft mask on model.layers.23.mlp.up_proj.
664
+ Applying mask on model.layers.23.mlp.down_proj with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
665
+ Applied soft mask on model.layers.23.mlp.down_proj.
666
+ Applying mask on _connector.0 with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
667
+ Applied soft mask on _connector.0.
668
+ Applying mask on _connector.2 with dtype, mask_dtype=torch.bfloat16, module_dtype=torch.bfloat16
669
+ Applied soft mask on _connector.2.
670
+ Using cleaned config_mask (without mask parameters) for saving.
671
+ /opt/conda/envs/tinyllava/lib/python3.10/site-packages/torch/cuda/__init__.py:51: FutureWarning: The pynvml package is deprecated. Please install nvidia-ml-py instead. If you did not install pynvml directly, please report this to the maintainers of the package that installed pynvml for you.
672
+ import pynvml # type: ignore[import]
673
+ [2025-10-13 22:32:38,278] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
674
+ /opt/conda/envs/tinyllava/lib/python3.10/site-packages/huggingface_hub/file_download.py:945: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
675
+ warnings.warn(
676
+ Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
677
+
678
  0%| | 0/900 [00:00<?, ?it/s]/nfs/ywang29/TinyLLaVA/transformers/src/transformers/generation/configuration_utils.py:492: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
679
+ warnings.warn(
680
+
681
  0%| | 1/900 [00:01<18:03, 1.21s/it]
682
  0%| | 2/900 [00:22<3:15:05, 13.04s/it]
683
  0%| | 3/900 [00:43<4:11:40, 16.83s/it]
684
  0%| | 4/900 [01:04<4:34:51, 18.41s/it]
685
  1%| | 5/900 [01:26<4:51:03, 19.51s/it]
686
  1%| | 6/900 [01:47<5:00:27, 20.17s/it]
687
  1%| | 7/900 [02:09<5:06:18, 20.58s/it]
688
  1%| | 8/900 [02:30<5:09:58, 20.85s/it]
689
  1%| | 9/900 [02:51<5:09:22, 20.83s/it]
690
  1%| | 10/900 [03:12<5:10:43, 20.95s/it]
691
  1%| | 11/900 [03:33<5:09:33, 20.89s/it]
692
  1%|▏ | 12/900 [03:54<5:11:16, 21.03s/it]
693
  1%|▏ | 13/900 [04:15<5:12:20, 21.13s/it]
694
  2%|▏ | 14/900 [04:36<5:10:25, 21.02s/it]
695
  2%|▏ | 15/900 [04:57<5:08:40, 20.93s/it]
696
  2%|▏ | 16/900 [05:18<5:10:11, 21.05s/it]
697
  2%|▏ | 17/900 [05:40<5:10:57, 21.13s/it]
698
  2%|▏ | 18/900 [05:45<4:01:16, 16.41s/it]
699
  2%|▏ | 19/900 [06:05<4:18:29, 17.60s/it]
700
  2%|▏ | 20/900 [06:26<4:30:42, 18.46s/it]
701
  2%|▏ | 21/900 [06:47<4:41:25, 19.21s/it]
702
  2%|▏ | 22/900 [07:07<4:46:27, 19.58s/it]
703
  3%|β–Ž | 23/900 [07:28<4:50:56, 19.90s/it]
704
  3%|β–Ž | 24/900 [07:49<4:56:14, 20.29s/it]
705
  3%|β–Ž | 25/900 [08:10<4:59:48, 20.56s/it]
706
