ProofWalaDataset / math-comp /train /math-comp_train.yaml
amitayusht's picture
Added raw dataset
db04d2b
name: math-comp_train
num_files: 75
language: COQ
few_shot_data_path_for_retrieval: null
few_shot_metadata_filename_for_retrieval: null
dfs_data_path_for_retrieval: null
dfs_metadata_filename_for_retrieval: local.meta.json
theorem_cnt: 11381
datasets:
- project: <path-to-repo>/math-comp/
files:
- path: mathcomp/solvable/abelian.v
theorems:
- trivg_exponent
- abelian_type_dvdn_sorted
- Ohm_leq
- abelem_Ohm1P
- expg_exponent
- TI_Ohm1
- rankJ
- abelian_splits
- isog_abelem
- morphim_pElem
- nElem1P
- rank_Ohm1
- pnElem0
- rankS
- pElemP
- nElem0
- Ohm1Eexponent
- p_rank_Ohm1
- rank_pgroup
- pmaxElemS
- is_abelemP
- p_rank_pmaxElem_exists
- exponent_witness
- p_rank_dprod
- abelian_type_dprod_homocyclic
- morphim_rank_abelian
- quotient_p_rank_abelian
- dprod_exponent
- abelem_cyclic
- isog_rank
- cprod_abelem
- Ohm1_id
- abelian_type_gt1
- morphim_LdivT
- card_pnElem
- isog_homocyclic
- p_rankS
- injm_pnElem
- card_p1Elem
- Ohm1_homocyclicP
- morphim_Ohm
- quotient_pnElem
- eq_abelian_type_isog
- abelian_type_sorted
- p_rank_Hall
- max_card_abelian
- p_rank_p'quotient
- isog_Mho
- abelian_type_pgroup
- LdivT_J
- Ohm1Eprime
- OhmEabelian
- nElemS
- abelem_Ohm1
- Mho1
- Mho_leq
- pnElemP
- quotient_LdivT
- p_rank1
- nElemP
- quotient_grank
- exponent_quotient
- abelemP
- sub_Ldiv
- Ohm1_eq1
- isog_abelem_card
- rank_gt0
- fin_lmod_char_abelem
- abelem_order_p
- injm_rank
- p_rank_le_logn
- Ohm_dprod
- pnElemPcard
- pElemJ
- pnat_exponent
- rank_abelian_pgroup
- injm_pElem
- p_rank_le_rank
- cyclic_abelem_prime
- p_rank_gt0
- dprod_abelem
- Ohm_Mho_homocyclic
- injm_abelem
- OhmS
- pmaxElem_exists
- pi_of_exponent
- card_p1Elem_p2Elem
- quotient_Ldiv
- pmaxElem_LdivP
- abelem_pgroup
- OhmJ
- Ohm0
- exponent_injm
- grank_abelian
- nElemI
- pmaxElemP
- partn_exponentS
- abelian_type_subproof
- injm_pmaxElem
- abelem1
- abelem_homocyclic
- Mho_sub
- OhmPredP
- exponent_isog
- Mho_dprod
- isog_Ohm
- p_rank_witness
- quotient_pElem
- injm_nElem
- exponent1
- exponentS
- exponentP
- trivg_Mho
- Ohm_char
- LdivJ
- p_rankJ
- Mho_normal
- p_rankElem_max
- size_abelian_type
- Ohm_sub
- cyclic_pgroup_dprod_trivg
- quotient_abelem
- pElemI
- rank_abelem
- nt_pnElem
- exponent_Hall
- isog_abelian_type
- card_p1Elem_pnElem
- dprod_homocyclic
- exponent_cyclic
- morphim_grank
- morphim_abelem
- LdivP
- pmaxElemJ
- Ohm_p_cycle
- injm_Ldiv
- cprod_exponent
- p_rank_abelian
- abelian_structure
- abelemE
- morphim_p_rank_abelian
- MhoE
- p1ElemE
- Ohm1_abelem
- fin_Fp_lmod_abelem
- rank1
- Ohm_normal
- homocyclic1
- Ohm1_cent_max
- p2Elem_dprodP
- morphim_pnElem
- exponent_gt0
- group_Ldiv
- p_rank_Sylow
- prime_abelem
- morphim_Ldiv
- sub_LdivT
- MhoJ
- exponent_dvdn
- Mho_cprod
- Mho_char
- Ohm_id
- logn_le_p_rank
- exponent_dprod_homocyclic
- mul_card_Ohm_Mho_abelian
- cycle_abelem
- injm_p_rank
- dvdn_exponent
- pElemS
- pnElemI
- grank_min
- OhmE
- abelemJ
- abelem_splits
- grank_witness
- Mho_p_elt
- pnElemE
- isog_p_rank
- meet_Ohm1
- abelem_pnElem
- pnElemJ
- MhoEabelian
- Ohm1_cyclic_pgroup_prime
- rank_Sylow
- abelian_type_abelem
- rank_geP
- homocyclic_Ohm_Mho
- p_rank_quotient
- abelian_type_homocyclic
- MhoS
- logn_quotient
- card_homocyclic
- abelian_exponent_gen
- exponentJ
- def_pnElem
- isog_grank
- is_abelem_pgroup
- fin_ring_char_abelem
- exponent_cycle
- count_logn_dprod_cycle
- abelian_rank1_cyclic
- Mho_cont
- piOhm1
- p_rank_geP
- injm_grank
- path: mathcomp/algebra/mxalgebra.v
theorems:
- mxrank_cap_compl
- eqmxMfull
- rowV0P
- ltmx_irrefl
- adds0mx
- map_capmx_gen
- addsmx_nop0
- cent_mx_ideal
- mxrank_sum_leqif
- mxrank0
- stablemxN
- row_free_castmx
- map_row_base
- mulsmxDl
- map_row_ebase
- ltmx1
- capmx_eq_norm
- mxrank_mul_ker
- mxrankS
- mxrankE
- diffmxE
- map_capmx
- eqmxMfree
- ltmxErank
- eq_row_full
- row_sub
- sub_capmx
- summx_sub
- eqmx_conform
- matrix_modr
- row_fullP
- mxrankM_maxr
- capmx_idPl
- cap0mx
- mxrank_opp
- logn_card_GL_p
- mxrank_adds_leqif
- rank_leq_row
- map_submx
- mulsmx_subP
- stablemx0
- negb_row_free
- stablemx_sums
- mxring_id_uniq
- sub_daddsmx
- rank_ltmx
- sub_addsmxP
- eqmx_col
- mxrank_fullrowsub
- sub_dsumsmx
- mxrank_ker
- eqmx_eq0
- capmx_norm_eq
- row_subP
- capmxC
- nary_mxsum_proof
- addsmx_addKl
- genmx_id
- rowsub_comp_sub
- sub_ltmx_trans
- genmx_cap
- addsmx_nop_eq0
- addsmx_compl_full
- mxdirect_addsP
- maxrowsub_free
- mxrankMfree
- mulsmxS
- sub_rVP
- lt1mx
- eq_maxrowsub
- row_full_unit
- stablemxC
- rank_rV
- proj_mx_sub
- center_mxP
- fullrankfun_inj
- addsmx_addKr
- capmx_diff
- sumsmx_subP
- eqmxMunitP
- mulsmxA
- card_GL
- mulmxKpV
- stablemx_unit
- memmx1
- mulmxP
- eqmxP
- lt0mx
- center_mx_sub
- inj_row_free
- addsmx_idPr
- eq_genmx
- rowsub_sub
- mxdirect_adds_center
- proj_mx_compl_sub
- row_full_inj
- eq_row_base
- eqmx_stable
- mulmx_coker
- row_subPn
- genmx_sums
- eq_rank_unitmx
- addmx_sub_adds
- submx_full
- genmx_diff
- rank_diag_block_mx
- addsmx_nop_id
- submx_rowsub
- eqmx_sym
- memmx_addsP
- genmx0
- addsmxE
- submx_refl
- submxElt
- ltmxE
- capmx1
- capmx_idPr
- submxMl
- addsmxS
- map_genmx
- fullrowsub_full
- lt_eqmx
- mulmx1_min_rank
- eqmx_rank
- row_full_castmx
- capmx_nopP
- stablemxD
- sub_sumsmxP
- memmx0
- mxdirect_trivial
- row_base_free
- mxrank_tr
- eqmx_scale
- mxrank_disjoint_sum
- mxrank_injP
- maxrowsub_full
- mxrank_leqif_sup
- sub0mx
- row_free_map
- addsmx_diff_cap_eq
- capmxMr
- adds0mx_id
- adds_eqmx
- mem0mx
- map_cokermx
- pinvmx_full
- mxrank_map
- memmx_map
- mulsmxP
- eigenvalueP
- kermx0
- mulsmx0
- eigenvectorP
- mxdirect_sumsE
- capmxSr
- mulmx0_rank_max
- add_proj_mx
- submx0
- mxdirect_sums_center
- nz_row_sub
- complete_unitmx
- scalar_mx_cent
- map_center_mx
- mulmxKp
- eigenvalue_map
- cokermx_eq0
- eqmx_opp
- map_kermx
- eqmx_sums
- eq_fullrowsub
- col_mx_sub
- card_GL_1
- capmx0
- stablemxM
- sub_kermxP
- sumsmx_sup
- muls0mx
- eqmxMr
- eq_row_sub
- mxdirect_sumsP
- mulVpmx
- mxring_idP
- mulsmxDr
- mxrank1
- Gaussian_elimination_map
- stable0mx
- capmxE
- sub_bigcapmxP
- cap1mx
- eqmx_refl
- mxdirect_sums_recP
- row_full_map
- mxrank_scale_nz
- mxrank_coker
- row_free_inj
- rV_subP
- map_pinvmx
- map_cent_mx
- mxdirect_sum_eigenspace
- cent_mx_fun_is_linear
- mxrank_gen
- cent_mxP
- mulmxKV_ker
- row_freeP
- mxdirect_delta
- rank_col_mx0
- scalemx_sub
- comm_mx_stable
- mxrank_delta
- mxdirect_addsE
- submx_trans
- map_col_base
- rank_copid_mx
- comm_mx_stable_ker
- capTmx
- capmx_nop_id
- map_eigenspace
- stableCmx
- eqmx0
- sub_qidmx
- addsmx_sub
- eqmx_sum_nop
- capmx_normP
- stablemx_row_base
- mxdirectEgeq
- memmx_sumsP
- map_mulsmx
- pinvmx_free
- addsmxSr
- rank_mxdiag
- stableDmx
- eqmx_rowsub_comp_perm
- has_non_scalar_mxP
- rank_col_0mx
- capmxSl
- mulmx_ebase
- addsmx0_id
- addsmxC
- row_free_unit
- ltmx_trans
- genmx1
- genmx_bigcap
- ltmx_sub_trans
- mem_mulsmx
- proj_mx_0
- maxrankfun_inj
- map_eqmx
- capmxA
- qidmx_cap
- mxrankM_maxl
- eqmx_rowsub
- stablemx_full
- sumsmxMr
- cap_eqmx
- comm_mx_stable_eigenspace
- mxdirectE
- fullrowsub_free
- submxMr
- bigcapmx_inf
- memmx_subP
- mxrank_leqif_eq
- addsmxMr
- mulmxVp
- map_col_ebase
- fullrowsub_unit
- rank_row_mx0
- submx0null
- eqmx_cast
- matrix_modl
- ltmx0
- mxdirectP
- sub_sums_genmxP
- mxrank_add
- addsmx_idPl
- card_GL_2
- ltmxW
- eigenspaceP
- cent_mx_ring
- mxrank_Frobenius
- diffmxSl
- sub_kermx
- submxMfree
- row_ebase_unit
- mxrank_mul_min
- genmx_witnessP
- memmx_eqP
- sumsmxS
- capmx_witnessP
- map_complmx
- addsmx0
- mxrank_scale
- sub_capmx_gen
- submxE
- muls_eqmx
- sub1mx
- capmx_compl
- proj_mx_id
- cent_rowP
- rank_row_0mx
- eqmx_trans
- mulmx_free_eq0
- submxP
- addsmxSl
- capmxT
- sumsmxMr_gen
- col_leq_rank
- submx1
- eqmx0P
- ltmxEneq
- mxrank_unit
- map_diffmx
- genmx_adds
- rank_pid_mx
- map_addsmx
- path: mathcomp/algebra/matrix.v
theorems:
- map_col_mx
- det0
- scalemx_inj
- mx11_scalar
- mxcol_const
- mxcol_sum
- unitmx1
- trmxK
- lin1_mx_key
- row_mxEl
- map_mx_key
- mxsize_recl
- eq_mxdiag
- mul_mxcol_mxrow
- mul_row_block
- col_permM
- mxrow0
- mxrowD
- mxvecE
- colsub_comp
- row_usubmx
- mx_vec_lin
- scalar_mx_sum_delta
- map2_usubmx
- scale1mx
- det_inv
- map2_col_perm
- mxtrace_is_scalar
- map_mxN
- map2_row_mx
- mul_scalar_mx
- add_row_mx
- unitmxE
- mx0_is_diag
- map_xcol
- delta_mx_rshift
- map2_row
- col_mxblock
- mxtrace_mxblock
- col'_eq
- col_mx_key
- map2_mxsub
- tr_scalar_mx
- mxblockEh
- row_mx0
- determinant_alternate
- mul_rVP
- submxblockB
- trmx_adj
- row_mxKr
- col_rsubmx
- map2_1mx
- mxsub_comp
- mxcolB
- mx_rV_lin
- map_mx_id_in
- trmx_delta
- mulVmx
- scalar_mx_block
- trmx_drsub
- is_perm_mx_tr
- mulmx_is_scalable
- addmx_key
- map_tperm_mx
- det_mulmx
- eq_castmx
- scale_scalar_mx
- map2_lsubmx
- scalar_mx_is_additive
- tr_col
- mulmxN
- mulmx_colsub
- is_diag_block_mx
- map_row_mx
- mul_pid_mx
- mxcol_recu
- scalemxAr
- usubmxEsub
- mxsub_mul
- mxvec_cast
- diag_mx_sum_delta
- cast_col_mx
- mulNmx
- mulmxBl
- rowE
- map2_conform_mx
- trmx_const
- invmx_out
- xcolE
- mulmx1
- submxblockK
- mxblock_recul
- rowP
- xcol_const
- perm_mxV
- diag_const_mx
- row_mxsub
- mulKVmx
- mul_rV_lin
- colP
- comm_mx_sym
- map_mxsub
- col_mx_eq0
- tr_row_mx
- xrowEsub
- flatmxOver
- rowsubE
- det_diag
- map_mxZ
- mxblockD
- mul_vec_lin_row
- rsubmxEsub
- tr_row'
- map_ursubmx
- trmx_usub
- row_mx_key
- mul_delta_mx
- diag_mx_is_linear
- invmx_scalar
- mxOver_opp_subproof
- cormen_lup_correct
- mul_block_col
- row_rowsub
- eq_mxsub
- delta_mx_dshift
- pid_mx_row
- scalemxDl
- rowK
- curry_mxvec_bij
- map_lin1_mx
- block_mxEdr
- map_mxB
- comm_mxB
- lift0_perm_eq0
- castmxKV
- mxOverM
- map2_col_mx
- scale_col_mx
- map2_mxC
- col_mxsub
- idmxE
- mxtrace_scalar
- is_perm_mxMr
- mul_row_col
- tr_submxblock
- submxK
- lift0_perm0
- col_mxdiag
- map2_mxvec
- trmx_cast
- map_row_perm
- block_mx0
- eq_mxcol
- mul_diag_mx
- mul_xcol
- mxcolN
- map_drsubmx
- map2_vec_mx
- map2_mx0
- mxOverZ
- opp_row_mx
- block_mxEul
- const_mx_key
- col_perm_const
- vec_mx_eq0
- scalemxDr
- map2_mxA
- intro_unitmx
- map2_ursubmx
- tr_mxrow
- trmx1
- col_colsub
- map2_mx1
- row1
- map_mxM
- row'Kd
- mxblock0
- GL_VxE
- opp_block_mx
- mul_rowsub_mx
- col'_const
- tr_mxcol
- map2_rsubmx
- is_diag_trmx
- mxEmxrow
- scalemxAl
- tr_pid_mx
- submxrow_matrix
- eq_rowsub
- trigmx_ind
- mul_mxrow_mxblock
- block_mxEdl
- submxrowD
- row_permEsub
- adjZ
- map2_mx_left
- expand_det_row
- det_lblock
- map_col_perm
- is_scalar_mx_is_diag
- ursubmxEsub
- col_eq
- row_mxrow
- rowsub_comp
- vsubmxK
- lift0_perm_lift
- mxblockK
- mulmx_sum_row
- mxOverS
- mxOver_diagE
- mulmxDr
- tr_xrow
- col_mxEu
- map_scalar_mx
- mxrowP
- cast_row_mx
- matrix_key
- mx0_is_trig
- det_tr
- rowEsub
- cormen_lup_upper
- diagsqmx_ind
- map2_mx_key
- mul_mx_row
- tr_row
- is_trig_mxblockP
- GL_ME
- mul_mxdiag_mxcol
- GL_unitmx
- block_mx_eq0
- mul_mxdiag_mxblock
- mxdiagN
- tr_perm_mx
- mul_mxrow
- mxsub_id
- mxtrace_is_semi_additive
- mxsub_ffun
- row_perm1
- mul_mx_scalar
- is_diag_mxP
- submxcol_sum
- mxcol_mul
- row_mx_eq0
- mx0_is_scalar
- is_scalar_mx_is_trig
- mxrowN
- tr_col'
- castmx_comp
- is_perm_mxMl
- map_lin_mx
- mx11_is_diag
- eq_block_mx
- lin_mulmx_is_linear
