File size: 6,722 Bytes
3854004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---

license: mit
task_categories:
- text-classification
- text-generation
- question-answering
- summarization
language:
- en
tags:
- artificial-intelligence
- machine-learning
- deep-learning
- nlp
- computer-vision
- data-science
- technical-articles
- analytics-india-magazine
- ai-models
- programming
size_categories:
- 10K<n<100K
pretty_name: Analytics India Magazine Technical Articles Dataset

---


# Analytics India Magazine Technical Articles Dataset πŸš€

## Dataset Description

This comprehensive dataset contains **25,685 high-quality technical articles** from Analytics India Magazine, one of India's leading publications covering artificial intelligence, machine learning, data science, and emerging technologies.

### ✨ Dataset Highlights

- **πŸ“š Comprehensive Coverage**: Latest AI models, frameworks, and tools
- **πŸ”¬ Technical Depth**: Extracted keywords and complexity scoring
- **🏭 Industry Focus**: Real-world applications and insights
- **⚑ Multiple Formats**: JSON and optimized Parquet files
- **🎯 ML Ready**: Pre-processed and split for training

## Dataset Statistics

| Metric | Value |
|--------|-------|
| **Total Articles** | 25,685 |
| **Technical Articles** | 25,647 |
| **Average Word Count** | 724 words |
| **Language** | English |
| **Source** | [Analytics India Magazine](https://analyticsindiamag.com/) |

## 🎯 Technologies Covered

### AI & Machine Learning
- **Large Language Models**: GPT, Claude, Gemini, Llama
- **Frameworks**: TensorFlow, PyTorch, Hugging Face
- **MLOps Tools**: MLflow, Weights & Biases, Kubeflow
- **Agent Frameworks**: LangChain, AutoGen, CrewAI

### Programming & Tools
- **Languages**: Python, JavaScript, SQL
- **Cloud Platforms**: AWS, Azure, GCP
- **Development**: APIs, Docker, Kubernetes

## πŸ“Š Dataset Structure

### Core Fields
- `title`: Article title
- `content`: Full article content (cleaned)
- `excerpt`: Article summary
- `author_name`: Article author
- `publish_date`: Publication date
- `url`: Original article URL

### Technical Metadata
- `extracted_tech_keywords`: Technical terms found in content
- `technical_depth`: Number of technical keywords
- `complexity_score`: Technical complexity (0-4)
- `word_count`: Article length
- `categories`: Article categories
- `tags`: Content tags

### Quality Indicators
- `has_code_examples`: Contains code snippets
- `has_tutorial_content`: Tutorial or how-to content
- `is_research_content`: Research or analysis
- `has_external_links`: Contains external references

## πŸ“‹ Dataset Splits

| Split | Examples | Purpose |
|-------|----------|---------|
| **Train** | 19,221 | Model training |
| **Validation** | 2,136 | Hyperparameter tuning |
| **Test** | 3,769 | Final evaluation |

## πŸš€ Quick Start

### Using Hugging Face Datasets
```python

from datasets import load_dataset



# Load the dataset

dataset = load_dataset("abhilash88/aim-technical-articles")



# Access splits

train_data = dataset["train"]

test_data = dataset["test"]



# Filter technical articles

technical_articles = dataset.filter(

    lambda x: x["technical_depth"] >= 3

)

```

### Using Pandas
```python

import pandas as pd



# Load from JSON

df = pd.read_json("aim_full_dataset.json")



# Load from Parquet (faster)

df = pd.read_parquet("aim_full_dataset.parquet")



# Convert list columns back from JSON strings

import json

df['categories'] = df['categories'].apply(json.loads)

df['extracted_tech_keywords'] = df['extracted_tech_keywords'].apply(json.loads)

```

## 🎯 Use Cases

### Machine Learning
- **Text Classification**: Topic classification, difficulty assessment
- **Content Generation**: Article summarization, content creation
- **Recommendation Systems**: Technical content recommendations
- **Question Answering**: Technical QA systems

### Business Intelligence
- **Trend Analysis**: Technology trend identification
- **Market Research**: Industry insights and analysis
- **Content Strategy**: Editorial planning and optimization

### Education & Research
- **Curriculum Development**: AI/ML course creation
- **Knowledge Mining**: Technical concept extraction
- **Academic Research**: Technology adoption studies

## πŸ“¦ Available Files

### Standard Formats
- `aim_full_dataset.json` - Complete dataset
- `aim_full_dataset.csv` - CSV format
- `aim_full_dataset.parquet` - Optimized Parquet format

### Specialized Subsets
- `aim_quality_dataset.json` - High-quality articles (300+ words)
- `aim_technical_dataset.json` - Highly technical content
- `aim_tutorial_dataset.json` - Educational content
- `aim_research_dataset.json` - Research and analysis articles

### ML-Ready Splits
- `train.json` / `train.parquet` - Training data
- `test.json` / `test.parquet` - Test data
- `validation.json` / `validation.parquet` - Validation data (if available)

## πŸ“ˆ Content Quality

- **Duplicate Removal**: All articles are unique by ID
- **Content Filtering**: Minimum word count requirements
- **Technical Validation**: Verified technical keywords
- **Clean Processing**: HTML removed, text normalized
- **Rich Metadata**: Comprehensive article classification

## βš–οΈ Ethics & Usage

### Licensing
- **License**: MIT License
- **Attribution**: Analytics India Magazine
- **Usage**: Educational and research purposes recommended

### Content Guidelines
- All content is publicly available from the source
- Original URLs provided for attribution
- Respects robots.txt and rate limiting
- No personal or private information included

## πŸ“š Citation

```bibtex

@dataset{aim_technical_articles_2025,

  title={Analytics India Magazine Technical Articles Dataset},

  author={Abhilash Sahoo},

  year={2025},

  publisher={Hugging Face},

  url={https://huggingface.co/datasets/abhilash88/aim-technical-articles}

}

```

## 🀝 Contact & Support

- **Dataset Creator**: Abhilash Sahoo
- **Hugging Face**: [@abhilash88](https://huggingface.co/abhilash88)
- **Source**: [Analytics India Magazine](https://analyticsindiamag.com/)

For questions, issues, or suggestions, please open a discussion on the Hugging Face dataset page.

## πŸ”„ Updates & Versions

- **Version 2.0** (Current): Enhanced processing, technical depth scoring
- **Last Updated**: 2025-07-11
- **Processing Pipeline**: Optimized extraction with 2025 tech coverage

---

**🎯 Ready to power your next AI project with comprehensive technical knowledge!**

*This dataset captures the cutting edge of AI and technology discourse, perfect for training models, research, and building intelligent applications.*