  3%|β–Ž | 26/900 [08:32<5:02:27, 20.76s/it]
707
  3%|β–Ž | 27/900 [08:52<5:01:32, 20.72s/it]
708
  3%|β–Ž | 28/900 [09:13<5:03:24, 20.88s/it]
709
  3%|β–Ž | 29/900 [09:35<5:04:40, 20.99s/it]
710
  3%|β–Ž | 30/900 [09:56<5:05:11, 21.05s/it]
711
  3%|β–Ž | 31/900 [10:18<5:08:07, 21.27s/it]
712
  4%|β–Ž | 32/900 [10:19<3:43:36, 15.46s/it]
713
  4%|β–Ž | 33/900 [10:21<2:41:37, 11.19s/it]
714
  4%|▍ | 34/900 [10:42<3:27:21, 14.37s/it]
715
  4%|▍ | 35/900 [11:03<3:54:17, 16.25s/it]
716
  4%|▍ | 36/900 [11:24<4:12:42, 17.55s/it]
717
  4%|▍ | 37/900 [11:45<4:29:55, 18.77s/it]
718
  4%|▍ | 38/900 [12:07<4:43:01, 19.70s/it]
719
  4%|▍ | 39/900 [12:08<3:23:13, 14.16s/it]
720
  4%|▍ | 40/900 [12:09<2:25:49, 10.17s/it]
721
  5%|▍ | 41/900 [12:10<1:46:12, 7.42s/it]
722
  5%|▍ | 42/900 [12:31<2:42:32, 11.37s/it]
723
  5%|▍ | 43/900 [12:32<1:59:27, 8.36s/it]
724
  5%|▍ | 44/900 [12:35<1:34:38, 6.63s/it]
725
  5%|β–Œ | 45/900 [12:36<1:12:46, 5.11s/it]
726
  5%|β–Œ | 46/900 [12:37<55:07, 3.87s/it]
727
  5%|β–Œ | 47/900 [12:38<42:41, 3.00s/it]
728
  5%|β–Œ | 48/900 [12:39<34:31, 2.43s/it]
729
  5%|β–Œ | 49/900 [12:42<36:29, 2.57s/it]
730
  6%|β–Œ | 50/900 [12:44<32:01, 2.26s/it]
731
  6%|β–Œ | 51/900 [12:46<30:32, 2.16s/it]
732
  6%|β–Œ | 52/900 [12:49<34:42, 2.46s/it]
733
  6%|β–Œ | 53/900 [12:51<32:50, 2.33s/it]
734
  6%|β–Œ | 54/900 [12:52<28:44, 2.04s/it]
735
  6%|β–Œ | 55/900 [12:53<24:04, 1.71s/it]
736
  6%|β–Œ | 56/900 [12:54<19:58, 1.42s/it]
737
  6%|β–‹ | 57/900 [12:55<17:37, 1.25s/it]
738
  6%|β–‹ | 58/900 [12:56<15:02, 1.07s/it]
739
  7%|β–‹ | 59/900 [12:57<15:53, 1.13s/it]
740
  7%|β–‹ | 60/900 [12:58<17:06, 1.22s/it]
741
  7%|β–‹ | 61/900 [13:19<1:40:16, 7.17s/it]
742
  7%|β–‹ | 62/900 [13:40<2:38:14, 11.33s/it]
743
  7%|β–‹ | 63/900 [14:02<3:20:31, 14.37s/it]
744
  7%|β–‹ | 64/900 [14:23<3:48:24, 16.39s/it]
745
  7%|β–‹ | 65/900 [14:44<4:07:51, 17.81s/it]
746
  7%|β–‹ | 66/900 [15:05<4:21:03, 18.78s/it]
747
  7%|β–‹ | 67/900 [15:26<4:30:00, 19.45s/it]
748
  8%|β–Š | 68/900 [15:47<4:36:33, 19.94s/it]
749
  8%|β–Š | 69/900 [15:48<3:16:38, 14.20s/it]
750
  8%|β–Š | 70/900 [16:08<3:41:50, 16.04s/it]
751
  8%|β–Š | 71/900 [16:30<4:03:29, 17.62s/it]
752
  8%|β–Š | 72/900 [16:51<4:18:21, 18.72s/it]
753
  8%|β–Š | 73/900 [17:12<4:28:41, 19.49s/it]
754
  8%|β–Š | 74/900 [17:33<4:35:39, 20.02s/it]
755
  8%|β–Š | 75/900 [17:38<3:29:36, 15.24s/it]
756
  8%|β–Š | 76/900 [17:59<3:54:29, 17.07s/it]
757
  9%|β–Š | 77/900 [18:01<2:53:21, 12.64s/it]
758
  9%|β–Š | 78/900 [18:05<2:16:32, 9.97s/it]
759
  9%|β–‰ | 79/900 [18:06<1:40:34, 7.35s/it]
760
  9%|β–‰ | 80/900 [18:27<2:37:43, 11.54s/it]