- addNmx
- mxrow_const
- mul_pid_mx_copid
- opp_col_mx
- trmx0
- trmx_mxsub
- row_mxA
- mxvec_delta
- delta_mx_key
- col_mx0
- rV0Pn
- mxdiagD
- is_diag_mxEtrig
- unitmxZ
- mxcol0
- map_mxD
- map_usubmx
- eq_mxblockP
- row_permM
- tr_block_mx
- map2_trmx
- invmx_block_diag
- col_perm_key
- mulmx1_unit
- dsubmxEsub
- comm_mxM
- summxE
- scale_block_mx
- ulsubmx_diag
- mul_delta_mx_cond
- add_block_mx
- eq_in_map_mx
- col0
- mul_dsub_mx
- map2_xcol
- unitmx_mul
- vec_mxK
- mxtraceD
- trmx_mul
- map2_mxDl
- trmxV
- cV0Pn
- col'Kl
- mxOver_scalarE
- cofactor_map_mx
- mul_mxblock
- mxOver_add_subproof
- mxOver_constE
- pid_mx_col
- mxblockEv
- mxvec_indexP
- all_comm_mx1
- map_copid_mx
- mul_adj_mx
- map_diag_mx
- block_mxKdl
- mxblock_recu
- mxsub_ffunl
- pid_mx_minh
- unitmx_inv
- conform_castmx
- mxOverP
- mxsub_const
- submxrowN
- mxrowB
- scalemxA
- mxdiagB
- col'_col_mx
- col_lsubmx
- map_pid_mx
- map_mx_id
- submxcol_matrix
- cofactorZ
- col1
- map2_dlsubmx
- is_trig_mxP
- is_trig_block_mx
- col_permE
- delta_mx_lshift
- eq_row_mx
- xrowE
- mxsubcr
- mxdiag0
- scalemx_const
- comm_mxN
- copid_mx_id
- trmx_inv
- vec_mx_delta
- mxOver_const
- mx1_sum_delta
- eq_map2_mx
- submxcolN
- row_mx_const
- map_mx_eq0
- lift0_permK
- col_const
- pid_mx_id
- all_comm_mxP
- pid_mx_block
- row_const
- ulsubmxEsub
- block_mxKul
- scalar_mx_key
- colKr
- comm_mxE
- delta_mx_ushift
- row_mxdiag
- row_diag_mx
- comm1mx
- diagmx_ind
- scalar_mx_is_diag
- row_permE
- det_mx11
- swizzle_mx_is_semi_additive
- col_mxA
- comm_mx_refl
- ursubmx_trig
- is_diag_mxblock
- trmx_mul_rev
- scalar_mx_is_multiplicative
- map_mx_is_scalar
- mul_mxblock_mxrow
- mxcolK
- xrow_const
- submxcol0
- castmx_id
- submxrow0
- eq_map_mx
- map_mx_is_multiplicative
- scalar_mxM
- mxvec_eq0
- mulmx1C
- usubmx_key
- tr_col_mx
- mxsub_ffunr
- col_permEsub
- mulmx0
- submxblockN
- map_const_mx
- trmx_dlsub
- trmx_dsub
- mxsub_ind
- map_mx_adj
- submxblockEv
- mulmx_lsub
- col_mxKd
- map2_ulsubmx
- mulmxA
- pid_mx_minv
- colsub_cast
- submxblockEh
- row_perm_const
- unitmx_tr
- row_eq
- all_comm_mx2P
- block_mxEh
- mul_copid_mx_pid
- scalar_mxC
- map_row
- submxrow_sum
- eq_colsub
- castmx_sym
- submxblock_diag
- mul_col_perm
- submxrowB
- map_lsubmx
- col_mxcol
- block_mxEv
- row'_const
- is_perm_mxP
- comm_mxP
- mxcolD
- mulmx_diag
- matrix_eq0
- map2_0mx
- diag_mx_comm
- mxrowK
- castmxK
- eq_col_mx
- mul_rV_lin1
- colKl
- drsubmx_diag
- perm_mxM
- row'_eq
- flatmx0
- map_block_mx
- eq_mxcolP
- all_comm_mx_cons
- trace_map_mx
- map_conform_mx
- ringmx_ind
- mul_submxrow
- map2_const_mx
- comm_mx_scalar
- det_map_mx
- mul_col_row
- eq_mxrow
- trmx_lsub
- map_mx_inv
- detM
- submxblock0
- expand_det_col
- comm0mx
- card_mx
- rowKd
- tr_xcol
- pid_mx_key
- castmxEsub
- lsubmxEsub
- row'_row_mx
- row0
- swizzle_mx_is_additive
- rowKu
- submxblock_sum
- oppmx_key
- map_dsubmx
- map2_dsubmx
- col_row_permC
- mxOver0
- map2_col'
- dlsubmxEsub
- diag_mxrow
- map_unitmx
- map_mx_comp
- hsubmxK
- pid_mx_1
- scalar_mx_is_trig
- trace_mx11
- mulmx_block
- const_mx_is_additive
- map2_mx_right_in
- mxsub_eq_id
- scalar_mx_is_scalar
- mxtrace_is_additive
- detZ
- map_mx1
- ulsubmx_trig
- block_diag_mx_unit
- mul_row_perm
- mul_vec_lin
- mul1mx
- dsubmx_key
- map_dlsubmx
- diag_mx_row
- cormen_lup_lower
- exp_block_diag_mx
- vec_mx_key
- mxdiag_recl
- map_row'
- eq_mxblock
- map_mx_inj
- row_thin_mx
- xcolEsub
- map2_drsubmx
- map_invmx
- mulKmx
- map2_row_perm
- perm_mx1
- col_mx_const
- map_mx_unit
- add_col_mx
- mul0mx
- det_mx00
- mx'_cast
- swizzle_mx_is_scalable
- det_scalar1
- mxblock_sum
- mul_usub_mx
- is_diag_mxblockP
- eq_mxrowP
- colE
- mxtraceZ
- map_trmx
- mxtrace_tr
- trmx_conform
- is_perm_mxV
- col'Esub
- mxblock_recl
- matrixP
- invmxZ
- mxtrace1
- nz_row_eq0
- mxsub_eq_colsub
- row_ind
- mxOver_scalar
- mx11_is_trig
- mxEmxblock
- mulmx_key
- tperm_mxEsub
- map2_mx_right
- unitmx_perm
- mulmxK
- eq_in_map2_mx
- comm_mxD
- map_ulsubmx
- mxvecK
- mxdiagZ
- diag_mx_key
- dlsubmx_diag
- GL_MxE
- det_perm
- mxdiag_sum
- mxsub_eq_rowsub
- GL_1E
- row_mxKl
- map2_block_mx
- col_perm1
- mxE
- mxvec_dotmul
- lin_mul_row_is_linear
- eq_mxdiagP
- GL_det
- mulmxE
- comm_mx_sum
- row_matrixP
- map2_castmx
- mxEmxcol
- tr_row_perm
- col_id
- trmx_rsub
- map_delta_mx
- map2_col
- is_trig_mxblock
- castmxE
- det0P
- map2_mxDr
- unitr_trmx
- det1
- row_row_mx
- diag_mxP
- rowsub_cast
- map_col
- det_trig
- det_ublock
- cormen_lup_perm
- comm_scalar_mx
- is_diag_mx_is_trig
- GL_unit
- matrix_sum_delta
- col_flat_mx
- cofactor_tr
- mul_mxrow_mxcol
- mxtrace_mulC
- colEsub
- mul_mx_adj
- diag_mx_is_trig
- submxrowK
- mxtrace_diag
- lift0_mx_perm
- diag_mxC
- scalemx1
- row'Esub
- trigsqmx_ind
- trmx_eq0
- scalemx_key
- adjugate_key
- lin_mulmxr_is_linear
- row_mul
- map2_mx_left_in
- mulmx_suml
- is_perm_mx1
- row_id
- trmx_ulsub
- map_mx0
- submxblockD
- map_perm_mx
- tr_mxdiag
- pid_mxErow
- mxblock_const
- scale_row_mx
- submxcol_mul
- row_mxEr
- sqmx_ind
- map_mxvec
- castmx_const
- pid_mxEcol
- mulmxKV
- mxsubrc
- detV
- mulmxDl
- mxOver_diag
- GL_VE
- mxtrace0
- expand_cofactor
- mxrow_sum
- mx_ind
- mulmx_sumr
- mulmxBr
- matrix0Pn
- matrix_nonzero1
- col'Kr
- row_mxcol
- col_mxKu
- map_vec_mx
- determinant_multilinear
- perm_mx_is_perm
- tr_col_perm
- mulmxnE
- drsubmx_trig
- comm_mxN1
- diag_mx_is_additive
- mxblockN
- col_col_mx
- mxblockP
- submxcolB
- row_mxblock
- row_sum_delta
- lsubmx_key
- comm_mx0
- det_Vandermonde
- nonconform_mx
- conform_mx_id
- mxcolEblock
- block_mx_const
- map_rsubmx
- block_mxKur
- rsubmx_key
- trmx_key
- tr_mxblock
- block_mxKdr
- thinmx0
- mxsub_cast
- pid_mx_0
- trmx_inj
- mulmxV
- path: mathcomp/ssreflect/order.v
theorems:
- lt_Taggedl
- diffE
- leU2E
- bigmin_inf
- sub_bigmax_seq
- joinxB
- gt_min
- le_sorted_filter
- join0x
- min_minKx
- joinUA
- meetUr
- subset_bigmax
- ltxi_tuplePlt
- rcomplPmeet
- refl
- lcomparable_leP
- comparable_lteifNE
- codiffErcompl
- bigmaxD1
- compl_joins
- setKIC
- arg_maxP
- refl
- comparable_bigl
- lexU
- lt_def
- meetUl
- leIxr
- orEbool
- le0x
- trans
- meetxx
- enumT
- le0s
- size_enum_ord
- nhomo_ltn_lt_in
- ltxx
- join_cons
- disj_diffr
- lcmE
- lt_def
- sig_bij_on
- trans
- join_idPr
- decnP
- ltn_def
- ltgtP
- trans
- incomparable_eqF
- count_lt_nth
- joinKIC
- diffxB
- meet_eq1
- eq_minr
- comparable_contra_leq_lt
- le_sig
- joinBI
- contra_not_lt
- comparable_contra_leq_le
- sub_in_bigmax
- complEcodiff
- incn_inP
- enum_setT
- meetUl
- comparable_lteif_minr
- lt_asym
- meetUA
- mono_leif
- eq_le
- rcomplPmeet
- compl_inj
- diffxx
- le_path_filter
- count_lt_ge
- le_meetU
- les0
- sub_bigmin
- enum_val_inj
- opred_joins
- meetKU
- meetIB
- meet1x
- contra_lt_le
- joinKI
- diffKI
- sort_le_sorted
- bigmin_geP
- meetUl
- rcomplPmeet
- max_r
- maxxx
- meetUl
- comparable_maxl
- comparable_contra_lt_le
- maxEge
- ltxi_cons
- opred1
- bigmax_eq_arg
- comparable_contraTle
- joinA
- contra_leq_le
- leifP
- le_path_min
- lteifN
- sig2K
- lt_sorted_pairwise
- meet_def_le
- comparable_leNgt
- ltxi0s
- lcomparable_ltP
- joinE
- comparable_min_maxr
- leU2l_le
- botEprodlexi
- nmono_in_leif
- count_lt_le_mem
- minEge
- min_l
- bigmin_le_cond
- le_cons
- bigmax_ge_id
- meetxC
- diffBx
- comparable_arg_maxP
- sub_tprod_lexi
- comparable_ge_max
- inj_homo_lt_in
- lteif_minr
- le_bigmax_ord
- joinxx
- compl_meets
- comparable_contraPle
- joinC
- ge_trans
- comparable_minC
- join_r
- comparable_maxEge
- joinUKC
- anti
- comparable_le_max
- joins_disjoint
- subset_bigmin
- le_bigmax2
- homo_ltn_lt_in
- comparable_minCA
- comparable_max_idPl
- leU2
- eqTleif
- lex1
- comparable_ltgtP
- eq_diff
- leI2
- ltEnat
- leI2l_le
- joinIKC
- gt_comparable
- le_anti
- eq_joinl
- joinEprod
- comparable_contra_not_le
- minEgt
- max_minl
- anti
- eq_leLR
- leC
- total
- enum_val_nth
- gcdE
- nonincnP
- lexi_pair
- leUx
- comparable_contraFle
- nth_count_le
- idfun_is_join_morphism
- joinBx
- diff1x
- bigmin_idl
- filter_le_nth
- meetUKC
- le_lt_asym
- diffIx
- min_idPl
- lt1x
- refl
- lexUr
- maxElt
- enum_uniq
- leW_mono
- ge_comparable
- lteif_imply
- lt_val
- rcomplEprod
- lt_trans
- lexi_tupleP
- le_anti
- maxKx
- lexUl
- leUl
- trans
- enum_ord
- omorph0
- bigmin_gtP
- meetUl
- le_Taggedl
- le_bigmin_nat_cond
- leEseq
- lex1
- lexI
- maxCA
- joinA
- join_idPl
- wlog_lt
- lt_Taggedr
- comparable_sym
- contra_leq_lt
- diffKU
- lexI
- minC
- eqRank
- comparable_maxKx
- lt_max
- le_max
- enum_valP
- lt_min
- bigmax_mkcondl
- nth_enum_ord
- enum_valK
- maxAC
- tnth_meet
- comparable_max_minr
- enum_rank_inj
- omorphI
- joinKI
- le_anti
- le_enum_val
- refl
- eq_bigmax
- joinAC
- bigmax_idr
- sub_prod_lexi
- codiffEprod
- joinUC
- leif_le
- le_bigmin_ord_cond
- meets_total
- comparable_minEgt
- join1x
- bigmin_set1
- le_trans
- sig_bij
- lt_path_sortedE
- leEsig
- diffUx
- leEseqlexi
- meetEprod
- joinxx
- topEdual
- diffErcompl
- comparable_contra_lt
- bigmax_mkcond
- meetA
- lteif_maxl
- lt_eqF
- tnth_join
- joinIl
- dec_inj
- comparable_contraNlt
- codiffErcompl
- botEtprod
- bigmin_eq_arg
- topEord
- sigK
- bigmax_ltP
- ltx1
- mask_sort_le
- leEdual
- joinEsubset
- lt_def
- joinCx
- tnth_codiff
- meetEsubset
- lt_leif
- subseq_lt_sorted
- diffKI
- bigmax_le
- lteifNE
- meets_setU
- eq_meetr
- le_def
- le_max_id
- rank_bij
- comparable_maxAC
- leI2E
- meetsP_seq
- neqhead_ltxiE
- subseq_lt_path
- leBRL
- lt_sorted_leq_nth
- lteifF
- diffErcompl
- subseq_le_sorted
- lcomparable_ltgtP
- subseq_le_path
- joinx1
- meets_inf_seq
- meetKUC
- bigmin_mkcondl
- enum_rank_bij
- count_le_gt
- opred_meets
- rcomplEtprod
- codiffErcompl
- ltrW_lteif
- contra_lt_not
- lt_nsym
- neq_lt
- meetUl
- comparable_contra_ltn_le
- lt_neqAle
- joinA
- bigmin_idr
- gtE
- meet_eq0E_diff
- valI
- ltxI
- bigminUl
- lt_sorted_eq
- sort_lt_sorted
- bigminUr
- inj_homo_lt
- maxEgt
- comparable_ge_min
- comparable_contra_le
- comparable_lt_min
- le_eqVlt
- index_enum_ord
- le_meets
- diff0x
- sub_in_bigmin
- eq_joinr
- set_enum
- comparable_maxxK
- le_bigmax_nat_cond
- rankEsum
- comparable_contraPlt
- valD
- ge_anti
- bigmax_eq_id
- botEsubset
- omorphU
- meetIKC
- diffxU
- inj_nhomo_lt
- leif_trans
- meetKI
- contra_ltF
- joinKU
- meetKU
- lt_rank
- sorted_mask_sort_le
- lt_path_pairwise
- nth_enum_rank_in
- gt_max
- nth_count_gt
- enum_rankK_in
- bigmax_idl
- ltEprod
- comparable_contra_le_lt
- joinsP_seq
- ltEseqlexi
- contra_leF
- leI2r_le
- le_bigmin
- joins_setU
- le_le_trans
- prod_display_unit
- sort_lt_id
- lteif_maxr
- lexI
- meetA
- comparable_minl
- maxEle
- bigmin_split
- leIl
- rcomplPmeet
- maxC
- ltn_def
- rcomplKU
- lt_pair
- eq_leRL
- dvdE
- sub_bigmin_seq
- complK
- rcomplPmeet
- ltW_nhomo_in
- inj_nhomo_lt_in
- omorph_lt
- meet0x
- perm_sort_leP
- diffxI
- leEtprod
- rank_inj
- joinKI
- nmono_leif
- le_min
- complEsubset
- comparable_minAC
- le_enum_rank
- comp_is_bottom_morphism
- joinA
- comparable_lteif_maxl
- ord_display
- joins_min_seq
- lex1
- le_bigmax
- le_sorted_ltn_nth
- le_sorted_eq
- count_le_nth
- leif_refl
- anti
- sdvdE
- complEbool
- meet_idPr
- le_def
- nth_count_ge
- val1
- meetUC
- lt_def
- le_gtF
- diffEtprod
- meetBx
- anti
- meetsP
- ltW_homo_in
- meetE
- leBUK
- comparable_minEge
- complEdiff
- meetx1
- complEcodiff
