Datasets:
File size: 6,722 Bytes
3854004 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
license: mit
task_categories:
- text-classification
- text-generation
- question-answering
- summarization
language:
- en
tags:
- artificial-intelligence
- machine-learning
- deep-learning
- nlp
- computer-vision
- data-science
- technical-articles
- analytics-india-magazine
- ai-models
- programming
size_categories:
- 10K<n<100K
pretty_name: Analytics India Magazine Technical Articles Dataset
---
# Analytics India Magazine Technical Articles Dataset π
## Dataset Description
This comprehensive dataset contains **25,685 high-quality technical articles** from Analytics India Magazine, one of India's leading publications covering artificial intelligence, machine learning, data science, and emerging technologies.
### β¨ Dataset Highlights
- **π Comprehensive Coverage**: Latest AI models, frameworks, and tools
- **π¬ Technical Depth**: Extracted keywords and complexity scoring
- **π Industry Focus**: Real-world applications and insights
- **β‘ Multiple Formats**: JSON and optimized Parquet files
- **π― ML Ready**: Pre-processed and split for training
## Dataset Statistics
| Metric | Value |
|--------|-------|
| **Total Articles** | 25,685 |
| **Technical Articles** | 25,647 |
| **Average Word Count** | 724 words |
| **Language** | English |
| **Source** | [Analytics India Magazine](https://analyticsindiamag.com/) |
## π― Technologies Covered
### AI & Machine Learning
- **Large Language Models**: GPT, Claude, Gemini, Llama
- **Frameworks**: TensorFlow, PyTorch, Hugging Face
- **MLOps Tools**: MLflow, Weights & Biases, Kubeflow
- **Agent Frameworks**: LangChain, AutoGen, CrewAI
### Programming & Tools
- **Languages**: Python, JavaScript, SQL
- **Cloud Platforms**: AWS, Azure, GCP
- **Development**: APIs, Docker, Kubernetes
## π Dataset Structure
### Core Fields
- `title`: Article title
- `content`: Full article content (cleaned)
- `excerpt`: Article summary
- `author_name`: Article author
- `publish_date`: Publication date
- `url`: Original article URL
### Technical Metadata
- `extracted_tech_keywords`: Technical terms found in content
- `technical_depth`: Number of technical keywords
- `complexity_score`: Technical complexity (0-4)
- `word_count`: Article length
- `categories`: Article categories
- `tags`: Content tags
### Quality Indicators
- `has_code_examples`: Contains code snippets
- `has_tutorial_content`: Tutorial or how-to content
- `is_research_content`: Research or analysis
- `has_external_links`: Contains external references
## π Dataset Splits
| Split | Examples | Purpose |
|-------|----------|---------|
| **Train** | 19,221 | Model training |
| **Validation** | 2,136 | Hyperparameter tuning |
| **Test** | 3,769 | Final evaluation |
## π Quick Start
### Using Hugging Face Datasets
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("abhilash88/aim-technical-articles")
# Access splits
train_data = dataset["train"]
test_data = dataset["test"]
# Filter technical articles
technical_articles = dataset.filter(
lambda x: x["technical_depth"] >= 3
)
```
### Using Pandas
```python
import pandas as pd
# Load from JSON
df = pd.read_json("aim_full_dataset.json")
# Load from Parquet (faster)
df = pd.read_parquet("aim_full_dataset.parquet")
# Convert list columns back from JSON strings
import json
df['categories'] = df['categories'].apply(json.loads)
df['extracted_tech_keywords'] = df['extracted_tech_keywords'].apply(json.loads)
```
## π― Use Cases
### Machine Learning
- **Text Classification**: Topic classification, difficulty assessment
- **Content Generation**: Article summarization, content creation
- **Recommendation Systems**: Technical content recommendations
- **Question Answering**: Technical QA systems
### Business Intelligence
- **Trend Analysis**: Technology trend identification
- **Market Research**: Industry insights and analysis
- **Content Strategy**: Editorial planning and optimization
### Education & Research
- **Curriculum Development**: AI/ML course creation
- **Knowledge Mining**: Technical concept extraction
- **Academic Research**: Technology adoption studies
## π¦ Available Files
### Standard Formats
- `aim_full_dataset.json` - Complete dataset
- `aim_full_dataset.csv` - CSV format
- `aim_full_dataset.parquet` - Optimized Parquet format
### Specialized Subsets
- `aim_quality_dataset.json` - High-quality articles (300+ words)
- `aim_technical_dataset.json` - Highly technical content
- `aim_tutorial_dataset.json` - Educational content
- `aim_research_dataset.json` - Research and analysis articles
### ML-Ready Splits
- `train.json` / `train.parquet` - Training data
- `test.json` / `test.parquet` - Test data
- `validation.json` / `validation.parquet` - Validation data (if available)
## π Content Quality
- **Duplicate Removal**: All articles are unique by ID
- **Content Filtering**: Minimum word count requirements
- **Technical Validation**: Verified technical keywords
- **Clean Processing**: HTML removed, text normalized
- **Rich Metadata**: Comprehensive article classification
## βοΈ Ethics & Usage
### Licensing
- **License**: MIT License
- **Attribution**: Analytics India Magazine
- **Usage**: Educational and research purposes recommended
### Content Guidelines
- All content is publicly available from the source
- Original URLs provided for attribution
- Respects robots.txt and rate limiting
- No personal or private information included
## π Citation
```bibtex
@dataset{aim_technical_articles_2025,
title={Analytics India Magazine Technical Articles Dataset},
author={Abhilash Sahoo},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/abhilash88/aim-technical-articles}
}
```
## π€ Contact & Support
- **Dataset Creator**: Abhilash Sahoo
- **Hugging Face**: [@abhilash88](https://huggingface.co/abhilash88)
- **Source**: [Analytics India Magazine](https://analyticsindiamag.com/)
For questions, issues, or suggestions, please open a discussion on the Hugging Face dataset page.
## π Updates & Versions
- **Version 2.0** (Current): Enhanced processing, technical depth scoring
- **Last Updated**: 2025-07-11
- **Processing Pipeline**: Optimized extraction with 2025 tech coverage
---
**π― Ready to power your next AI project with comprehensive technical knowledge!**
*This dataset captures the cutting edge of AI and technology discourse, perfect for training models, research, and building intelligent applications.*
|