761
  9%|β–‰ | 81/900 [18:49<3:17:46, 14.49s/it]
762
  9%|β–‰ | 82/900 [19:10<3:45:28, 16.54s/it]
763
  9%|β–‰ | 83/900 [19:31<4:04:28, 17.95s/it]
764
  9%|β–‰ | 84/900 [19:53<4:17:51, 18.96s/it]
765
  9%|β–‰ | 85/900 [20:14<4:26:55, 19.65s/it]
766
  10%|β–‰ | 86/900 [20:35<4:33:43, 20.18s/it]
767
  10%|β–‰ | 87/900 [20:57<4:38:17, 20.54s/it]
768
  10%|β–‰ | 88/900 [21:18<4:41:13, 20.78s/it]
769
  10%|β–‰ | 89/900 [21:39<4:43:09, 20.95s/it]
770
  10%|β–ˆ | 90/900 [22:01<4:44:36, 21.08s/it]
771
  10%|β–ˆ | 91/900 [22:02<3:22:41, 15.03s/it]
772
  10%|β–ˆ | 92/900 [22:23<3:47:16, 16.88s/it]
773
  10%|β–ˆ | 93/900 [22:44<4:05:15, 18.23s/it]
774
  10%|β–ˆ | 94/900 [23:06<4:17:50, 19.19s/it]
775
  11%|β–ˆ | 95/900 [23:08<3:10:29, 14.20s/it]
776
  11%|β–ˆ | 96/900 [23:30<3:39:35, 16.39s/it]
777
  11%|β–ˆ | 97/900 [23:30<2:35:50, 11.64s/it]
778
  11%|β–ˆ | 98/900 [23:31<1:51:39, 8.35s/it]
779
  11%|β–ˆ | 99/900 [23:32<1:21:50, 6.13s/it]
780
  11%|β–ˆ | 100/900 [23:53<2:19:47, 10.48s/it]
781
  11%|β–ˆ | 101/900 [23:54<1:43:14, 7.75s/it]
782
  11%|β–ˆβ– | 102/900 [23:56<1:21:01, 6.09s/it]
783
  11%|β–ˆβ– | 103/900 [23:57<59:40, 4.49s/it]
784
  12%|β–ˆβ– | 104/900 [23:59<50:44, 3.82s/it]
785
  12%|β–ˆβ– | 105/900 [24:21<2:00:46, 9.12s/it]
786
  12%|β–ˆβ– | 106/900 [24:22<1:29:13, 6.74s/it]
787
  12%|β–ˆβ– | 107/900 [24:42<2:23:21, 10.85s/it]
788
  12%|β–ˆβ– | 108/900 [24:43<1:44:31, 7.92s/it]
789
  12%|β–ˆβ– | 109/900 [24:44<1:15:29, 5.73s/it]
790
  12%|β–ˆβ– | 110/900 [24:45<55:56, 4.25s/it]
791
  12%|β–ˆβ– | 111/900 [25:06<2:04:14, 9.45s/it]
792
  12%|β–ˆβ– | 112/900 [25:08<1:31:24, 6.96s/it]
793
  13%|β–ˆβ–Ž | 113/900 [25:09<1:08:01, 5.19s/it]
794
  13%|β–ˆβ–Ž | 114/900 [25:10<51:38, 3.94s/it]
795
  13%|β–ˆβ–Ž | 115/900 [25:31<1:59:11, 9.11s/it]
796
  13%|β–ˆβ–Ž | 116/900 [25:32<1:26:55, 6.65s/it]
797
  13%|β–ˆβ–Ž | 117/900 [25:33<1:05:51, 5.05s/it]
798
  13%|β–ˆβ–Ž | 118/900 [25:54<2:07:31, 9.78s/it]
799
  13%|β–ˆβ–Ž | 119/900 [25:55<1:34:28, 7.26s/it]
800
  13%|β–ˆβ–Ž | 120/900 [26:17<2:28:58, 11.46s/it]
801
  13%|β–ˆβ–Ž | 121/900 [26:17<1:47:35, 8.29s/it]
802
  14%|β–ˆβ–Ž | 122/900 [26:19<1:22:40, 6.38s/it]
803
  14%|β–ˆβ–Ž | 123/900 [26:22<1:07:29, 5.21s/it]
804
  14%|β–ˆβ– | 124/900 [26:23<50:57, 3.94s/it]
805
  14%|β–ˆβ– | 125/900 [26:44<1:58:00, 9.14s/it]
806
  14%|β–ˆβ– | 126/900 [26:46<1:28:31, 6.86s/it]
807
  14%|β–ˆβ– | 127/900 [26:47<1:08:37, 5.33s/it]
808
  14%|β–ˆβ– | 128/900 [26:48<51:29, 4.00s/it]
809
  14%|β–ˆβ– | 129/900 [26:49<39:29, 3.07s/it]
810
  14%|β–ˆβ– | 130/900 [27:10<1:49:29, 8.53s/it]
811
  15%|β–ˆβ– | 131/900 [27:31<2:35:58, 12.17s/it]