- disj_leC
- lt_def
- mem_enum
- meet_cons
- comparable_le_min
- joinBIC
- meets_inf
- comparable_arg_minP
- sub_bigmax_cond
- minElt
- meetA
- complEtprod
- joinKI
- incnP
- meetxx
- lteifNF
- topEsubset
- bigminD1
- bigmaxIr
- gt_def
- nat_display
- lteif_trans
- comparable_minACA
- le_trans
- meets_ge
- Rank1K
- joinC
- contra_le_not
- lt_wval
- comparable_contraTlt
- ltW
- cardT
- leW_mono_in
- le_path_mask
- arg_minP
- eq_Rank
- joinxx
- lteif_anti
- complU
- leIx2
- join_l
- ge_leif
- lt_sorted_mask
- nth_count_lt
- bigmax_leP
- meet_idPl
- eqhead_ltxiE
- nondecnP
- opredU
- min_minxK
- meetxx
- le_bigmin_nat
- le_comparable
- bigminD
- leEord
- comparable_maxr
- bigmaxD
- meetUl
- meets_seq
- min_maxr
- maxEnat
- maxA
- comparable_min_maxl
- bigminIr
- leBr
- leEbool
- contra_ltn_lt
- homo_ltn_lt
- enum_set0
- enum_val_bij
- complEdiff
- ltEbool
- botEord
- subset_bigmin_cond
- lexI
- meet_eql
- lexis0
- bigmax_imset
- join_eq0
- complEprod
- disjoint_lexUr
- codiffErcompl
- le_mono_in
- totalT
- minACA
- compl0
- setKUC
- rcomplPjoin
- leIr
- complB
- lex1
- ltx0
- joinsP
- rect
- comparable_maxA
- leIx
- leEmeet
- le_sig1
- leUidr
- cover_leIxr
- le_pair
- meetEtotal
- comparable_eq_maxl
- enum_valK_in
- joinUKI
- comparable_lteif_minl
- joinBKC
- comp_is_nondecreasing
- complEcodiff
- meetUK
- leP
- rank_bij_on
- diffUK
- mono_sorted_enum
- le_bigmax_cond
- sorted_filter_le
- leU2r_le
- wlog_le
- posxP
- minxx
- leNgt
- bigmaxU
- contra_ltT
- joins_min
- lexI
- rcomplKI
- bigmax_split
- leEjoin
- complEdiff
- mono_in_leif
- meetxB
- RankEsum
- lt_sorted_filter
- comparable_leP
- lexi_display
- setTDsym
- bigmaxID
- contra_le_leq
- leUx
- leBLR
- meet_r
- lt_sig
- leCx
- bigmax_set1
- min_idPr
- trans
- filter_sort_le
- comparable_lteif_maxr
- leW_nmono
- le_trans
- lt_total
- mono_unique
- contra_leT
- le0x
- bigmaxIl
- complEdiff
- bigmax_lt
- contra_le_lt
- le_sorted_mask
- comparable_min_idPr
- joinIr
- opredI
- comparable_minKx
- joinxC
- comparable_max_minl
- ltxi_pair
- leB2
- idfun_is_top_morphism
- inc_inj
- nondecn_inP
- comparable_ltNge
- complErcompl
- min_r
- le_Taggedr
- le_rank
- subEsubset
- le_total
- refl
- complEcodiff
- leEsubset
- lex0
- bigmin_imset
- topEtlexi
- lexI
- sub_bigmin_cond
- meetKU
- bigminID
- ltxU
- comparable_minxK
- le_sorted_pairwise
- lteif_minl
- diffEprod
- ltW_nhomo
- bigmin_mkcond
- filter_lt_nth
- eq_enum_rank_in
- comparable_eq_minr
- seqprod_display
- diffx0
- val0
- bigmaxUl
- leBC
- lcomparableP
- le0x
- le_anti
- leIidr
- sig_inj
- contra_not_le
- le0x
- omorph1
- topEprod
- meetEdual
- leEjoin
- contraFle
- joinUK
- ltEdual
- tnth_compl
- meetCx
- ltUx
- lt_comparable
- leEprodlexi
- enum0
- contra_lt_ltn
- bigminU
- eq_bigmin
- comparable_maxACA
- contra_ltN
- nth_enum_rank
- le_mono
- dec_inj_in
- comparableT
- le_bigmax_nat
- total
- orbE
- setIDv
- ltIx
- comparable_contra_not_lt
- lteifW
- ge_total
- ge_min
- leIxl
- enum_rank_in_inj
- rankE
- lt_def
- minEnat
- botEprod
- contraPle
- comparable_lt_max
- joinEdual
- trans
- lt_geF
- contraFlt
- topEprodlexi
- meetKU
- nth_ord_enum
- nat1E
- sub_bigmax
- meetIK
- ge_antiT
- comparableP
- comp_is_join_morphism
- meets_max_seq
- geE
- joinBK
- joinEtotal
- eq_leif
- leEnat
- lt_path_filter
- ltxi_lehead
- card
- minA
- nth_count_eq
- inc_inj_in
- eq_cardT
- ge_anti
- subEbool
- le_lt_trans
- joinC
- contra_lt
- leEmeet
- le0x
- lt_bigmin
- meetUl
- val_enum_ord
- lteifS
- disjoint_lexUl
- lt0B
- diffErcompl
- ltEord
- disj_le
- comparablexx
- le_bigmax_ord_cond
- seqlexi_display
- eq_minl
- meetUKU
- ltNleif
- le1x
- dvd_display
- leUx
- eqhead_lexiE
- meetKI
- meet_l
- enum_val_bij_in
- leUx
- contra_le_ltn
- comp_is_meet_morphism
- meetx0
- contra_le
- comparable_minA
- botEtlexi
- contraPlt
- total
- contra_lt_leq
- opredU
- joinKI
- bigmin_le_id
- joinEseq
- meetC
- min_maxl
- disj_diffl
- lt_Rank
- comparable_maxEgt
- meetC
- lexi_lehead
- le_trans
- joins_seq
- Rank2K
- sub_seqprod_lexi
- mem2_sort_le
- lt_le_trans
- lt_sorted_uniq_le
- bigmin_eq_id
- botEnat
- le_path_sortedE
- valU
- sorted_subseq_sort_le
- lt_leAnge
- subset_bigmax_cond
- max_maxxK
- le_bigmin_ord
- comparable_contraNle
- lt0x
- leif_eq
- lexU2
- rankK
- sigE12
- minKx
- bigmax_mkcondr
- sorted_filter_ge
- meetKIC
- meetEtprod
- meetxx
- subseq_sort_le
- le0x
- leIidl
- totalU
- ltxis0
- lt_def
- comparable_contraFlt
- tnth_diff
- ltEtprod
- contra_ltn_le
- joinIB
- meets_max
- nhomo_ltn_lt
- andEbool
- leW_nmono_in
- comparable_minr
- lteifT
- minCA
- leEprod
- bool_display
- contraNlt
- sorted_filter_lt
- eq_maxr
- LatticePred.opred_meets
- le_joins
- bigmin_le
- lt_sorted_uniq
- disj_leC
- andbE
- minxK
- omorph_le
- join_def_le
- meetACA
- botEdual
- eq_ltRL
- le_bigmin2
- max_l
- ltxi_tupleP
- gt_eqF
- rcomplPjoin
- eq_enum
- anti
- lt_val
- meetC
- topEsig
- rcomplPjoin
- joinx0
- cardE
- topEtprod
- joinEtprod
- refl
- maxACA
- cover_leIxl
- joinIl
- nat0E
- codiffEtprod
- eq_maxl
- max_maxKx
- joins_le
- lexi0s
- lexC
- joinIK
- sorted_filter_gt
- path: mathcomp/solvable/gfunctor.v
theorems:
- idGfun_closed
- gFmod_cont
- gFgroupset
- gFnormal_trans
- trivGfun_cont
- gFmod_hereditary
- gFunctorS
- morphimF
- injmF_sub
- gFnorm_trans
- gFsub_trans
- injmF
- pcontinuous_is_hereditary
- gFisog
- idGfun_cont
- gFcont
- gFnorm
- gFunctorI
- gFmod_closed
- idGfun_monotonic
- gFchar
- gFnorms
- gFcompS
- gFchar_trans
- gFhereditary
- continuous_is_iso_continuous
- gFiso_cont
- gFcomp_cont
- gFnormal
- gFid
- gFcomp_closed
- gF1
- gFisom
- pmorphimF
- pcontinuous_is_continuous
- path: mathcomp/ssreflect/ssrnat.v
theorems:
- expnS
- addnK
- lt0b
- ltn_subCl
- ltn0
- eq_binP
- ltn_sqr
- addnn
- contra_leqF
- mono_leqif
- eqSS
- ltn_predRL
- minnSS
- ltnSE
- sqrnD_sub
- leq_nmono
- eq_ex_maxn
- gtn_max
- leq_eqVlt
- ltn_Sdouble
- addnBCA
- ltn_pmul2r
- half_leq
- ltn_exp2l
- maxnSS
- minnMl
- leqW
- anti_leq
- subnBAC
- doubleS
- odd_geq
- add1n
- subnDr
- addn4
- gtn_half_double
- iter_muln
- leq_mul2l
- doubleE
- half_bit_double
- leq_addr
- addn_eq0
- leq_total
- subnAC
- ltn_predK
- addn_eq1
- muln_eq0
- leqP
- ltn_neqAle
- iter_succn
- mulnAC
- addnE
- expn_eq0
- subnCBA
- iter_addn_0
- eqn_add2l
- leq_sqr
- minKn
- ltnNge
- eqnP
- eq_iterop
- doubleD
- addSnnS
- addn_negb
- muln_gt0
- leq_subCl
- doubleK
- leq_exp2r
- leq_add2l
- nat_of_mul_pos
- contraTltn
- subDnCAC
- ltn_psubLR
- prednK
- muln0
- eqnE
- ltn_sub2l
- minn_maxl
- decn_inj_in
- expnAC
- addE
- ltn_pfact
- addnAC
- uphalf_leq
- subDnAC
- expIn
- leq_sub
- mulSnr
- oddB
- addn_maxr
- contra_ltn
- maxn_minr
- subSS
- exp1n
- leq_subRL
- ubnPleq
- minn_idPl
- ltnW
- mulnDl
- leq_pmull
- addnBAC
- ltn_add2l
- contra_leqN
- ltnNleqif
- leqif_eq
- leq_exp2l
- posnP
- double_eq0
- leq_sub2rE
- oddE
- anti_geq
- inj_homo_ltn_in
- maxnAC
- subn1
- inj_homo_ltn
- ltP
- leqNgt
- nat_of_add_bin
- expnMn
- iter_muln_1
- addnI
- addBnA
- leq_fact
- ex_maxnP
- leqif_mul
- ltn_subRL
- ltn_min
- odd_uphalfK
- eq_leq
- lt0n
- maxnn
- mulnDr
- ltn_subrR
- addn_minl
- iteropS
- nat_semi_morph
- ltnP
- eqn_pmul2r
- contra_ltnN
- ltn_subLR
- minnK
- leqSpred
- mulnn
- minn_idPr
- addnCA
- eq_ex_minn
- factS
- even_halfK
- leqif_refl
- expnM
- doubleB
- oddD
- subn_minl
- ltn_psubCl
- max0n
- addn_maxl
- subn0
- geq_minr
- iter_in
- nat_of_mul_bin
- subn_maxl
- contra_leq_ltn
- find_ex_minn
- ltn_addl
- leq_pfact
- halfD
- oddX
- expE
- ltngtP
- leq_min
- ltn_double
- addn1
- add3n
- leq_uphalf_double
- muln1
- leq_sub2r
- nat_AGM2
- minn_maxr
- geq_leqif
- eqb0
- expnE
- plusE
- double0
- leq_mul2r
- exp0n
- eq_leqif
- iter_predn
- expnSr
- minnACA
- subnBl_leq
- add2n
- expn0
- neq0_lt0n
- addnBl_leq
- addnCBA
- eqn_add2r
- eqn_exp2r
- subn_eq0
- iterX
- muln_eq1
- subnK
- ltn_fact
- oddS
- iterM
- leqifP
- leqW_mono_in
- ltn_mul2r
- addnBA
- minusE
- minnA
- minnCA
- leq_sub2lE
- factE
- mulnb
- add4n
- contra_not_leq
- iteriS
- mulnACA
- ltn_sub2rE
- eqn_sub2rE
- addnACl
- nat_Cauchy
- maxnMr
- gtn_eqF
- maxn0
- even_uphalfK
- leq_half_double
- leq_maxl
- lt0n_neq0
- contraFleq
- contra_ltn_not
- oddN
- leqif_trans
- doubleMl
- oddb
- uphalfE
- fact_geq
- homo_ltn
- eqn_leq
- uphalf_gt0
- leq_addl
- iterS
- addnBr_leq
- addnS
- ltn_Pmulr
- ltn_expl
- subnDAC
- iter_addn
- nat_of_binK
- mulnC
- incn_inj_in
- addn2
- ltn_trans
- mulnA
- ltn_addr
- ltn_pexp2l
- eqn0Ngt
- iterSr
- doubleE
- ltn_exp2r
- ltn_pmul2l
- decn_inj
- leq_double
- maxnCA
- incn_inj
- mulnS
- homo_leq
- sqrn_gt0
- fact_gt0
- mulnBr
- maxnC
- contra_leq_not
- leq_subrR
- gtn_neqAge
- addnBn
- odd_ltn
- nat_of_exp_bin
- subnDl
- eqb1
- contraPltn
- iter_fix
- eqn_pmul2l
- homo_ltn_in
- contraFltn
- inj_nhomo_ltn_in
- subnKC
- leq_pexp2l
- subn_if_gt
- lt_irrelevance
- maxnK
- leqnSn
- ltn_add2r
- odd_double
- eqn_sub2lE
- maxKn
- sub1b
- subnSK
- ltnW_homo
- eq_iteri
- ltn_mul
- maxnE
- contraNleq
- leq_b1
- ltn_predL
- leq_maxr
- geq_half_double
- maxnACA
- mulnBl
- bin_of_natK
- eqn_mul2r
- nat_of_succ_pos
- ltnn
- subSKn
- addn0
- ubnPeq
- muln2
- expnD
- expn1
- eqn_sqr
- odd_double_half
- maxn_idPr
- ltn_eqF
- double_gt0
- ex_minnP
- maxnA
- subSnn
- leq_mul
- ltn_subrL
- addnABC
- maxnMl
- subDnCA
- subKn
- fact0
- leq_psubCr
- maxn_minl
- mulnCA
- ltn_uphalf_double
- subnDA
- contra_ltnF
- nat_semi_ring
- leq_nmono_in
- subnBr_leq
- ltn_geF
- contraPleq
- minnMr
- subBnAC
- succnK
- ltnSn
- addKn
- leq_max
- leq_ltn_trans
- mulnbl
- addn3
- ltn_sub2r
- addnACA
- leq_subr
- mulSn
- geq_minl
- leqW_nmono_in
- uphalf_double
- leq_pmul2l
- addnA
- mulnE
- add0n
- ltn_mul2l
- ltnW_nhomo_in
- geq_min
- addnC
- iter_succn_0
- gtn_uphalf_double
- subn_sqr
- min0n
- contra_leqT
- minn0
- contraTleq
- addBnCAC
- ltn_leqif
- leq_pred
- addn_min_max
- leq_gtF
- addn_minr
- subn_gt0
- sub0n
- oddM
- leqnn
- contra_ltn_leq
- le_irrelevance
- eqTleqif
- minnC
- leq_mono_in
- sqrn_inj
- ltnW_homo_in
- succn_inj
- mulnbr
- subnBA
- add_mulE
- minnn
- leq0n
- mul0n
- leq_subLR
- leP
- ltn0Sn
- neq_ltn
- mul1n
- ltn_subCr
- inj_nhomo_ltn
- subnS
- ubnP
- subnn
- addn_gt0
- contra_leq
- expnI
- addnCAC
- nat_of_add_pos
- contraNltn
- nat_power_theory
- subnE
- eqn_mul2l
- ltn_Pmull
- minnAC
- sqrnB
- expn_gt0
- odd_gt0
- addIn
- leq_trans
- leq_Sdouble
- geq_max
- eq_iter
- leqVgt
- path: mathcomp/solvable/nilpotent.v
theorems:
- nilpotentS
- nilpotent1
- lcn_normalS
- ucn_char
- ucn_sub
- lcn_norm
- quotient_sol
- injm_sol
- der_bigdprod
- lcn_cont
- lcn1
- ucn_nilpotent
- abelian_nil
- der_bigcprod
- quotient_center_nil
- nil_comm_properl
- lcn_sub
- ucn0
- morphim_ucn
- isog_nil_class
- nil_class0
- morphim_nil
- ucn_norm
- lcnSnS
- nilpotent_proper_norm
- sol_der1_proper
- ucnSn
- cyclic_nilpotent_quo_der1_cyclic
- isog_nil
- der_cprod
- der_dprod
- lcnSn
- lcn_char
- series_sol
- nilpotent_sub_norm
- derivedP
- abelian_sol
- centrals_nil
- ucn_lcnP
- ucn_bigcprod
- morphim_lcn
- ucn_normalS
- ucn_normal
- ucn_group_set
- ucn_central
- lcnE
- metacyclic_sol
- bigdprod_nil
- lcn_bigcprod
- ucn_dprod
- lcn_dprod
- ucn_bigdprod
- ucnP
- morphim_sol
- ucn_subS
- nil_class_quotient_center
- ucn_cprod
- nilpotent_sol
- lcn0
- ucn_nil_classP
- ucn_pmap
- mulg_nil
- nil_class_injm
- solvable1
- lcn2
- lcn_sub_leq
- lcnS
- ucn_comm
