File size: 1,367 Bytes
5c6a6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
language: []
pretty_name: PCQM4Mv2 3D
config_name: pcqm4mv2-3d
dataset_size: 562677714
size_categories: n>1M
license: mit
license_link: https://github.com/snap-stanford/ogb/blob/master/LICENSE
tags:
  - graphs
  - molecules
  - chemistry
  - parquet
  - torch-geometric
  - ogb
task_categories:
  - graph-regression
homepage: https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
---

# pcqm4mv2-3d

PCQM4Mv2 train split with 3D conformations aligned to OGB indices for HOMO-LUMO regression.

**License:** MIT License (OGB)

## Splits

| Split | Rows | File | Size (MB) |
| --- | ---: | --- | ---: |
| train | 3,195,733 | `train.parquet` | 562.68 |

## Features

- **mol_id**: int64 unique identifier per molecule
- **x**: list[int64[9]], shape (num_nodes, 9), atom feature vector
- **edge_index**: int64[2, num_edges], COO adjacency
- **edge_attr**: list[int64[3]], shape (num_edges, 3), bond features
- **pos**: list[float32[3]], shape (num_nodes, 3), 3D coordinates
- **num_nodes**: int64 number of atoms
- **smiles**: string canonical SMILES
- **target**: float32 HOMO-LUMO gap

## Citation

```
@article{hu2021ogblsc,
  title={OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs},
  author={Hu, Weihua and Fey, Matthias and Ren, Hongyu and Nakata, Maho and Dong, Yuxiao and Leskovec, Jure},
  journal={arXiv preprint arXiv:2103.09430},
  year={2021}
}
```