812
  15%|β–ˆβ– | 132/900 [27:33<1:58:03, 9.22s/it]
813
  15%|β–ˆβ– | 133/900 [27:54<2:42:06, 12.68s/it]
814
  15%|β–ˆβ– | 134/900 [28:16<3:16:11, 15.37s/it]
815
  15%|β–ˆβ–Œ | 135/900 [28:17<2:20:35, 11.03s/it]
816
  15%|β–ˆβ–Œ | 136/900 [28:38<2:58:54, 14.05s/it]
817
  15%|β–ˆβ–Œ | 137/900 [28:59<3:23:50, 16.03s/it]
818
  15%|β–ˆβ–Œ | 138/900 [29:01<2:30:47, 11.87s/it]
819
  15%|β–ˆβ–Œ | 139/900 [29:02<1:50:18, 8.70s/it]
820
  16%|β–ˆβ–Œ | 140/900 [29:03<1:21:09, 6.41s/it]
821
  16%|β–ˆβ–Œ | 141/900 [29:24<2:15:34, 10.72s/it]
822
  16%|β–ˆβ–Œ | 142/900 [29:45<2:53:29, 13.73s/it]
823
  16%|β–ˆβ–Œ | 143/900 [29:45<2:04:31, 9.87s/it]
824
  16%|β–ˆβ–Œ | 144/900 [29:47<1:33:06, 7.39s/it]
825
  16%|β–ˆβ–Œ | 145/900 [29:49<1:12:35, 5.77s/it]
826
  16%|β–ˆβ–Œ | 146/900 [30:10<2:08:54, 10.26s/it]
827
  16%|β–ˆβ–‹ | 147/900 [30:31<2:50:14, 13.57s/it]
828
  16%|β–ˆβ–‹ | 148/900 [30:52<3:19:15, 15.90s/it]
829
  17%|β–ˆβ–‹ | 149/900 [30:54<2:26:11, 11.68s/it]
830
  17%|β–ˆβ–‹ | 150/900 [31:16<3:02:14, 14.58s/it]
831
  17%|β–ˆβ–‹ | 151/900 [31:16<2:09:28, 10.37s/it]
832
  17%|β–ˆβ–‹ | 152/900 [31:18<1:35:49, 7.69s/it]
833
  17%|β–ˆβ–‹ | 153/900 [31:19<1:12:40, 5.84s/it]
834
  17%|β–ˆβ–‹ | 154/900 [31:40<2:10:14, 10.47s/it]
835
  17%|β–ˆβ–‹ | 155/900 [32:01<2:48:21, 13.56s/it]
836
  17%|β–ˆβ–‹ | 156/900 [32:22<3:15:14, 15.74s/it]
837
  17%|β–ˆβ–‹ | 157/900 [32:43<3:35:15, 17.38s/it]
838
  18%|β–ˆβ–Š | 158/900 [33:04<3:47:14, 18.37s/it]
839
  18%|β–ˆβ–Š | 159/900 [33:25<3:57:34, 19.24s/it]
840
  18%|β–ˆβ–Š | 160/900 [33:46<4:02:08, 19.63s/it]
841
  18%|β–ˆβ–Š | 161/900 [34:07<4:08:00, 20.14s/it]
842
  18%|β–ˆβ–Š | 162/900 [34:08<2:56:35, 14.36s/it]
843
  18%|β–ˆβ–Š | 163/900 [34:29<3:21:04, 16.37s/it]
844
  18%|β–ˆβ–Š | 164/900 [34:50<3:36:27, 17.65s/it]
845
  18%|β–ˆβ–Š | 165/900 [35:10<3:47:01, 18.53s/it]
846
  18%|β–ˆβ–Š | 166/900 [35:11<2:42:52, 13.31s/it]/opt/conda/envs/tinyllava/lib/python3.10/site-packages/PIL/Image.py:1047: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
847
+ warnings.warn(
848
+
849
  19%|β–ˆβ–Š | 167/900 [35:32<3:11:28, 15.67s/it]
850
  19%|β–ˆβ–Š | 168/900 [35:53<3:28:49, 17.12s/it]
851
  19%|β–ˆβ–‰ | 169/900 [35:54<2:29:24, 12.26s/it]
852
  19%|β–ˆβ–‰ | 170/900 [35:55<1:48:03, 8.88s/it]
853
  19%|β–ˆβ–‰ | 171/900 [36:16<2:30:54, 12.42s/it]
854
  19%|β–ˆβ–‰ | 172/900 [36:37<3:03:09, 15.10s/it]
855
  19%|β–ˆβ–‰ | 173/900 [36:57<3:22:18, 16.70s/it]
856
  19%|β–ˆβ–‰ | 174/900 [37:18<3:37:55, 18.01s/it]
857
  19%|β–ˆβ–‰ | 175/900 [37:39<3:47:03, 18.79s/it]
858
  20%|β–ˆβ–‰ | 176/900 [37:40<2:40:48, 13.33s/it]
859
  20%|β–ˆβ–‰ | 177/900 [38:01<3:08:02, 15.60s/it]