- nilpotent_class
- nil_class_morphim
- nil_comm_properr
- ucn_sub_geq
- center_nil_eq1
- cprod_nil
- nil_class1
- lcn_normal
- lcn_nil_classP
- injm_ucn
- dprod_nil
- lcnP
- lcn_bigdprod
- quotient_ucn_add
- lcn_central
- lcn_cprod
- ucnE
- nilpotent_subnormal
- nil_class_ucn
- ucnSnR
- lcn_group_set
- isog_sol
- path: mathcomp/algebra/fraction.v
theorems:
- pi_opp
- addN_l
- mulC
- pi_mul
- tofracMn
- tofrac_eq0
- pi_inv
- equivf_def
- equivf_r
- Ratio_numden
- Ratio0
- tofrac_is_multiplicative
- tofracMNn
- tofrac1
- addC
- denom_ratioP
- inv0
- equivf_l
- tofracB
- mulA
- mul1_l
- Ratio_numden
- add0_l
- tofracD
- tofracM
- RatioP
- mul_addl
- equivf_refl
- pi_add
- numer0
- tofrac_eq
- equivfE
- denom_Ratio
- numer_Ratio
- addA
- tofracXn
- nonzero1
- tofrac_is_additive
- tofracN
- mulV_l
- path: mathcomp/fingroup/action.v
theorems:
- astab1Js
- actpermM
- orbit_transl
- atrans_dvd_index_in
- orbit_inv
- is_total_action
- astabR
- gacent1
- qactE
- porbit_actperm
- afix_cycle
- injm_faithful
- sub_astabQ
- setactVin
- contra_orbit
- astabsR
- orbit_sym
- afix_gen_in
- conjG_is_action
- astabs_Aut_isom
- gact_stable
- acts_joing
- afix_actby
- abelian_classP
- actperm_id
- afixS
- quotient_astabQ
- gactX
- comp_is_groupAction
- afixRs_rcosets
- sub_afixRs_norms
- orbit_in_sym
- astab_setact_in
- subset_faithful
- qact_domE
- acts_quotient
- qact_proof
- restr_permE
- astab_norm
- astabs_act
- aperm_is_action
- conj_astabQ
- astabs_mod
- orbit_conjsg_in
- gacent_ract
- setactE
- trans_subnorm_fixP
- orbitE
- orbit_partition
- card_orbit_stab
- comp_is_action
- acts_sum_card_orbit
- astab_comp
- afixJ
- acts_in_orbit
- sub_afixRs_norm
- acts_subnorm_fix
- gacent_actby
- astabsP
- acts_ract
- astabQ
- atrans_supgroup
- card_orbit1
- astabsJ
- dom_qactJ
- gacentY
- orbit_in_eqP
- actCJV
- acts_gen
- afix_cycle_in
- atrans_acts
- subgroup_transitiveP
- actXin
- astabU
- astab1_set
- amoveK
- act_reprK
- atrans_dvd_in
- astabs_comp
- afix_comp
- sum_card_class
- acts_subnorm_subgacent
- astab_gen
- astabs_range
- acts_sub_orbit
- afix_ract
- orbitJ
- gacentM
- qactJ
- actX
- astabsU
- afixM
- sub_astab1_in
- im_actm
- gacentIdom
- actsI
- modactEcond
- astabP
- im_restr_perm
- mem_setact
- astab_normal
- autactK
- astabs_setact
- card_setact
- astab_subact
- orbit_conjsg
- fixSH
- Cayley_isom
- act_inj
- orbit_stabilizer
- triv_restr_perm
- Aut_in_isog
- restr_perm_isom
- perm_act1P
- astabM
- sub_astab1
- Cayley_isog
- faithful_isom
- orbit_in_trans
- gacentC
- ker_actperm
- mactE
- astab1Rs
- rcoset_is_action
- astab_sub
- orbit_lcoset
- morph_gacent
- atransPin
- orbitR
- orbitJs
- conjg_is_groupAction
- atrans_acts_in
- orbit_trans
- setactJ
- gacts_range
- morph_astab
- actMin
- orbit_actr
- afixU
- subgacentE
- ract_is_action
- morph_gastab
- orbit_refl
- astabs_subact
- orbit_eq_mem
- afix_subact
- amove_orbit
- astab_act
- actKin
- orbit_lcoset_in
- morphim_actm
- gacentD1
- morph_gact_irr
- afixMin
- astab1_act_in
- actsD
- gacent_comp
- astabs_quotient
- astab1_act
- Aut_restr_perm
- index_cent1
- astabsQ
- modact_faithful
- astabs1
- acts_act
- orbit_rcoset
- qact_is_groupAction
- gacentQ
- card_orbit
- atransP
- group_set_astab
- atransP2in
- injm_Aut_full
- orbit_in_transl
- gacentJ
- card_conjugates
- afixJG
- gacent_cycle
- actsU
- faithfulR
- perm_mact
- astabs_actby
- gactR
- subgroup_transitivePin
- mact_is_action
- atrans_dvd
- astabCin
- modactE
- gacent_gen
- atrans_orbit
- astabsIdom
- afix_mod
- astab1P
- astabC
- val_subact
- acts_char
- orbit_rcoset_in
- sub_act_proof
- astabRs_rcosets
- isom_restr_perm
- astabs_dom
- modact_is_action
- acts_irr_mod
- afix1P
- qactEcond
- astab_mod
- setact_orbit
- restr_perm_commute
- setact_is_action
- group_set_astabs
- gacentU
- gacts_char
- astabIdom
- classes_partition
- restr_perm_on
- card_classes_abelian
- reindex_astabs
- class_formula
- astabsI
- astab_trans_gcore
- sub_astabQR
- Frobenius_Cauchy
- orbitRs
- gactV
- orbitP
- group_set_gacent
- porbitE
- astabQR
- orbit_eqP
- astab_actby
- gacent_mod
- astab_ract
- amove_act
- actmE
- actM
- atransP2
- acts_qact_dom
- comp_actE
- restr_perm_Aut
- morph_afix
- astab_setact
- ractE
- orbit_morphim_actperm
- acts_orbit
- gact1
- faithfulP
- afixD1
- orbit_act_in
- card_orbit_in
- astabs_set1
- gacentS
- actKV
- actCJ
- orbit_actr_in
- ker_restr_perm
- actmEfun
- astab_range
- astabsD1
- injm_actm
- astab1J
- autact_is_groupAction
- orbit1P
- acts_irr_mod_astab
- orbit_act
- actby_is_action
- modact_is_groupAction
- astabsC
- ractpermE
- acts_fix_norm
- orbit_transversalP
- astabJ
- modgactE
- astab1
- injm_Aut_sub
- astab_dom
- actsRs_rcosets
- actsQ
- Aut_sub_fullP
- actpermE
- afix_gen
- acts_dom
- astabS
- gact_out
- afix1
- SymE
- actmM
- transRs_rcosets
- morph_gastabs
- gacentIim
- acts_subnorm_gacent
- subact_is_action
- im_actperm_Aut
- qact_subdomE
- path: mathcomp/algebra/qpoly.v
theorems:
- in_qpoly_small
- size_lagrange_
- qpolyCN
- qpolyC0
- qpoly_mulz1
- npolypK
- qpolyC_proof
- lagrange_gen
- qpolyCM
- qpolyC_is_multiplicative
- npoly_is_a_poly_of_size
- lagrange_free
- in_qpolyZ
- rVnpolyK
- qpolyCD
- lagrange_sample
- qpoly_intro_unit
- lagrangeE
- mk_monic_neq0
- mk_monic_X
- card_monic_qpoly
- monic_mk_monic
- mem_npoly_enum
- qpoly_mulA
- poly_of_qpolyZ
- size_mk_monic_gt0
- nth_npolyX
- qpolyXE
- in_qpoly0
- npoly_vect_axiom
- poly_of_qpolyD
- npolyP
- in_qpolyM
- coefn_sum
- npoly_rV_K
- npolyp_key
- in_qpoly_multiplicative
- coef_npolyp
- qpoly_scaleDr
- npolyX_gen
- mk_monic_Xn
- qpoly_nontrivial
- qpoly_scaleAl
- card_npoly
- qpoly_scaleAr
- qpolyC_natr
- npoly_enum_uniq
- npoly_submod_closed
- qpoly_inv_out
- size_mk_monic
- card_qpoly
- lagrange_def_sample
- size_npoly0
- qpolyC_is_additive
- poly_of_qpoly_sum
- lagrange_full
- nth_lagrange
- irreducible_poly_coprime
- size_npoly
- poly_of_qpolyX
- in_qpoly1
- polyn_is_linear
- npolyX_coords
- npolyX_full
- poly_of_qpolyM
- char_qpoly
- qpoly_scaleA
- npolyX_free
- qpoly_mul_addl
- qpoly_mul_addr
- size_lagrange_def
- size_lagrange
- qpoly_mul1z
- in_qpoly_is_linear
- in_qpolyD
- dim_polyn
- qpoly_mulC
- qpolyCE
- lagrange_coords
- lagrange_key
- qpoly_mulzV
- path: mathcomp/character/inertia.v
theorems:
- norm_inertia
- cfConjg1
- cfConjg_eqE
- inertia_dprod
- inertia_morph_im
- cfRes_Ind_invariant
- inertia_opp
- cfclass_transr
- Inertia1
- inertia_mod_quo
- inertia_valJ
- cfConjgDprodr
- cfConjgMorph
- conj_cfConjg
- cfConjgInd_norm
- cfConjgInd
- sub_inertia
- cfConjgRes
- cfRes_prime_irr_cases
- constt_Ind_ext
- Inertia_sub
- conjg_IirrKV
- cfConjg_is_linear
- cfclassInorm
- card_cfclass_Iirr
- inertia_dprodr
- cfclass_inertia
- cfResInd
- cfConjg_char
- inertia_bigdprod_irr
- cfConjgIsom
- dvdn_constt_Res1_irr1
- cfConjgMnorm
- cfConjgE
- conjg_Iirr_inj
- inertia_bigdprodi
- inertia_injective
- cfAutConjg
- cfConjgMod
- inertia_add
- normal_inertia
- inertia_id
- irr_induced_Frobenius_ker
- sub_Inertia
- sub_inertia_Res
- cfConjgRes_norm
- cfConjg_iso
- cfclass_sym
- extend_to_cfdet
- cfclass1
- extend_linear_char_from_Sylow
- extend_solvable_coprime_irr
- cfclass_Ind
- cfConjgK
- inertia_sum
- sNG
- cfclass_IirrE
- inertia_irr0
- reindex_cfclass
- cfConjg_is_multiplicative
- cfConjgQuo_norm
- cfdot_irr_conjg
- cfConjg_eq1
- inertia_prod
- cfDetConjg
- Clifford_Res_sum_cfclass
- inertia_irr_prime
- extendible_irr_invariant
- inertia0
- cent_sub_inertia
- conjg_Iirr_eq0
- eq_cfclass_IirrE
- cfConjgEJ
- invariant_chief_irr_cases
- cfConjgKV
- sub_inertia_Ind
- cfConjgQuo
- inertia_Frobenius_ker
- cfConjg_subproof
- cfConjg_lin_char
- cfConjgBigdprodi
- cfConjg_id
- inertia_scale_nz
- cfConjg_cfuniJ
- conjg_IirrK
- cfclass_uniq
- cfConjgDprodl
- cfConjgEin
- normal_Inertia
- cfclassP
- cent_sub_Inertia
- conjg_IirrE
- cfker_conjg
- inertia_mul
- inertia_dprodl
- cfclass_invariant
- center_sub_Inertia
- inertia_sdprod
- norm_Inertia
- cfConjg_cfun1
- inertia_dprod_irr
- cfclass_refl
- inertia_scale
- inertiaJ
- cfConjgEout
- conjg_inertia
- constt_Ind_mul_ext
- cfConjgM
- inertia_morph_pre
- group_set_inertia
- inertia1
- extend_coprime_linear_char
- cfConjgJ1
- size_cfclass
- constt0_Res_cfker
- cfConjg_cfuni
- cfConjgSdprod
- cfConjgDprod
- cfdot_Res_conjg
- Frobenius_Ind_irrP
- cfConjgBigdprod
- solvable_irr_extendible_from_det
- conjg_Iirr0
- path: mathcomp/field/galois.v
theorems:
- comp_kHom_img
- fixedPoly_gal
- inAEndK
- gal_oneP
- aut_mem_eqP
- gal_generated
- galNormV
- galM
- kHom_to_gal
- galTrace_fixedField
- gal_kAut
- kHom_extends
- normalFieldS
- galTrace_is_additive
- galNormX
- gal_matrix
- kHom_lrmorphism
- normalField_kAut
- galNorm_gal
- galois_connection_subset
- gal_kHom
- kAut1E
- galK
- galNorm_fixedField
- mem_fixedFieldP
- fixedFieldS
- gal_eqP
- normalField_galois
- limg_gal
- kHomExtend_scalable_subproof
- normalField_cast_eq
- kHomS
- Hilbert's_theorem_90
- kHom_eq
- gal_reprK
- memv_gal
- kHom_poly_id
- gal_cap
- galoisS
- normalField_isog
- normalField_normal
- kAEnd_norm
- splittingFieldForS
- galois_connection
- normalField_isom
- kHom_root
- kAut_eq
- normalField_root_minPoly
- gal_independent
- galois_fixedField
- mem_galNorm
- kHomExtend_poly
- kHomExtend_id
- gal_AEnd
- fixedField_bound
- k1HomE
- kHom_to_AEnd
- comp_AEndK
- kHom_horner
- gal_mulP
- galS
- splittingPoly
- kAutS
- gal_sgvalK
- kHomExtendP
- comp_AEnd1l
- kAEnd_group_set
- mem_kAut_coset
- inv_is_ahom
- galois_dim
- galV
- gal_is_morphism
- normalField_img
- gal_repr_inj
- normalField_castM
- kHomSr
- fixedFieldP
- gal_id
- root_minPoly_gal
- normalField_ker
- galNorm_prod
- kHom_kAut_sub
- gal_invP
- kHomSl
- gal_independent_contra
- kHom_is_additive
- enum_AEnd
- galois_factors
- fixed_gal
- fixedField_is_aspace
- kHomExtend_val
- galNorm_eq0
- mem_galTrace
- splitting_galoisField
- kAutf_lker0
- k1AHom
- eq_galP
- galois_connection_subv
- kHom_is_multiplicative
- galTrace_gal
- splittingFieldP
- galNorm1
- kHom_dim
- fieldOver_splitting
- normalField_factors
- kHom_root_id
- kHomExtendE
- kAutE
- splitting_field_normal
- gal_conjg
- dim_fixedField
- inv_kHomf
- galNorm0
- normal_fixedField_galois
- path: mathcomp/field/qfpoly.v
theorems:
- card_primitive_qpoly
- qlogp0
- plogp0
- map_fpoly_div_inj
- qX_expK
- qpoly_mulVp
- coprimep_unit
- sh_gt1
- card_qfpoly
- qpoly_inv0
- qX_exp_neq0
- qX_neq0
- map_poly_div_inj
- qX_in_unit
- powX_eq_mod
- qlogp_eq0
- qlogp_qX
- primitive_poly_in_qpoly_eq0
- card_qfpoly_gt1
- gX_order
- in_qpoly_comp_horner
- qX_order_dvd
- plogp1
- pred_card_qT_gt0
- qlogpD
- plogp_div_eq0
- mk_monicE
- primitive_polyP
- qlogp1
- qX_exp_inj
- gX_all
- qX_order_card
- plogp_lt
- primitive_mi
- plogp_X
- dvdp_order
- path: mathcomp/solvable/finmodule.v
theorems:
- fmodV
- actsgHG
- fmodX
- act0r
- actr_is_groupAction
- sgG
- transfer_cycle_expansion
- fmod_addrA
- injHGg
- fmod_addNr
- congr_fmod
- actZr
- sum_index_rcosets_cycle
- injHg
- fmodK
- fmval0
- rcosets_cycle_transversal
- actNr
- injm_fmod
- fmodP
- coprime_abel_cent_TI
- fmodKcond
- actrKV
- actrM
- rcosets_cycle_partition
- Gaschutz_transitive
- transferM
- fmvalN
- actr1
- fmod_add0r
- fmvalJ
- fmodJ
- actr_is_action
- transfer_indep
- defHGg
- fmod1
- transfer_morph_subproof
- actrK
- fmvalA
- fmvalJcond
- fmod_inj
- actAr
- fmvalZ
- sXG
- Gaschutz_split
- path: mathcomp/algebra/intdiv.v
theorems:
- dvdzz
- gcd0z
- Gauss_dvdzr
- zprimitive_irr
- modzMl
- dvdpP_rat_int
- gcdz1
- mulz_modl
- ltz_divRL
- zchinese_mod
- gcdz_idPl
- divz_small
- divzMpl
- modz_ge0
- divz_abs
- eisenstein
- zchinese_remainder
- dvdz_Pexp2l
- sgz_contents
- size_zprimitive
- zpolyEprim
- gcdzCA
- map_poly_divzK
- modNz_nat
- modz1
- coprimeNz
- dvdz_lcm
- dvdz_charf
- dvdp_rat_int
- egcdzP
- zprimitiveZ
- modz_absm
- dvdz_exp2r
- expz_min
- Gauss_dvdz
- divz0
- dvdz_lcmr
- modzDm
- dvdz_mull
- zcontentsZ
- modzDr
- divzMr
- modz_small
- Gauss_dvdzl
- gcdzN
- dvd1z
- divzMl
- lcmz_neq0
- ltz_ceil
- modzNm
- gcdzDr
- zprimitive_id
- zcontents_primitive
- dvdz_eq
- coprimez_pexpl
- divz_ge0
- coprimezE
- gcdz_eq0
- Qint_dvdz
- sgz_lead_primitive
- dvdz_mul2r
- divNz_nat
- gcdzDl
- Gauss_gcdzl
- dvdz0
- zprimitive0
- Qnat_dvd
- modzDmr
- zcontentsM
- dvdz_mul2l
- lez_pdiv2r
- size_rat_int_poly
- divzMA
- modz_abs
- gcdz_idPr
- gcdz_modl
- mulzK
- modzMmr
- lez_divRL
- dvdzE
- dvdz_mulr
- divz_eq
- dvdz_gcd
- eqz_modDr
- coprimezP
- dec_Qint_span
- mulKz
- lcm0z
- lez_divLR
- zcontents_monic
- ltz_pmod
- modzDml
- divzMDl
- divzz
- mod0z
- expzB
- divzK
- gcdzMDl
- zchinese_modl
- coprimezMr
- modz_nat
- dvdz_trans
- dvdz_pexp2r
- mulz_modr
- lcmzC
- coprimez_dvdl
- div0z
- dvdzP
- lcmz_ge0
- divzDr
- gcdzC
- eqz_mod_dvd
- divzMA_ge0
- modzMm
- eqz_mul
- dvdz1
- coprimez_sym
- zprimitive_monic
- dvdz_exp
- gcdNz
- mulz_gcdr
- ltz_divLR
- gcdzMr
- gcdzA
- int_Smith_normal_form
- modzDl
- dvd0z
- dvdz_mod0P
- rat_poly_scale
- dvdz_gcdl
- divz_mulAC
- mulz_divA
- polyOver_dvdzP
- modzMml
- gcdzACA
- gcdzAC
- Bezoutz
- dvdz_gcdr
- modzMDl
- lez_div
- mulz_divCA
- dvdz_mul
- zprimitiveM
- Gauss_gcdzr
- divzA
- divzAC
- dvdpP_int
- modzXm
- zcontents0
- coprimezXr
- modz_mod
- zchinese_modr
- lez_floor
- divzMpr
- modzN
- mulz_gcdl
- zprimitive_min
- gcdz_modr
- divzDl
- divz1
- zcontents_eq0
- divz_nat
- coprimezN
- path: mathcomp/algebra/ssralg.v
theorems:
- rmorph_sign
- oppr_eq0
- pair_mulA
- valZ
- pair_mulC
- rmorph_alg
- lastr_eq0
- charf'_nat
- mull_fun_is_semi_additive
- raddfZnat
- unitrV
- mulrDr
- exprB
- natrXE
- charf0P
- Frobenius_autMn
- natrDE
- cat_dnfP
- scale_is_scalable
- divalg_closedZ
- prodfV
- ffun_mul_addl
- linearN
- lregM
- sqrrD
- natr_mod_char
- divalg_closedBdiv
- scalarP
- natn
- semiring_closedM
- exprDn_char
- rpred_nat
- subr_sqrDB
- iter_addr
- expr_sum
- fmorph_eq
- scale0r
- unitrX_pos
- dnf_to_rform
- unitrN1
- unitrX
- mulr1
- dnf_to_form_qf
- mulr_signM
- rpred_div
- exprBn_comm
- lregMl
- commr_sym
- sum_ffun
- mulr2n
- mulKr
- foldExistsP
- iter_addr_0
- mulr_natl
- scalerA'
- rregP
- rpredMNn
- mulrDl
- semiringClosedP
- scaler0
- solP
- natrD
- unitrPr
- eq_sol
- char_lalg
- fmorphV
- mulrI_eq0
- pair_mulVl
- ffun_addC
- divrr
- mulr1_eq
- scalerBl
- mul0r
- addrNK
- rpredMsign
- submod_closedB
- val1
- idfun_is_scalable
- rmorphMn
- unitr0
- eval_Pick
- rmorphD
- scalerAl
- proj_satP
- exprDn
- commrN
- sub0r
- exprNn_char
- size_sol
- scalarAr
- Frobenius_autE
- rpred_sign
- algMixin
- ffun_scale_addl
- mulr_fun_is_semi_additive
- exprZn
- scalable_linear
- addrCA
- pair_addC
- rmorphN
- rpred_prod
- scalerCA
- scaler_prodr
- rmorph_unit
- lalgMixin
- compN1op
- idfun_is_semi_additive
- addr0
- raddf0
- scaler_suml
- natr1E
- addNr
- mulrAC
- telescope_prodf
- sumrMnr
- fmorph_eq1
- lreg1
- sqrf_eq1
- expf_eq0
- prodrMl
- divr1_eq
- exprNn
- natf_neq0
- mulrnDl
- subr_sqr
- in_algE
- rpred_sum
- mulrI0_lreg
- pair_mulDl
- addNKr
- ffun_mulA
- divr1
- exprVn
- ffun_scaleA
- addrACA
- charf_prime
- signr_odd
- mulIf
- addrAC
- mul0rn
- addKr
- Frobenius_autX
- bool_fieldP
- can2_linear
- valB
- addrI
- rpredDr
- prodrM_comm
- scaler_unit
- scalerDl
- signrN
- scalarZ
- pair_add0
- unitrMr
- eq_sat
- mulKf
- invr_out
- prodrN
- rpred_divl
- lregX
- expr0
- ffun_mul_0l
- sdivr_closedM
- rmorphV
- rpredV
- rmorph1
- signrZK
- scaler_prod
- subrX1
- raddfD
- raddf_sum
- rmorph_eq1
- mulrnDr
- sumr_const_nat
- mulf_eq0
- scaler_eq0
- linearMn
- invr_inj
- imaginary_exists
- addrr_char2
- pairMnE
- raddfZsign
- rreg_neq0
- rpredMl
- natrB
- exprBn
- submodClosedP
- scalerKV
- subring_closed_semi
- sub_fun_is_additive
- pair_mulVr
- unitrN
- oner_eq0
- raddfMn
- pair_unitP
- prodf_neq0
- eqr_oppLR
- sqrrB
- mulr1n
- rpredN1
- mulVr
- commrN1
- quantifier_elim_rformP
- add0U
- val0
- rpred1M
- commrD
- prodrMn_const
- divrr
- can2_semi_additive
- valD
- fpred_divr
- expr1n
- idfun_is_multiplicative
- sqrf_eq0
- valD
- subr0
- unitrM_comm
- lregN
- prodr_const
- linearB
- Frobenius_autB_comm
- expr_mod
- pair_mulr0
- raddf_eq0
- natrME
- signr_addb
- rev_unitrP
- rpredBl
- mulrn_char
- prodr_undup_exp_count
- invb_out
- Frobenius_autD_comm
- pair_mul1l
- mulrACA
- mulrN1
- scalerMnr
- additive_linear
- invr_sign
- pair_invr_out
- signr_eq0
- addIr
- ffun_mul_0r
- prodrMr_comm
- eqr_div
- linearPZ
- rreg1
- addUA
- pair_scaleAr
- comRingMixin
- qf_evalP
- comp_is_multiplicative
- mulrC
- invr_out
- null_fun_is_semi_additive
- div1r
- mulrnAC
- sumrN
- expfB
- signrE
- addrN
- natr0E
- mulfVK
- telescope_sumr_eq
- divKr
- sqrr_sign
- divIr
- pair_addA
- expr2
- mulf_neq0
- mull_fun_is_scalable
- lreg_neq0
- subr_sqr_1
- pair_mulDr
- invr1
- ffun_mulC
- exprD
- opp_is_additive
- mulrS
- commrM
- add_fun_is_semi_additive
- to_rform_rformula
- mulrSr
- mulVb
- eq_eval
- linearZ
- iter_mulr
- mulr_fun_is_scalable
- raddfB
- expr_dvd
- raddfMnat
- addrK_char2
- rpred0
- divKf
- mulNr
- unitrE
- mulrnBr
- rmorph_nat
- mulrBl
- unitfE
- linearZZ
- linearD
- prodrMn
- mulrN
- mulrC
- opprD
- lreg_sign
- rpredZeq
- subIr
- mulrNN
- prodf_seq_neq0
- null_fun_is_scalable
- mul0r
- mulrVK
- subr_eq0
- charf_eq
- exprMn_n
- mulfI
- unitr1
- divrI
- mulr_suml
- commr1
- prodrXr
- ffunMnE
- raddfMNn
- to_rterm_id
- rregX
- linearZ_LR
- eqr_sum_div
- rpredZsign
- ffun_addN
- divr_closedM
- fmorph_char
- Frobenius_autM_comm
- pair_scaleDl
- If_form_rf
- smulr_closedM
- pair_scaleDr
- can2_scalable
- scaler_sign
- prodrMr
- valD
- addf_div
- foldForallP
- rregM
- IdomainMixin
- unitrMl
- mulVKf
- mulrCA
- divring_closedBM
- rpredX
- mulr_sign
- invr_eq1
- subr_eq
- scaleN1r
- fst_is_scalable
- rpredZnat
- oppr0
- submod_closedZ
- fpred_divl
- lregP
- id
- rpredDl
- commr_refl
- Frobenius_aut0
- inv_out
- sub_fun_is_scalable
- subr0_eq
- fpredMl
- exprD1n
- Frobenius_autN
- raddf_inj
- opp_is_scalable
- linearP
- invrN1
- sol_subproof
- If_form_qf
- addrK
- same_env_sym
- divff
- valM
- raddfN
- scaler_sumr
- raddf0
- ffun_mul_1l
- rmorphXn
- subring_closedB
- scale_fun_is_scalable
- invrN
- commrB
- valN
- mulrnAl
- subKr
- ffun_scale_addr
- pair_mul1r
- raddfMsign
- mulrA
- mulrK
- pair_scaleAl
- qf_to_dnf_rterm
- add_fun_is_scalable
- eqf_sqr
- scaler_prodl
- subring_closedM
- subrXX
- pair_addN
- commr_nat
- ffun_scale1
- intro_unit
- divr_closedV
- mulNrn
- sum_ffunE
- semiring_closedD
- sumr_const
- commrX
- invfM
- revrX
- sumrMnl
- Frobenius_aut_is_additive
- telescope_prodr
- scaler_injl
- expr1
- pair_one_neq0
- invr_signM
- expr0n
- rmorphismMP
- oner_neq0
- mulr_natr
- exprS
- sqrrN
- fmorph_eq0
- scalerBr
- mulr_algl
- exprMn
- addrKA
- sqrrD1
- natr1
- mulr_algr
- scalerMnl
- mulVr
- subalgClosedP
- rmorphB
- unitrM
- divr_signM
- signrMK
- invrM
- to_rformP
- subr_char2
- rmorph_prod
- invr_eq0
- smulr_closedN
- invrK
- sqrrB1
- ffun_addA
- prodrMl_comm
- rmorph_comm
- nat1r
- opprB
- rpred_divr
- scalerI
- mulfK
- commr_sum
- rpredD
- unitrP
- subalg_closedBM
- rmorph_eq_nat
- rmorph_char
- linearMNn
- divrNN
- commr0
- ffun1_nonzero
- mulrnAr
- comm_alg
- divringClosedP
- expr_div_n
- unitr_sdivr_closed
- oppr_char2
- zmodClosedP
- rpredMn
- telescope_sumr
- sumrB
- rmorph0
- rregMr
- fmorph_unit
- opprK
- mul1r
- fst_is_semi_additive
- linear_sum
- bin_lt_charf_0
- raddfD
- in_alg_is_additive
- Pick_form_qf
- subrXX_comm
- commr_prod
- scaler_nat
- mulr0
- valB
- Frobenius_aut_nat
- fmorph_div
- linear_closedB
- fmorph_inj
- natrM
- zmod_closedD
- val0
- rpredXN
- linear0
- mulIr0_rreg
- telescope_prodr_eq
- scalerAr
- divrN
- comp_is_scalable
- comp_is_semi_additive
- expf_neq0
- mulr0
- pair_scale1
- rmorph_div
- N1op
- rpredB
- addKr_char2
- addr_eq0
- snd_is_multiplicative
- mulr0
- snd_is_scalable
- sdivr_closed_div
- subalg_closedZ
- scaleNr
- rpredMr
- rpredBC
- rregN
- qf_to_dnfP
- can2_additive
- ffun_add0
- ffun_mul_1r
- mulC_mulrV
- commr_sign
- scale1r
- mulrnA
- zmod_closedN
- oppr_inj
- mulN1r
- mulr0n
- rmorphM
- invf_div
- mulrnBl
- snd_is_semi_additive
- subringClosedP
- natr_prod
- charf0
- quantifier_elim_wf
- mulIr_eq0
- char0_natf_div
- exprMn_comm
- prodf_eq0
- commrMn
- valM1
- eval_tsubst
- expfS_eq1
- natf0_char
- dvdn_charf
- eq_holds
- addr0_eq
- mulrI
- divring_closed_div
- path: mathcomp/fingroup/gproduct.v
theorems:
- sdprod_isog
- dprodEsd
- sdprodWY
- divgrM
- pprodP
- isog_set1X
- cprodJ
- sdpair1_morphM
- cprod_normal2
- ker_pprodm
- setX_prod
- dprodYP
- remgr_id
- dprodWY
- injm_pair1g
- dprodWcp
- cprodWC
- cprodE
- bigcprodEY
- sdpairE
- pairg1_morphM
- morphim_sdprodml
- sdpair_act
- pprodWY
- remgrM
- dprodP
- sdprod_mul_proof
- xsdprodm_act
- morphim_pprodmr
- morphim_coprime_dprod
- quotient_pprod
- sdprod_recr
- dprodE
- sdprodm_sub
- sdprod_normal_complP
- morphim_sdprodm
- dprodWsdC
- morphim_dprodmr
- cprodmEl
- actsEsd
- cprodEY
- divgr_eq
- dprod_normal2
- gacentEsd
- sdprod_context
- dprodmEl
- setX_gen
- im_xsdprodm
- cprod0g
- injm_bigdprod
- mem_dprod
- dprodm_eqf
- subcent_TImulg
- cprod_modr
- cprod_modl
- ker_sdprodm
- im_cprodm
- im_sdprodm
- bigdprodYP
- trivg0
- setX_dprod
- sdprodm_norm
- sdpair2_morphM
- sdprodWC
- pprodWC
- mem_sdprod
- injm_sdpair1
- morphim_cprodm
- im_sdpair
- bigcprodWY
- morphim_pairg1
- morphim_pprodm
- complgC
- dprod_modl
- sdprod_compl
- cprodW
- sdprodmE
- triv_cprod
- quotient_coprime_dprod
- dprodA
- splitsP
- remgrP
- mul0g
- snd_morphM
- sdprod_recl
- injm_sdpair2
- group_not0
- isog_setX1
- cprodC
- morphim_sdprodmr
- isog_dprod
- sdpair_setact
- divgrMl
- bigdprod_card
- sdprod_mul1g
- dprodg1
- sdprod_mulVg
- sdprodE
- morphim_cprodml
- quotient_sdprodr_isom
- dprodm_cprod
- sdprod_modl
- pprodmM
- quotient_sdprodr_isog
- quotient_coprime_sdprod
- injm_sdprodm
- index_sdprod
- dprodEY
- dprod_modr
- pair1g_morphM
- sdprodJ
- dprod_card
- cprodg1
- sdprodm_eqf
- dprod1g
- sdprod_modr
- bigdprodWY
- pprodE
- morphim_cprodmr
- bigdprodW
- cprodm_sub
- remgrMid
- sdprodWpp
- sdprod_inv_proof
- index_sdprodr
- ker_dprodm
- reindex_bigcprod
- imset_mulgm
- extprod_mulVg
- injm_dprod
- cprod_ntriv
- morphim_pprod
- sdprodEY
- morphim_cprod
- bigdprodWcp
- pprodmEr
- sdprodP
- sdprod_mulgA
- group0
- remgrMl
- pprodg1
- sdprod_sdpair
- mem_divgr
- xsdprodm_dom2
- injm_xsdprodm
- dprodmEr
- cprodWY
- morphim_pair1g
- morphim_fstX
- bigcprod_coprime_dprod
- sdprodW
- mulgmP
- cprodA
- cprodmEr
- astabEsd
- mem_bigdprod
- pprodW
- extprod_mulgA
- sdprod_card
- dprodWsd
- pprodmE
- im_sdpair_TI
- remgr1
- cprodmE
- group_setX
- morphim_dprodm
- morphim_coprime_bigdprod
- pprodEY
- mulg0
- morphim_sndX
- quotient_cprod
- im_sdprodm2
- cprodm_actf
- dprodmE
- sdprod_isom
- subcent_sdprod
- pprodJ