860
  20%|β–ˆβ–‰ | 178/900 [38:21<3:26:44, 17.18s/it]
861
  20%|β–ˆβ–‰ | 179/900 [38:22<2:27:14, 12.25s/it]
862
  20%|β–ˆβ–ˆ | 180/900 [38:43<2:57:13, 14.77s/it]
863
  20%|β–ˆβ–ˆ | 181/900 [39:04<3:19:07, 16.62s/it]
864
  20%|β–ˆβ–ˆ | 182/900 [39:25<3:35:20, 18.00s/it]
865
  20%|β–ˆβ–ˆ | 183/900 [39:29<2:45:15, 13.83s/it]
866
  20%|β–ˆβ–ˆ | 184/900 [39:49<3:08:39, 15.81s/it]
867
  21%|β–ˆβ–ˆ | 185/900 [40:11<3:27:49, 17.44s/it]
868
  21%|β–ˆβ–ˆ | 186/900 [40:32<3:40:42, 18.55s/it]
869
  21%|β–ˆβ–ˆ | 187/900 [40:53<3:48:31, 19.23s/it]
870
  21%|β–ˆβ–ˆ | 188/900 [41:13<3:53:38, 19.69s/it]
871
  21%|β–ˆβ–ˆ | 189/900 [41:35<3:59:57, 20.25s/it]
872
  21%|β–ˆβ–ˆ | 190/900 [41:56<4:04:08, 20.63s/it]
873
  21%|β–ˆβ–ˆ | 191/900 [42:17<4:04:21, 20.68s/it]
874
  21%|β–ˆβ–ˆβ– | 192/900 [42:39<4:07:10, 20.95s/it]
875
  21%|β–ˆβ–ˆβ– | 193/900 [43:00<4:08:28, 21.09s/it]
876
  22%|β–ˆβ–ˆβ– | 194/900 [43:21<4:06:55, 20.99s/it]
877
  22%|β–ˆβ–ˆβ– | 195/900 [43:22<2:55:45, 14.96s/it]
878
  22%|β–ˆβ–ˆβ– | 196/900 [43:43<3:16:59, 16.79s/it]
879
  22%|β–ˆβ–ˆβ– | 197/900 [44:04<3:29:56, 17.92s/it]
880
  22%|β–ˆβ–ˆβ– | 198/900 [44:24<3:39:12, 18.74s/it]
881
  22%|β–ˆβ–ˆβ– | 199/900 [44:45<3:45:35, 19.31s/it]
882
  22%|β–ˆβ–ˆβ– | 200/900 [45:06<3:51:26, 19.84s/it]
883
  22%|β–ˆβ–ˆβ– | 201/900 [45:27<3:54:10, 20.10s/it]
884
  22%|β–ˆβ–ˆβ– | 202/900 [45:47<3:56:02, 20.29s/it]
885
  23%|β–ˆβ–ˆβ–Ž | 203/900 [46:08<3:57:03, 20.41s/it]
886
  23%|β–ˆβ–ˆβ–Ž | 204/900 [46:09<2:48:37, 14.54s/it]
887
  23%|β–ˆβ–ˆβ–Ž | 205/900 [46:29<3:08:29, 16.27s/it]
888
  23%|β–ˆβ–ˆβ–Ž | 206/900 [46:50<3:25:37, 17.78s/it]
889
  23%|β–ˆβ–ˆβ–Ž | 207/900 [47:12<3:37:02, 18.79s/it]
890
  23%|β–ˆβ–ˆβ–Ž | 208/900 [47:33<3:45:21, 19.54s/it]
891
  23%|β–ˆβ–ˆβ–Ž | 209/900 [47:54<3:48:46, 19.86s/it]
892
  23%|β–ˆβ–ˆβ–Ž | 210/900 [47:59<2:57:15, 15.41s/it]
893
  23%|β–ˆβ–ˆβ–Ž | 211/900 [47:59<2:05:33, 10.93s/it]
894
  24%|β–ˆβ–ˆβ–Ž | 212/900 [48:20<2:40:08, 13.97s/it]
895
  24%|β–ˆβ–ˆβ–Ž | 213/900 [48:41<3:05:21, 16.19s/it]
896
  24%|β–ˆβ–ˆβ– | 214/900 [49:02<3:20:33, 17.54s/it]
897
  24%|β–ˆβ–ˆβ– | 215/900 [49:24<3:33:32, 18.70s/it]
898
  24%|β–ˆβ–ˆβ– | 216/900 [49:45<3:42:31, 19.52s/it]
899
  24%|β–ˆβ–ˆβ– | 217/900 [50:06<3:48:38, 20.09s/it]
900
  24%|β–ˆβ–ˆβ– | 218/900 [50:28<3:52:17, 20.44s/it]
901
  24%|β–ˆβ–ˆβ– | 219/900 [50:28<2:44:02, 14.45s/it]
902
  24%|β–ˆβ–ˆβ– | 220/900 [50:49<3:03:57, 16.23s/it]
903
  25%|β–ˆβ–ˆβ– | 221/900 [51:10<3:20:09, 17.69s/it]
904
  25%|β–ˆβ–ˆβ– | 222/900 [51:11<2:25:28, 12.87s/it]
905
  25%|β–ˆβ–ˆβ– | 223/900 [51:32<2:51:49, 15.23s/it]
906