- cprod1g
- morphim_pprodml
- dprodC
- im_dprodm
- injm_sdprod
- im_sdpair_norm
- mem_remgr
- cprodm_norm
- fst_morphM
- dprodEcp
- sdprodmEl
- injm_pprodm
- sdprod1g
- morphim_dprodml
- ker_cprodm
- path: mathcomp/character/mxrepresentation.v
theorems:
- linear_mxsimple
- eqg_mx_abs_irr
- Clifford_astab1
- hom_mxmodule
- mxsimpleP
- mx_rsim_abs_irr
- hom_component_mx
- rstabs_submod
- row_gen_sum_mxval
- Wedderburn_min_ideal
- gen_mul1r
- rfix_mx_rstabC
- mxval_is_multiplicative
- mxval_gen1
- map_group_ring
- map_section_repr
- rkerP
- Clifford_is_action
- val_submodP
- gring_indexK
- rstabs_act
- rstabs_in_gen
- rker_gen
- gen_addA
- morphim_mx_irr
- mx_iso_refl
- rker_map
- submod_mx_repr
- quo_mx_quotient
- mxvalM
- mxmodule_eqg
- rcent_eqg
- mx_faithful_irr_center_cyclic
- hom_mxsemisimple_iso
- mx_reducibleS
- annihilator_mxP
- mxsemisimple_module
- gring_mxA
- rsim_regular_factmod
- rsim_rcons
- norm_sub_rstabs_rfix_mx
- gring_free
- gring_mxJ
- rstab_norm
- rstab_act
- factmod_mx_faithful
- mx_JordanHolder_max
- envelop_mx1
- gring_opM
- mx_Schur_onto
- rfix_gen
- val_submod_inj
- primitive_root_splitting_abelian
- rfix_factmod
- classg_base_center
- mxsimple_morphim
- rker_factmod
- in_factmod_eq0
- rfix_morphpre
- Wedderburn_mulmx0
- mxval_grootXn
- irr_degree_abelian
- kquo_mxE
- rstabs_quo
- val_submodS
- in_submod_module
- irr1_mode
- mxvalV
- val_gen_row
- gen_addC
- mxsimple_eqg
- gen_dim_ex_proof
- quo_repr_coset
- gring_mxK
- map_mxminpoly_groot
- val_genD
- in_genZ
- gen_is_additive
- gring_projE
- rfix_submod
- irr_mode_unit
- reducible_Socle1
- quo_mx_coset
- Wedderburn_annihilate
- conj_mx_irr
- Clifford_atrans
- rcent_quo
- mxvalN
- val_factmod_inj
- mxsemisimple0
- mxrank_in_submod
- regular_op_inj
- sG_f'fG
- classg_base_free
- add_sub_fact_mod
- cyclic_mx_module
- map_regular_subseries
- rowval_gen_stable
- val_factmodE
- mx_butterfly
- mx_irr_abelian_linear
- in_genK
- irr_center_scalar
- mem_sub_gring
- mx_JordanHolder
- center_kquo_cyclic
- mxsimple_module
- subg_mx_abs_irr
- gen_addNr
- rsim_regular_series
- rker_subg
- mxmodule_envelop
- mxsimple_semisimple
- rstabs_morphpre
- component_socle
- gring_op_id
- Socle_module
- mxmodule_conj
- Wedderburn_sum
- Clifford_rank_components
- in_gen_row
- mx_faithful_irr_abelian_cyclic
- repr_mxMr
- rstabs_subg
- rank_irr1
- Wedderburn_sum_id
- rfix_mx_id
- Clifford_component_basis
- Socle_direct
- rker_morphpre
- component_mx_key
- rsim_last
- subg_mx_repr
- addsmx_module
- ker_irr_comp_op
- factmod_mx_repr
- rstab_eqg
- irr_degree_gt0
- mem_gring_mx
- rstab_morphim
- gring_op1
- rker_quo
- rcent_map
- gen_mx_irr
- val_submodE
- rker_morphim
- in_submodK
- map_enveloping_algebra_mx
- mx_iso_module
- socle_mem
- quo_mx_irr
- sumsmx_module
- sums_R
- coset_splitting_field
- rstab_group_set
- component_mx_isoP
- repr_mx1
- rstabs_conj
- eqmx_rstabs
- mx_series_rcons
- subSocle_direct
- repr_mxX
- mxval_inj
- submod_mx_irr
- rcenter_group_set
- mx_rsim_def
- socle_exists
- mxsimple_exists
- eqmx_module
- in_factmod_module
- Wedderburn_closed
- mx_Maschke
- kquo_mx_faithful
- gring_rowK
- irr1_rfix
- socle_simple
- mxval1
- mxmoduleP
- map_regular_mx
- Wedderburn_subring_center
- irr_repr'_op0
- morphpre_mx_abs_irr
- val_factmod_eq0
- mxsimple_abelian_linear
- extend_group_splitting_field
- val_gen0
- mxsimple_cyclic
- cent_mx_scalar_abs_irr
- Wedderburn_id_mem
- mx_rsim_scalar
- quotient_splitting_field
- not_rsim_op0
- capmx_subSocle
- mxtrace_dadd_mod
- component_mx_id
- kermx_centg_module
- rstabs_factmod
- val_genK
- rstab_in_gen
- sG_f'fG
- mxval_groot
- mx_rsim_sym
- map_rfix_mx
- mx_faithful_inj
- val_gen_rV
- rstab_sub
- mx_irrP
- mxsimple_subg
- irr_modeM
- splitting_cyclic_primitive_root
- socleP
- gen_mulC
- val_Clifford_act
- val_factmodP
- rfix_eqg
- mx_iso_trans
- rstabs_rowval_gen
- Wedderburn_direct
- mx_irr_map
- reducible_Socle
- max_size_mx_series
- map_mx_faithful
- degree_irr1
- sum_mxsimple_direct_sub
- op_Wedderburn_id
- Wedderburn_is_id
- genmx_component
- val_submod1
- rstabs_morphim
- base_free
- eqmx_semisimple
- regular_mx_repr
- in_factmodJ
- map_gring_op
- Clifford_componentJ
- principal_comp_subproof
- nth_map_rVval
- irr_comp_rsim
- Clifford_basis
- socle_can_subproof
- in_genD
- rker_mx_rsim
- Clifford_rstabs_simple
- eqg_repr_proof
- section_eqmx
- map_mx_repr
- in_factmodE
- irr_reprE
- mx_abs_irrP
- cyclic_mxP
- abelian_abs_irr
- mx_Schreier
- mxnonsimpleP
- regular_module_ideal
- nz_row_mxsimple
- group_splitting_field_exists
- Wedderburn_disjoint
- irr_mx_mult
- mx_Schur_inj
- component_mx_semisimple
- rstab_conj
- irr_comp_envelop
- val_factmodS
- rowval_genK
- socle_irr
- capmx_module
- gring_opG
- eqg_mx_faithful
- hom_mxP
- rcent_subg
- submx_in_gen
- rker_normal
- mxmodule_morphpre
- mxtrace_Socle
- repr_mxK
- max_submod_eqmx
- mx_rsim_faithful
- mxtrace_submod1
- proj_mx_hom
- gen_dim_gt0
- sat_gen_form
- eval_mulT
- rstab_submod
- card_gen
- cycle_repr_structure
- mx_rsim_iso
- map_reprE
- hom_envelop_mxC
- cyclic_mx_sub
- kermx_hom_module
- Clifford_hom
- map_gring_proj
- DecSocleType
- mx_iso_component
- mxsimple_map
- eval_gen_term
- mxmodule_rowval_gen
- gring_valK
- cyclic_mx_id
- eqmx_rstab
- gring_row_mul
- Socle_iso
- in_genN
- cyclic_mx_eq0
- in_genJ
- hom_mxsemisimple
- envelop_mxP
- normal_rfix_mx_module
- subSocle_module
- mxval0
- der1_sub_rker
- mxmodule_form_qf
- mxsemisimple_reducible
- subg_mx_faithful
- Wedderburn_is_ring
- rker_norm
- mx_Schur_inj_iso
- scalar_mx_hom
- mxrank_iso
- rconj_mx_repr
- mxrank_rsim
- mx_series_repr_irr
- rfix_mx_conjsg
- in_factmodsK
- dec_mx_reducible_semisimple
- map_regular_repr
- rfix_subg
- mx_Schur_iso
- submx_in_gen_eq
- gen_mx_repr
- rfix_mxS
- rstabs_sub
- group_closure_closed_field
- Socle_semisimple
- rstab_factmod
- envelop_mx_ring
- mxval_centg
- mx_series_lt
- irr_comp'_op0
- max_submodP
- mx_rsim_factmod
- gen_ntriv
- mxval_genM
- memmx_cent_envelop
- last_mod
- val_genJ
- morphim_mx_repr
- irr_degreeE
- centgmxP
- irr_mode1
- nz_socle
- eqmx_iso
- mxvalD
- base_full
- component_mx_def
- rstab_morphpre
- morphim_mx_abs_irr
- in_submodE
- irr_modeX
- PackSocleK
- rank_irr_comp
- rfix_conj
- map_gring_mx
- eval_mxmodule
- mxmodule_map
- linear_irr_comp
- mx_Schur
- mx_JordanHolder_exists
- eval_mxT
- rstab_normal
- val_submod_module
- mxtrace_rsim
- envelop_mxM
- Clifford_astab
- component_mx_disjoint
- mxval_genV
- rconj_mxJ
- hom_component_mx_iso
- rsim_submod1
- Clifford_iso
- mxtrace_component
- rstabs_eqg
- gen_invr0
- linear_mx_abs_irr
- mx_reducible_semisimple
- rker_submod
- mx_rsim_trans
- rfix_regular
- gen_dim_ub_proof
- proj_factmodS
- mx_rsim_map
- gen_dim_factor
- repr_mx_unitr
- row_full_dom_hom
- dec_mxsimple_exists
- conj_mx_faithful
- intro_mxsemisimple
- mxsimple_iso_simple
- rstabS
- mxtrace_dsum_mod
- repr_mx_unit
- mxmodule_morphim
- gring_op_mx
- mx_iso_sym
- genK
- mxmodule_subg
- group_closure_field_exists
- rfix_mx_module
- val_submodK
- section_eqmx_add
- repr_mx_free
- map_mx_abs_irr
- in_factmodK
- in_submodJ
- val_genZ
- rstabs_map
- subg_mx_irr
- rstab_subg
- morphim_mxE
- repr_mxV
- rker_eqg
- mx_subseries_module
- rcent_conj
- mxmodule0
- rker_conj
- quo_mx_repr
- component_mx_iso
- non_linear_gen_reducible
- Clifford_iso2
- regular_mx_faithful
- gring_opE
- submx_rowval_gen
- rank_Wedderburn_subring
- morphpre_mx_repr
- repr_mxVr
- rsim_regular_submod
- val_submodJ
- mx_abs_irrW
- gring_mxP
- Wedderburn_center
- envelop_mx_id
- valWact
- val_genN
- gen_add0r
- row_hom_mxP
- groupCl
- rsim_irr_comp
- subSocle_iso
- dom_hom_mx_module
- Clifford_Socle1
- mx_subseries_module'
- gen_mulVr
- semisimple_Socle
- irr_mode_neq0
- centgmx_map
- val_factmodK
- mxtrace_regular
- rstab_quo
- irr_comp_id
- sum_irr_degree
- centgmx_hom
- addsmx_semisimple
- irr1_repr
- repr_mxKV
- rcent_group_set
- mxrank_in_factmod
- set_nth_map_rVval
- rfix_quo
- sumsmx_semisimple
- mxmodule_trans
- mx_factmod_sub
- mx_rsim_irr
- path: mathcomp/algebra/polydiv.v
theorems:
- dvdp_eq_mul
- ltn_divpr
- divp_eq
- divpK
- size2_dvdp_gdco
- divpD
- dvdp_Pexp2l
- eqp_mull
- coprimep_dvdr
- rmodpZ
- divp_small
- Gauss_dvdp
- modp_eq0
- rdivp_mull
- divpZr
- size_gcdp1
- edivp_def
- coprimep_XsubC2
- divp_eq
- gcdp_mull
- rgdcop0
- dvdpP
- coprimep_modr
- gcdp_scaler
- eqp_rgdco_gdco
- eqp_trans
- divpp
- egcdp_recP
- coprimepMl
- irredp_neq0
- rmodp_addl_mul_small
- redivp_key
- mulKp
- dvdp1
- rdivpDl
- dvd1p
- divpP
- polyXsubCP
- modp_mull
- modpZl
- leq_modp
- Bezout_eq1_coprimepP
- Nrdvdp_small
- dvdp_eq_mul
- eqp_div
- leq_gcdpr
- modNp
- uniq_roots_rdvdp
- modpZr
- take_poly_rmodp
- rdvdp_XsubCl
- eqp_coprimepr
- eqp0
- eqp_mul2l
- eqp_exp
- modp1
- dvdp_eq_div
- rdvdpP
- dvdpZl
- map_divp
- divp_modpP
- leq_divp
- egcdpE
- divpKC
- gcdp_eq0
- rdivp_eq
- dvdp_mul
- gcdpE
- map_modp
- dvdp_exp2l
- mulpK
- divpKC
- divpE
- modp0
- eqp_modpl
- coprimep_def
- dvdp_subr
- coprimep_comp_poly
- modpP
- mulKp
- eqp_map
- irredp_XaddC
- eq_dvdp
- dvdp_mod
- mupMr
- dvdpE
- mup_XsubCX
- gdcopP
- root_dvdp
- modp_mul
- dvdp_eq
- rdvdp_eqP
- root_bigmul
- divp_mulCA
- eqp_rgcd_gcd
- divpp
- dvdp_mul2r
- divpAC
- dvdp_exp2r
- eqpxx
- dvdp_comp_poly
- mu_prod_XsubC
- eqp_divl
- divpK
- divpE
- divp_dvd
- egcdp0
- XsubC_dvd
- coprimep_expl
- mup_ltn
- divp_addl_mul
- gcdp_scalel
- dvdp_addr
- edivp_def
- divp_addl_mul_small
- modp_coprime
- dvdp_leq
- dvdp_div_eq0
- dvdp_eq_div
- rmod0p
- dvdp_prod_XsubC
- dvdp_add_eq
- rdvdp_leq
- polyXsubC_eqp1
- dvdp_eq
- rgcd0p
- gcdpp
- mup_leq
- eqp_divr
- rdvdpN0
- rdvdp_mull
- rmodpp
- leq_rmodp
- gdcop0
- rdvdpp
- eqp_size
- dvdp_exp_XsubCP
- modpP
- polyC_eqp1
- rdivpDr
- modpZl
- scalp0
- mulKp
- divp_mulA
- rdivpK
- edivp_redivp
- rmodpN
- coprimep_map
- dvdp_gcd_idl
- coprimep_pexpl
- rdvdp0
- gdcop_map
- ltn_rmodpN0
- divpN
- dvdp_gdcor
- eqp_eq
- egcdpP
- mulKp
- modpD
- rmodp1
- dvdp_eq
- divp_pmul2l
- dvdp_addl
- eqp_gcd
- Gauss_gcdpl
- eqp_mod
- eqp_monic
- rmodp_mull
- ltn_divpl
- ulc_eqpP
- divpD
- dvdpP
- rdiv0p
- gcdp_mul2r
- gcdp_exp
- rmodp_mulml
- root_biggcd
- mulpK
- redivp_eq
- redivp_map
- rdvdp1
- gcdp0
- edivp_map
- divpE
- rdvdp_eq
- rgcdp0
- divp_mulAC
- eqp_gcdr
- divp_mulA
- dvdp_pexp2r
- divpK
- edivp_eq
- rdvd0pP
- coprime1p
- prod_XsubC_eq
- edivpP
- root_gdco
- eq_rdvdp
- dvdp_mulIl
- gcdp_comp_poly
- drop_poly_divp
- drop_poly_rdivp
- Bezout_coprimepP
- coprimepZl
- gcdp_eqp1
- divp_addl_mul
- coprimep_sym
- dvdp_add
- coprimep_addl_mul
- irredp_XsubC
- modpC
- coprimep_pexpr
- divp0
- divp_divl
- dvdpZr
- comm_redivpP
- dvdp_map
- divp_eq
- irredp_XsubCP
- mupM
- divpP
- rdivp_eq
- coprimepPn
- mupMl
- div0p
- modp_addl_mul_small
- expp_sub
- dvdp_trans
- dvdp_gcdr
- gcdp_modl
- rmodp_mulmr
- coprimep_XsubC
- redivp_def
- eqp_modpl
- rmodp_small
- coprimep_size_gcd
- modpN
- coprimep0
- modp_id
- coprimep_root
- eqp_coprimepl
- edivp_key
- dvdp_gcdl
- rmodpp
- divp1
- rdivp_small
- root_factor_theorem
- scalp_map
- eqp_div_XsubC
- dvdp_gcdlr
- eqpf_eq
- eqpP
- rmodpp
- divp_pmul2l
- leq_divpr
- eqp_gdcol
- coprimepMr
- coprimep_gdco
- take_poly_modp
- gcdp_def
- gcdp_addl
- rdivp_addl_mul_small
- rgcdpE
- coprimepP
- divpKC
- scalpE
- modp_small
- rdvd1p
- gcdp_mul2l
- divpZr
- dvdp_gcd
- mupNroot
- divp_mulCA
- Gauss_dvdpr
- dvdUp
- divp_pmul2r
- coprimepX
- rdivpp
- eqp_divl
- eqp_rmod_mod
- rscalp_small
- eqp01
- eqp_dvdr
- leq_rdivp
- modpE
- leq_trunc_divp
- gtNdvdp
- rmodp_mull
- root_factor_theorem
- rmodpB
- eqp_mul2r
- rmodp_eq0
- divpN
- coprimep_dvdl
- divpN0
- dvdp_mulIr
- divp_divl
- leq_divpl
- gcdp_addr
- dvdp_exp_sub
- dvdp_eqp1
- Bezout_coprimepPn
- Gauss_gcdpr
- dvdp_eq
- scalpE
- expp_sub
- dvdp_gcd_idr
- eqp_modpr
- root_coprimep
- gcdpC
- mulp_gcdl
- eqpfP
- modp_XsubC
- dvdpP
- eqp_mulr
- rdivp_addl_mul
- modpE
- dvd0p
- redivp_eq
- modpZr
- ltn_modpN0
- root_gcd
- mod0p
- rdivpp
- eqp_gdcor
- size_divp
- dvdp_subl
- horner_mod
- rdivp_eq
- eqp_dvdl
- divp_mulAC
- dvdpE
- modpp
- rmodpC
- Bezoutp
- rdivp0
- modpE
- eqp_rdiv_div
- mulpK
- mulp_gcdr
- rcoprimep_coprimep
- rmodp_compr
- divp_pmul2r
- edivpP
- coprimep1
- modpD
- modp_addl_mul_small
- egcdp_map
- redivpP
- dvdp_size_eqp
- Gauss_dvdpl
- rmodp0
- uniq_roots_dvdp
- coprime0p
- divpp
- divp_eq
- divpZl
- leq_gcdpl
- dvdp_mul_XsubC
- rdivp1
- mulpK
- size_poly_eq1
- rdvdp_mull
- modp_mulr
- coprimep_modl
- dvdpP
- gcdp1
- dvdp_mul2l
- dvd_eqp_divl
- dvdp_mulr
- eqp_ltrans
- eqp_gcdl
- rdivpK
- divpZl
- dvdpNl
- rmodpD
- scalpE
- ltn_modp
- modpN
- dvdp_sub
- modp_mul
- ucl_eqp_eq
- coprimep_div_gcd
- dvdp0
- divpAC
- path: mathcomp/solvable/frobenius.v
theorems:
- FrobeniusJ
- partition_class_support
- Frobenius_subl
- Frobenius_reg_compl
- Frobenius_partition
- semiprimeJ
- normedTI_memJ_P
- Frobenius_Ldiv
- regular_norm_coprime
- semiregularS
- Frobenius_ker_dvd_ker1
- Frobenius_ker_coprime
- Frobenius_index_coprime
- semiregular_prime
- normedTI_S
- partition_normedTI
- FrobeniusJcompl
- Frobenius_context
- semiregular1r
- semiregularJ
- normedTI_J
- semiprimeS
- Frobenius_action_kernel_def
- normedTI_P
- injm_Frobenius_compl
- Frobenius_coprime
- Frobenius_ker_Hall
- Frobenius_subr
- Frobenius_trivg_cent
- FrobeniusJker
- FrobeniusWker
- injm_Frobenius_ker
- Frobenius_kerP
- cent_semiprime
- Frobenius_actionP
- semiregular_sym
- semiregular1l
- regular_norm_dvd_pred
- set_Frobenius_compl
- Frobenius_index_dvd_ker1
- ltn_odd_Frobenius_ker
- semiprime_regular
- Frobenius_dvd_ker1
- cent1_normedTI
- FrobeniusWcompl
- injm_Frobenius_group
- Frobenius_reg_ker
- FrobeniusW
- cent_semiregular
- Frobenius_compl_Hall
- path: mathcomp/algebra/archimedean.v
theorems:
- natr_mul_eq1
- floor1
- floorX
- conj_natr
- intrKfloor
- sum_truncK
- floorK
- natr_sum_eq1
- intrEfloor
- trunc0Pn
- floor_itv
- trunc0
- floorP
- ceilX
- raddfZ_nat
- gt_pred_ceil
- rpredZ_nat
- floor_le
- ceil_itv
- floorD
- truncX
- sqr_intr_ge1
- floorpK
- norm_intr_ge1
- truncM
- Rreal_int
- ceil_le
- floor_def
- int_num_subring
- rpred_nat_num
- floor_subproof
- raddfZ_int
- ceil_le_int
- intr_aut
- truncK
- intr_ler_sqr
- intr_nat
- le_ceil
- ceilM
- natr_normK
- intrP
- conj_intr
- ceil0
- rpredZ_int
- natr_ge0
- intrEsign
- intrKceil
- natr_exp_even
- truncD
- aut_intr
- trunc_gt0
- floor0
- ceilD
- intr_int
- floorpP
- intrEge0
- rpred_int_num
- ceilN
- Rreal_nat
- ceilK
- ceil1
- intrEceil
- natr_prod_eq1
- floorM
- trunc_floor
- natr_aut
- ge_floor
- natr_gt0
- natrEint
- intr_normK
- path: mathcomp/fingroup/perm.v
theorems:
- perm_onM
- porbitPmin
- permKV
- porbitV
- lift_perm_id
- odd_permV
- odd_mul_tperm
- perm1
- cast_perm_id
- permS0
- cast_perm_comp
- perm_onto
- prod_tpermP
- perm_on_id
- tpermV
- odd_perm_prod
- card_porbit_neq0
- cast_ord_permE
- cast_permE
- porbit_sym
- lift_permV
- perm_oneP
- lift_permM
- tpermC
- porbit_traject
- cast_permK
- perm_on1
- tpermL
- perm_proof
- tpermK
- perm_onV
- Sym_group_set
- odd_permJ
- tpermR
- tuple_permP
- perm_invP
- im_perm_on
- permX
- card_Sn
- permX_fix
- tpermD
- isom_cast_perm
- eq_porbit_mem
- card_Sym
- tperm_on
- apermE
- iter_porbit
- imset_perm1
- uniq_traject_porbit
- odd_perm1
- porbits_mul_tperm
- cast_perm_sym
- tperm2
- porbitsV
- lift_perm1
- tpermP
- tperm1
- tpermJ
- permK
- perm_closed
- cast_permKV
- odd_lift_perm
- im_permV
- permJ
- lift_perm_lift
- cast_perm_morphM
- pvalE
- lift_permK
- card_perm
- odd_permM
- perm_inj
- perm_invK
- permP
- permS01
- tperm_proof
- permS1
- mem_porbit
- permM
- permE
- perm_onC
- path: mathcomp/fingroup/morphism.v
theorems:
- morphpreP
- morphpreV
- im_sgval
- injm_morphim_inj
- morphim_ker
- injm_sgval
- morphim_setIpre
- invm_subker
- injm_subcent1
- morphimGK
- morphimU
- card_im_injm
- mkerr
- morphim_subnorm
- injm_cent1
- kerP
- morphpreI
- morphim_cent1
- morphJ
- morphV
- domP
- injm_norms
- morphim_cents
- ker_norm
- mem_morphpre
- morphim_restrm
- ker_injm
- injm_normal
- card_isog
- isog_transr
- eq_in_morphim
- isog_trans
- injm_cent
- invmK
- injm_comp
- isom_isog
- morphpreIim
- sgval_sub
- injm_invm
- morphmE
- morph_injm_eq1
- dom_ker
- morphimSGK
- morphim_invm
- morphim_trivm
- morphpre_set1
- morphR
- morphim_eq0
- isog_subg
- morphimIG
- morphim_abelian
- morphpreSK
- rcoset_kerP
- isogEhom
- injm_subnorm
- morphpre_cent
- idm_isom
- injm_restrm
- morphpreS
- nclasses_isog
- morphpre0
- invmE
- morphpre_cent1
- morphim_subcent
- trivm_morphM
- restrmP
- sub_isom
- im_restrm
- morph_dom_groupset
- ker_rcoset
- morphim_class
- injm_abelian
- morphpreD
- morphim_cent
- morphimE
- morphpre_subcent1
- morphim_invmE
- isog_isom
- morphpreMr
- morphpre_idm
- ker_sgval
- morph1
- morphim_factm
- classes_morphim
- morphimD1
- injmP
- eq_morphim
- ker_sub_pre
- ker_ifactm
- morphim_inj
- misomP
- order_injm
- morphim1
- isom_sub_im
- injm_subg
- morphimDG
- mkerl
- restr_isom_to
- homgP
- morphpre_cent1s
- morphim_norms
- leq_morphim
- morphim_injG
- morphim_set1
- homg_trans
- morphim_cycle
- morphpre_ifactm
- isog_eq1
- morphim_isom
- morphim_injm_eq1
- comp_morphM
- subgmK
- im_invm
- morphpre_normal
- morphimSK
- morphimIim
- restr_isom
- sub_morphpre_injm
- injm_eq
- ker_subg
- injm_factm
- morphimI
- morphpre_inj
- morphimMl
- morphim_cent1s
- injm_cents
- morphpre_subnorm
- morphim_subcent1
- morphpreMl
- injmD1
- isogP
- ker_factm_loc
- injm_idm
- morph_prod
- morphimT
- morphpre_factm
- isom_subg
- morphM
- morphimD
- morphim_sub
- im_subg
- ker_restrm
- injmK
- morphpre_restrm
- morphim_idm
- ker_comp
- morphimIdom
- morphimJ
- morphpre_proper
- morphimV
- isomP
- isog_transl
- morphpreIdom
- isom_card
- morphimY
- idm_morphM
- im_idm
- morphim_norm
- morphX
- ker_idm
- morphimP
- isog_abelian
- isom_im
- morphim_subnormG
- injm_proper
- injm_norm
- morphpre_groupset
- homg_refl
- injmI
- morphpre_invm
- injm1
- morphpre_cents
- sub_isog
- morphim_normG
- restrmEsub
- mem_morphim
- morphpre_norm
- card_injm
- isog_hom
- isog_refl
- eq_homgr
- isom_inj
- injm_factmP
- mker
- ifactmE
- morphim_homg
- im_ifactm
- ker_normal_pre
- morphpreU
- isom_sym
- morphim_gen
- morphim_ifactm
- morphimR
- leq_homg
- morphimS
- morphpreJ
- morphimEsub
- ker_invm
- injm_subcent
- morphimMr
- ker_factm
- sub_morphim_pre
- isom_sgval
- morphim_groupset
- morphpre_norms
- morphpreE
- morphpre_comp
- nclasses_injm
- morphim_comp
- factm_morphM
- injmSK
- ltn_morphim
- ker_normal
- path: mathcomp/fingroup/quotient.v
theorems:
- coset_idr
- quotient_norm
- morphpre_qisom
- card_homg
- injm_qisom
- sub_cosetpre_quo
- homg_quotientS
- quotient_class
- index_injm
- cosetpre_cent1
- weak_second_isog
- im_qisom_proof
- quotient_cents
- quotient0
- quotientGI
- quotient_inj
- quotientE
- dvdn_morphim
- quotientMidr
- kercoset_rcoset
- norm_quotient_pre
- im_qisom
- coset_default
- morphim_qisom_inj
- quotient_abelian
- quotientS
- coprime_morph
- ltn_quotient
- qisom_inj
- quotientMr
- card_quotient_subnorm
- second_isog
- inv_quotientN
- index_quotient_eq
- cosetpre_cent
- cosetpreK
- coset_kerl
- divg_normal
- quotient_proper
- third_isog
- quotient1_isom
- quotientMl
- quotientU
- quotient_gen
- coset_norm
- sub_quotient_pre
- third_isom
- val_coset
- quotientJ
- qisom_isog
- coprime_morphl
- index_morphim
- qisom_isom
- cosetpre_proper
- cosetpre_cent1s
- coset_mem
- quotient1
- qisom_ker_proof
- cosetpre_set1
- logn_morphim
- quotient_subcent
- cosetP
- im_coset
- trivg_quotient
- quotient_isog
- quotientSK
- cosetpre_subcent
- quotient_norms
- coset_mulP
- card_cosetpre
- quotmE
- coset_one_proof
- mem_repr_coset
- quotient_sub1
- quotientS1
- qisomE
- coset1
- first_isom
- coset_range_mul
- coset_reprK
- quotientD1
- quotient_subnormG
- first_isog
- quotient_subnorm
- cosetpre_normal
- quotientGK
- first_isog_loc
- imset_coset
- quotient_cent1s
- cosetpre_set1_coset
- qisom_restr_proof
- morphim_qisom
- quotientR
- sub_im_coset
- quotientV
- cosetpreM
- quotientInorm
- coset1_injm
- coset_kerr
- val_coset_prim
- quotm_dom_proof
- quotientSGK
- quotientY
- normal_cosetpre
- ker_coset
- inv_quotientS
- card_morphpre
- coset_invP
- quotientIG
- cosetpre_subcent1
- dvdn_quotient
- coset_oneP
- coset_morphM
- index_morphpre
- ker_quotm
- repr_coset_norm
- coset_id
- coprime_morphr
- quotient_isom
- quotientD
- coset_range_inv
- index_quotient_ker
- quotientK
- restrm_quotientE
- quotient_homg
- morphim_quotm
- im_quotient
- card_quotient
- quotientT
- val_quotient
- index_cosetpre
- repr_coset1
- cosetpreSK
- quotientYidr
- index_quotient
- mem_quotient
- card_morphim
- quotient_injG
- quotient_cent1
- quotient_set1
- leq_quotient
- first_isom_loc
- injm_quotm
- sub_cosetpre
- cosetpre_gen
- quotientI
- quotm_ker_proof
- quotient_setIpre
- quotient_subcent1
- quotientDG
- quotient1_isog
- quotientYidl
- quotient_cent
- classes_quotient
- cosetpre_cents
- ker_coset_prim
- quotient_normG
- val_qisom
- char_from_quotient
- quotientYK
- quotientMidl
- quotient_neq1
- second_isom
- path: mathcomp/ssreflect/fintype.v
theorems:
- existsb
- negb_exists_in
- proper_card
- enumP
- ordS_subproof
- predX_prod_enum
- exists_inPn
- mem_sub_enum
- exists_eq_inP
- eq_rlshift
- eq_card_trans
- lift_max
- bij_on_image
- disjointU
- card2
- proper_subn
- subxx_hint
- eqfun_inP
- flatten_imageP
- cardC
- f_iinv
- ord_pred_bij
- card_sig
- bumpS
- tag_enumP
- in_iinv_f
- eq_lrshift
- ltn_ord
- subxx
- enum_val_nth
- subset_leq_card
- rev_ord_proof
- subset_cons
- card0
- ord_pred_subproof
- unit_enumP
- size_enum_ord
- fin_all_exists2
- image_injP
- enum_default
- card_option
- sub_enum_uniq
- mem_ord_enum
- eq_disjoint
- negb_forall
- exists_inP
- card_gt0P
- forallPP
- disjoint_cat
- card_prod
- inordK
- dinjectiveP
- seq_sub_axiom
- unlift_subproof
- enum_rankK_in
- enum_rank_ord
- leq_ord
- eq_existsb
- cast_ord_inj
- enum_uniq
- f_invF
- void_enumP
- codomP
- eq_disjoint_r
- card_image
- splitK
- invF_f
- subset_catl
- card_uniqP
- codom_val
- eq_disjoint1
- disjoint0
- disjoint_has
- eq_card
- sum_enum_uniq
- bumpK
- size_codom
- eq_card
- lift_subproof
- max_card
- card_ord
- card_seq_sub
- enum_ordSr
- leq_bump
- codom_f
- rshift_subproof
- subset_pred1
- card_gt2P
- pred0P
- subset_all
- eq_lshift
- card_void
- card1
- cardX
- eq_forallb_in
- ord_predK
- fin_all_exists
- size_image
- seq_subE
- subset_cons2
- image_f
- ord_enum_uniq
- enum_val_bij
- iinv_f
- canF_invF
- bij_on_codom
- image_iinv
- canF_RL
- subset_eqP
- cast_ord_proof
- card_size
- injectivePn
- cardD1
- cardT
- pred0Pn
- proper_trans
- preim_iinv
- eq_card0
- enum_val_bij_in
- extremumP
- uniq_enumP