  25%|β–ˆβ–ˆβ– | 224/900 [51:53<3:12:06, 17.05s/it]
907
  25%|β–ˆβ–ˆβ–Œ | 225/900 [51:54<2:16:06, 12.10s/it]
908
  25%|β–ˆβ–ˆβ–Œ | 226/900 [52:14<2:44:05, 14.61s/it]
909
  25%|β–ˆβ–ˆβ–Œ | 227/900 [52:35<3:04:14, 16.43s/it]
910
  25%|β–ˆβ–ˆβ–Œ | 228/900 [52:56<3:18:27, 17.72s/it]
911
  25%|β–ˆβ–ˆβ–Œ | 229/900 [53:16<3:27:07, 18.52s/it]
912
  26%|β–ˆβ–ˆβ–Œ | 230/900 [53:37<3:33:28, 19.12s/it]
913
  26%|β–ˆβ–ˆβ–Œ | 231/900 [53:57<3:37:32, 19.51s/it]
914
  26%|β–ˆβ–ˆβ–Œ | 232/900 [54:19<3:44:12, 20.14s/it]
915
  26%|β–ˆβ–ˆβ–Œ | 233/900 [54:39<3:44:58, 20.24s/it]
916
  26%|β–ˆβ–ˆβ–Œ | 234/900 [54:59<3:45:12, 20.29s/it]
917
  26%|β–ˆβ–ˆβ–Œ | 235/900 [55:21<3:48:55, 20.65s/it]
918
  26%|β–ˆβ–ˆβ–Œ | 236/900 [55:41<3:47:43, 20.58s/it]
919
  26%|β–ˆβ–ˆβ–‹ | 237/900 [56:03<3:50:35, 20.87s/it]
920
  26%|β–ˆβ–ˆβ–‹ | 238/900 [56:24<3:49:51, 20.83s/it]
921
  27%|β–ˆβ–ˆβ–‹ | 239/900 [56:44<3:49:01, 20.79s/it]
922
  27%|β–ˆβ–ˆβ–‹ | 240/900 [57:05<3:48:19, 20.76s/it]
923
  27%|β–ˆβ–ˆβ–‹ | 241/900 [57:06<2:43:30, 14.89s/it]
924
  27%|β–ˆβ–ˆβ–‹ | 242/900 [57:28<3:04:34, 16.83s/it]
925
  27%|β–ˆβ–ˆβ–‹ | 243/900 [57:29<2:13:42, 12.21s/it]
926
  27%|β–ˆβ–ˆβ–‹ | 244/900 [57:30<1:36:10, 8.80s/it]
927
  27%|β–ˆβ–ˆβ–‹ | 245/900 [57:51<2:16:39, 12.52s/it]
928
  27%|β–ˆβ–ˆβ–‹ | 246/900 [58:12<2:42:53, 14.94s/it]
929
  27%|β–ˆβ–ˆβ–‹ | 247/900 [58:33<3:03:28, 16.86s/it]
930
  28%|β–ˆβ–ˆβ–Š | 248/900 [58:54<3:16:14, 18.06s/it]
931
  28%|β–ˆβ–ˆβ–Š | 249/900 [59:15<3:26:50, 19.06s/it]
932
  28%|β–ˆβ–ˆβ–Š | 250/900 [59:36<3:31:20, 19.51s/it]
933
  28%|β–ˆβ–ˆβ–Š | 251/900 [59:56<3:34:19, 19.81s/it]
934
  28%|β–ˆβ–ˆβ–Š | 252/900 [1:00:18<3:39:22, 20.31s/it]
935
  28%|β–ˆβ–ˆβ–Š | 253/900 [1:00:38<3:39:48, 20.38s/it]
936
  28%|β–ˆβ–ˆβ–Š | 254/900 [1:01:00<3:42:49, 20.70s/it]
937
  28%|β–ˆβ–ˆβ–Š | 255/900 [1:01:02<2:41:49, 15.05s/it]
938
  28%|β–ˆβ–ˆβ–Š | 256/900 [1:01:06<2:06:17, 11.77s/it]
939
  29%|β–ˆβ–ˆβ–Š | 257/900 [1:01:27<2:36:30, 14.60s/it]
940
  29%|β–ˆβ–ˆβ–Š | 258/900 [1:01:48<2:56:21, 16.48s/it]
941
  29%|β–ˆβ–ˆβ–‰ | 259/900 [1:01:49<2:07:10, 11.90s/it]
942
  29%|β–ˆβ–ˆβ–‰ | 260/900 [1:02:10<2:35:31, 14.58s/it]
943
  29%|β–ˆβ–ˆβ–‰ | 261/900 [1:02:31<2:54:38, 16.40s/it]
944
  29%|β–ˆβ–ˆβ–‰ | 262/900 [1:02:52<3:10:11, 17.89s/it]
945
  29%|β–ˆβ–ˆβ–‰ | 263/900 [1:02:53<2:14:54, 12.71s/it]
946
  29%|β–ˆβ–ˆβ–‰ | 264/900 [1:03:14<2:41:20, 15.22s/it]
947
  29%|β–ˆβ–ˆβ–‰ | 265/900 [1:03:34<2:58:08, 16.83s/it]
948
  30%|β–ˆβ–ˆβ–‰ | 266/900 [1:03:55<3:09:24, 17.93s/it]
949
  30%|β–ˆβ–ˆβ–‰ | 267/900 [1:03:56<2:17:56, 13.08s/it]
950
  30%|β–ˆβ–ˆβ–‰ | 268/900 [1:03:58<1:41:16, 9.61s/it]
951
  30%|β–ˆβ–ˆβ–‰ | 269/900 [1:04:20<2:18:41, 13.19s/it]
952
  30%|β–ˆβ–ˆβ–ˆ | 270/900 [1:04:20<1:39:47, 9.50s/it]
953
  30%|β–ˆβ–ˆβ–ˆ | 271/900 [1:04:41<2:14:34, 12.84s/it]
954
  30%|β–ˆβ–ˆβ–ˆ | 272/900 [1:05:02<2:39:19, 15.22s/it]
955
  30%|β–ˆβ–ˆβ–ˆ | 273/900 [1:05:23<2:58:18, 17.06s/it]
956
  30%|β–ˆβ–ˆβ–ˆ | 274/900 [1:05:50<3:28:33, 19.99s/it]
957
  31%|β–ˆβ–ˆβ–ˆ | 275/900 [1:06:17<3:49:18, 22.01s/it]
958
  31%|β–ˆβ–ˆβ–ˆ | 276/900 [1:06:38<3:46:58, 21.82s/it]
959
  31%|β–ˆβ–ˆβ–ˆ | 277/900 [1:06:59<3:42:34, 21.44s/it]
960
  31%|β–ˆβ–ˆβ–ˆ | 278/900 [1:07:19<3:39:16, 21.15s/it]
961
  31%|β–ˆβ–ˆβ–ˆ | 279/900 [1:07:41<3:39:44, 21.23s/it]
962
  31%|β–ˆβ–ˆβ–ˆ | 280/900 [1:08:02<3:39:48, 21.27s/it]
963
  31%|β–ˆβ–ˆβ–ˆ | 281/900 [1:08:23<3:39:37, 21.29s/it]
964
  31%|β–ˆβ–ˆβ–ˆβ– | 282/900 [1:08:45<3:39:25, 21.30s/it]
965
  31%|β–ˆβ–ˆβ–ˆβ– | 283/900 [1:09:06<3:39:12, 21.32s/it]
966
  32%|β–ˆβ–ˆβ–ˆβ– | 284/900 [1:09:27<3:36:37, 21.10s/it]
967
  32%|β–ˆβ–ˆβ–ˆβ– | 285/900 [1:09:47<3:34:48, 20.96s/it]
968
  32%|β–ˆβ–ˆβ–ˆβ– | 286/900 [1:10:08<3:33:08, 20.83s/it]
969
  32%|β–ˆβ–ˆβ–ˆβ– | 287/900 [1:10:28<3:31:55, 20.74s/it]
970
  32%|β–ˆβ–ˆβ–ˆβ– | 288/900 [1:10:49<3:31:02, 20.69s/it]
971
  32%|β–ˆβ–ˆβ–ˆβ– | 289/900 [1:11:09<3:29:54, 20.61s/it]
972
  32%|β–ˆβ–ˆβ–ˆβ– | 290/900 [1:11:31<3:32:28, 20.90s/it]
973
  32%|β–ˆβ–ˆβ–ˆβ– | 291/900 [1:11:52<3:34:04, 21.09s/it]
974
  32%|β–ˆβ–ˆβ–ˆβ– | 292/900 [1:12:14<3:34:57, 21.21s/it]
975
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 293/900 [1:12:35<3:35:29, 21.30s/it]
976
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 294/900 [1:12:57<3:36:05, 21.40s/it]
977
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 295/900 [1:13:18<3:34:11, 21.24s/it]
978
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 296/900 [1:13:39<3:32:46, 21.14s/it]
979
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 297/900 [1:14:00<3:31:35, 21.05s/it]
980
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 298/900 [1:14:01<2:31:17, 15.08s/it]
981
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 299/900 [1:14:07<2:03:47, 12.36s/it]
982
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 300/900 [1:14:28<2:30:48, 15.08s/it]
983
  33%|β–ˆβ–ˆβ–ˆβ–Ž | 301/900 [1:14:29<1:48:02, 10.82s/it]
984
  34%|β–ˆβ–ˆβ–ˆβ–Ž | 302/900 [1:14:30<1:17:56, 7.82s/it]
985
  34%|β–ˆβ–ˆβ–ˆβ–Ž | 303/900 [1:14:51<1:56:15, 11.68s/it]
986
  34%|β–ˆβ–ˆβ–ˆβ– | 304/900 [1:15:12<2:25:18, 14.63s/it]
987
  34%|β–ˆβ–ˆβ–ˆβ– | 305/900 [1:15:14<1:45:58, 10.69s/it]
988
  34%|β–ˆβ–ˆβ–ˆβ– | 306/900 [1:15:34<2:14:56, 13.63s/it]
989
  34%|β–ˆβ–ˆβ–ˆβ– | 307/900 [1:15:35<1:36:15, 9.74s/it]
990
  34%|β–ˆβ–ˆβ–ˆβ– | 308/900 [1:15:56<2:10:41, 13.25s/it]
991
  34%|β–ˆβ–ˆβ–ˆβ– | 309/900 [1:15:57<1:33:56, 9.54s/it]
992
  34%|β–ˆβ–ˆβ–ˆβ– | 310/900 [1:15:58<1:07:26, 6.86s/it]
993
  35%|β–ˆβ–ˆβ–ˆβ– | 311/900 [1:16:19<1:49:46, 11.18s/it]
994
  35%|β–ˆβ–ˆβ–ˆβ– | 312/900 [1:16:20<1:18:44, 8.03s/it]
995
  35%|β–ˆβ–ˆβ–ˆβ– | 313/900 [1:16:20<57:08, 5.84s/it]
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.3_2e-1_connector-3.0_1.3_2e-1_ablation_20251013_065736.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.5_2e-1_connector-3.0_1.5_2e-1_ablation_20251013_073153.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.7_2e-1_connector-3.0_1.7_2e-1_ablation_20251013_080601.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_1.9_2e-1_connector-3.0_1.9_2e-1_ablation_20251013_104850.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.1_2e-1_connector-3.0_2.1_2e-1_ablation_20251013_113216.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.3_2e-1_connector-3.0_2.3_2e-1_ablation_20251013_130305.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.5_2e-1_connector-3.0_2.5_2e-1_ablation_20251013_143914.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.7_2e-1_connector-3.0_2.7_2e-1_ablation_20251013_151303.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-3.0_2.9_2e-1_connector-3.0_2.9_2e-1_ablation_20251013_154739.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_0.7_2e-1_connector-5.0_0.7_2e-1_ablation_20251013_162143.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_0.9_2e-1_connector-5.0_0.9_2e-1_ablation_20251013_165603.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_1.1_2e-1_connector-5.0_1.1_2e-1_ablation_20251013_173027.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_1.3_2e-1_connector-5.0_1.3_2e-1_ablation_20251013_180430.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_1.5_2e-1_connector-5.0_1.5_2e-1_ablation_20251013_183828.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_1.7_2e-1_connector-5.0_1.7_2e-1_ablation_20251013_191236.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_1.9_2e-1_connector-5.0_1.9_2e-1_ablation_20251013_194705.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_2.1_2e-1_connector-5.0_2.1_2e-1_ablation_20251013_202134.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_2.3_2e-1_connector-5.0_2.3_2e-1_ablation_20251013_205557.log ADDED
The diff for this file is too large to render. See raw diff
 
logs_oct12/qwen2.5-0_5b_base_masktune_42_llm-connector_text-5.0_2.5_2e-1_connector-5.0_2.5_2e-1_ablation_20251013_213037.log ADDED
The diff for this file is too large to render. See raw diff