- count_enumP
- rshift_inj
- lift_eqF
- eq_invF
- subsetP
- lift0
- mem_image
- mem_iinv
- ordSK
- eq_pick
- imageP
- forallPn
- lshift_inj
- pcan_enumP
- disjointU1
- filter_subset
- leq_card_in
- forallP
- enum1
- pre_image
- prod_enumP
- eq_disjoint0
- disjointWr
- leq_image_card
- seq_sub_pickleK
- nth_codom
- enum_ord0
- eq_subset_r
- val_ord_enum
- arg_minnP
- fin_pickleK
- eq_enum_rank_in
- eq_rshift
- nth_enum_rank_in
- bumpDl
- existsP
- exists_inb
- lift_inj
- unlift_some
- eq_card1
- cardU1
- nth_ord_enum
- sub_ordK
- mem_seq_sub_enum
- option_enumP
- splitP
- disjointW
- subset_leqif_card
- disjoint_sym
- cast_ordK
- properE
- unbumpS
- card_le1P
- fintype1P
- nth_enum_rank
- fintype0
- sub_ord_proof
- enum_val_inj
- eq_codom
- mask_enum_ord
- card_sum
- card_le1_eqP
- unlift_none
- enum_ordSl
- val_sub_enum
- unbumpDl
- card_sub
- ord_pred_inj
- enum0
- widen_ord_proof
- map_preim
- rev_ordK
- enum_rank_subproof
- unbumpKcond
- liftK
- enum_valK_in
- inord_val
- seq_sub_default
- mem_sum_enum
- ord_inj
- ordS_bij
- sub_proper_trans
- canF_LR
- rev_ord_inj
- card_gt1P
- card_codom
- subset_trans
- eq_existsb_in
- inj_leq
- card_preim
- enum_rank_bij
- subsetE
- bij_eq_card
- nth_image
- index_enum_ord
- subset_cardP
- inj_card_bij
- codomE
- properP
- enum_rankK
- inj_card_onto
- card1P
- properxx
- image_codom
- eq_card_sub
- card_tagged
- eq_enum
- existsPP
- enumT
- enum_rank_inj
- card0_eq
- image_pred0
- disjointFl
- eq_card_prod
- canF_sym
- dinjectivePn
- leq_card
- eq_subset
- card_in_image
- eq_cardT
- forall_inPP
- disjoint_cons
- subset_predT
- eq_image
- eqfunP
- unliftP
- card_unit
- mem_enum
- proper_sub_trans
- disjoint_subset
- subset_disjoint
- eq_subxx
- injF_bij
- cardE
- negb_forall_in
- subsetPn
- cast_ord_id
- split_ordP
- cast_ordKV
- neq_bump
- bool_enumP
- mem_card1
- existsPn
- val_enum_ord
- cardC1
- unbumpK
- injectiveP
- subset_filter
- iinv_proof
- disjointFr
- map_subset
- leq_bump2
- ord1
- subset_cat2
- enum_valK
- enum_val_ord
- enum_valP
- disjoint1
- path: mathcomp/ssreflect/bigop.v
theorems:
- sub_le_big_seq_cond
- pair_big_idem
- big_enum_val_cond
- leq_bigmax_seq
- big_ord_narrow_cond
- big_distrl
- big_enum_cond
- big_split_ord
- big_has
- big_ord1_cond
- some_big_AC_mk_monoid
- sum1_count
- big_geq_mkord
- big_ord_narrow
- big_mkcondl_idem
- addmC
- exchange_big_dep
- big_allpairs_idem
- big_nat_rev
- exchange_big_dep_nat
- sum_nat_seq_eq1
- big_mkcondr
- big_allpairs_dep
- mulmAC
- big_nat_widenl
- oopC_subdef
- le_big_nat_cond
- deprecated_filter_index_enum
- big_ord_recr
- big_cat_idem
- big_nat1_cond_eq
- big_nat_mul
- mulmCA
- partition_big
- bigmax_eq_arg
- sum1_card
- exchange_big_nat_idem
- big_ltn
- mulm1
- idem_sub_le_big_cond
- mem_index_iota
- big_image_cond
- sum_nat_eq0
- big_ord_narrow_leq
- prodn_gt0
- bigA_distr_big_dep
- big_mask_tuple
- big_add1
- big_mkord
- eq_big_op
- oop1x_subdef
- big_rmcond_in_idem
- big_enum_rank
- eq_big_idx_seq
- mulmACA
- mem_index_enum
- prod_nat_const_nat
- big_rem_AC
- big_rmcond_idem
- eq_bigmax_cond
- bigID_idem
- le_big_nat
- prod_nat_seq_eq1
- big_map
- foldl_idx
- oopA_subdef
- perm_big_supp_cond
- big_rcons_op
- eq_big_nat
- big_geq
- bigD1
- bigmax_sup
- sub_le_big
- big_bool
- uniq_sub_le_big
- oACE
- big_condT
- big_rec
- oopx1_subdef
- idem_sub_le_big
- big_nat_cond
- big_allpairs
- big_andE
- uniq_sub_le_big_cond
- leq_sum
- eq_big_idx
- card_bseq
- sig_big_dep
- big_id_idem_AC
- congr_big_nat
- big_seq_cond
- big_nth
- big_split
- mul1m
- big_change_idx
- iteropE
- telescope_sumn_in
- bigmax_leqP
- mulC_dist
- big_undup
- big_mkcond
- big_mask
- big1_idem
- big_rec3
- pair_bigA_idem
- perm_big
- big_andbC
- big_distr_big_dep
- big1
- big_AC_mk_monoid
- subset_le_big
- prodn_cond_gt0
- index_enum_uniq
- leq_prod
- big_cat_nested
- big_image
- opCA
- big_load
- sub_in_le_big
- prod_nat_const
- big_allpairs_dep_idem
- reindex
- mul0m
- big_ind3
- big_pred0_eq
- big_rmcond
- big_enumP
- expn_sum
- pair_big_dep
- big_pred1_eq_id
- big_cat_nat_idem
- big_enum_val
- exchange_big_idem
- telescope_big
- sum_nat_eq1
- exchange_big_nat
- pair_big
- big_undup_iterop_count
- sum_nat_const
- exchange_big
- big_flatten
- big_const_nat
- big_cat_nat
- biglcmn_sup
- big_distr_big
- big_pred1_id
- big_ind2
- big_hasC
- big_map_id
- big_catl
- biggcdn_inf
- reindex_onto
- foldrE
- bigU
- big_distrlr
- mulC_zero
- sum1_size
- mulmDr
- big_const_idem
- big_ind
- prod_nat_seq_neq1
- sub_le_big_seq
- big_has_cond
- big_filter
- big_ord0
- prod_nat_seq_eq0
- eq_big_seq
- big_rev_mkord
- bigmax_leqP_seq
- mulmDl
- big_endo
- big_const_ord
- big_nat1
- congr_big
- big1_eq
- dvdn_biglcmP
- bigD1_seq
- big_const
- exchange_big_dep_idem
- mulC_id
- mulmA
- sumnE
- big_catr
- sum_nat_seq_eq0
- big_rmcond_in
- big_id_idem
- leqif_sum
- pair_big_dep_idem
- big_enum
- perm_big_supp
- leq_bigmax_cond
- big_cons
- bigA_distr_big
- big_ord_recl
- foldlE
- reindex_inj
- big_seq1
- leq_bigmax
- big_mkcondl
- big1_seq
- big_mkcondr_idem
- big_filter_cond
- mulm0
- prod_nat_seq_neq0
- sum_nat_const_nat
- eq_bigl_supp
- sum_nat_seq_neq0
- bigID
- big_rem
- sumnB
- big_ord_widen_cond
- big_ord1
- big_seq
- addmAC
- big_nat_recr
- big_pred1
- big_addn
- big_morph
- big_index_uniq
- big_pred0
- big_ltn_cond
- bigU_idem
- telescope_sumn
- big_ord_widen_leq
- big_pmap
- big_pred1_eq
- big_if
- index_enum_key
- bigmax_sup_seq
- big_only1
- mulmC
- big_nil
- addmCA
- big_nat_widen
- eq_bigr
- add0m
- pair_bigA
- big_nat1_id
- big_seq1_id
- big_split_idem
- big_nseq
- le_big_ord
- big_all
- big_const_seq
- big_mkcond_idem
- partition_big_idem
- bigD1_ord
- big_ord_widen
- cardD1x
- exchange_big_dep_nat_idem
- path: mathcomp/algebra/rat.v
theorems:
- normr_num_div
- rat_linear
- denq_mulr_sign
- Qint_def
- mulVq
- le_rat0
- fracq_eq
- sgr_denq
- frac0q
- oppq_frac
- fracq_opt_subdefE
- lerq0
- invq_frac
- mulqC
- mulq_def
- ler_rat
- ler0q
- coprimeq_den
- mulqA
- divqP
- sgr_scalq
- sgr_numq_div
- norm_ratN
- numqN
- ratzE
- coprime_num_den
- rat0
- rat_eq
- sgr_numq
- minr_rat
- le_rat0M
- rat_vm_compute
- addq_subdefC
- mulq_addl
- fracqE
- denq_gt0
- ratzM
- gt_rat0
- absz_denq
- add0q
- rat_eqE
- is_natE
- lt_ratE
- addq_def
- invq0
- numq_sign_mul
- Qnat_def
- addq_frac
- truncP
- numqK
- valq_frac
- numq_lt0
- ratr_is_additive
- ratr_norm
- rpred_rat
- signr_scalq
- mulq_subdefE
- fracq_eq0
- denqVz
- nonzero1q
- ratzN
- intq_eq0
- divq_num_den
- rat1
- ratz_frac
- floor_rat
- fmorph_eq_rat
- numq_div_lt0
- RatK
- le_ratE
- QnatP
- ltr_rat
- fracq_subproof
- fracqMM
- ltr0q
- denqN
- invq_def
- den_fracq
- numq_int
- numq_ge0
- valqK
- fracqP
- ge_rat0_norm
- coprimeq_num
- denq_norm
- ratr_int
- le_rat0_anti
- scalq_def
- normr_denq
- denq_lt0
- is_intE
- addNq
- addqA
- le_rat_total
- denq_eq0
- numq_eq0
- ratr_sg
- maxr_rat
- ratr_nat
- subq_ge0
- mulq_frac
- oppq_def
- ratzD
- addq_subdefA
- mulq_subdefC
- ratr_is_multiplicative
- addq_subdefE
- scalq_eq0
- ge_rat0
- lt_rat_def
- numq_gt0
- fmorph_rat
- val_fracq
- rat_ring_theory
- denq_int
- num_fracq
- fracq_opt_subdef_id
- le_rat0D
- denq_neq0
- lt_rat0
- ratP
- ceil_rat
- numqE
- denqP
- path: mathcomp/solvable/alt.v
theorems:
- Alt_index
- rfd_odd
- trivial_Alt_2
- rgdP
- not_simple_Alt_4
- Alt_subset
- simple_Alt5_base
- Sym_trans
- Alt_trans
- Alt_normal
- Alt_norm
- Alt_even
- rfd_funP
- rfd_iso
- card_Sym
- aperm_faithful
- rfdP
- path: mathcomp/solvable/cyclic.v
theorems:
- morph_generator
- orderXpnat
- has_prim_root_subproof
- quotient_cyclic
- cyclicY
- morphim_cyclic
- order_inj_cyclic
- Zp_unit_isom
- cyclicP
- expg_cardG
- order_inf
- cyclic_dprod
- field_mul_group_cyclic
- Aut_prime_cyclic
- im_cyclem
- cyclic1
- Zp_unitmM
- eltmM
- card_Aut_cycle
- totient_gen
- cycle_generator
- order_dvdG
- isog_cyclic
- orderXexp
- eltmE
- cycleMsub
- div_ring_mul_group_cyclic
- sub_cyclic_char
- eq_subG_cyclic
- morph_order
- Aut_cyclic_abelian
- im_Zp_unitm
- cardSg_cyclic
- cyclemM
- Zp_unit_isog
- injm_generator
- im_Zpm
- cycle_cyclic
- cyclicJ
- ZpmM
- metacyclicP
- Euler_exp_totient
- generator_cycle
- Aut_prime_cycle_cyclic
- generator_coprime
- cyclic_abelian
- expgK
- Aut_cycle_abelian
- isog_cyclic_card
- metacyclic1
- Zp_isom
- injm_cyclem
- cycleM
- orderXgcd
- cyclicS
- nt_prime_order
- sum_totient_dvd
- cyclic_metacyclic
- Zp_isog
- field_unit_group_cyclic
- quotient_cycle
- expg_znat
- orderXdvd
- cyclic_small
- expg_zneg
- im_eltm
- cycle_sub_group
- orderXpfactor
- nt_gen_prime
- eltm_id
- has_prim_root
- orderM
- injm_Zpm
- eq_expg_mod_order
- cyclicM
- units_Zp_cyclic
- injm_eltm
- order_dvdn
- dvdn_prime_cyclic
- metacyclicS
- card_Aut_cyclic
- generator_order
- orderXprime
- injm_cyclic
- cycle_subgroup_char
- sum_ncycle_totient
- path: mathcomp/field/algC.v
theorems:
- Cint_Cnat
- conjL_nt
- Cnat_sum_eq1
- minCpoly_subproof
- Crat_divring_closed
- eqCmod_refl
- mulA
- sqrtK
- floorCK
- conj_is_semi_additive
- natCK
- floorC0
- norm_Cint_ge1
- norm_eq0
- minCpoly_eq0
- truncCX
- CratP
- dvdC_zmod
- Creal1
- algC_invautK
- getCratK
- eqCmod_nat
- Cint_int
- minCpoly_aut
- addA
- LtoC_K
- dvdC0
- sposD
- algCreal_Im
- eqCmodDr
- dvdC_trans
- truncCK
- eqCmod0_nat
- rpred_Crat
- Creal_Crat
- conjK
- Crat1
- nz2
- truncC_def
- Cnat_gt0
- posJ
- Cnat_norm_Cint
- floorCM
- conj_Cnat
- floorCD
- truncC1
- dvdCP_nat
- eq_root_is_equiv
- aut_Cnat
- truncCD
- dvdC_mul2l
- mulC
- Creal0
- rpredZ_Cint
- raddfZ_Cint
- eqCmod_transl
- add0
- normM
- sposDl
- eqCmod_transr
- truncC0Pn
- zCdivE
- dvdC_mulr
- CnatEint
- Crat_aut
- eqCmodN
- Creal_Cnat
- posE
- Cnat_nat
- minCpoly_monic
- addN
- algC_autK
- Cint_rat
- eqCmodMl0
- leB
- intCK
- eqCmodDl
- truncC_gt0
- CintP
- normD
- mul2I
- algCi_subproof
- conj_is_additive
- Cnat_aut
- dvdC_mul2r
- eqCmod0
- algCrect
- floorCX
- pos_linear
- Cnat0
- eqCmodm0
- iJ
- algCreal_Re
- CtoL_inj
- CnatP
- CtoL_K
- eqCmodMr0
- Cnat_mul_eq1
- Cint_normK
- conj_is_multiplicative
- size_minCpoly
- conj_Crat
- dvdCP
- Cint0
- Crat_rat
- CintE
- ratCK
- conj_Cint
- dvdC_refl
- normN
- addC
- Cint_aut
- Cint_ler_sqr
- eqCmodM
- algC_invaut_subproof
- archimedean
- nz2
- getCrat_subproof
- rpredZ_Cnat
- dvd0C
- mulD
- raddfZ_Cnat
- dvdC_mull
- Cnat_exp_even
- norm_Cnat
- dvdC_int
- rpred_Cnat
- sqrMi
- algC_invaut_is_additive
- minCpolyP
- algebraic
- normE
- conj_subproof
- root_minCpoly
- eqCmod_sym
- nCdivE
- CintEsign
- normK
- CtoL_P
- truncC_itv
- one_nz
- floorC_def
- floorCN
- LtoC_subproof
- sqr_Cint_ge1
- inv0
- CtoL_is_additive
- closedFieldAxiom
- Cnat1
- Cnat_ge0
- dvdC_nat
- floorC1
- Creal_Cint
- floorCpP
- conj_nt
- sqrtE
- Crat0
- path: mathcomp/ssreflect/generic_quotient.v
theorems:
- left_trans
- encModRelP
- pi_DC
- pi_morph1
- pi_mono2
- equal_toE
- mpiE
- reprP
- quotW
- encoded_equivP
- eqquotE
- equiv_refl
- sortPx
- reprK
- pi_morph11
- eq_op_trans
- eqmodP
- equiv_sym
- ereprK
- eqmodP
- eq_lock
- equivQTP
- equiv_rtrans
- encModEquivP
- equiv_ltrans
- canon_id
- piP
- repr_ofK
- pi_CD
- encoded_equivE
- quotP
- encModRelE
- sort_Sub
- eqmodE
- equiv_trans
- encoded_equiv_is_equiv
- eqmodE
- eqquotP
- qreprK
- path: mathcomp/solvable/extraspecial.v
theorems:
- gtype_key
- exponent_pX1p2n
- card_pX1p2n
- DnQ_extraspecial
- isog_pX1p2
- isog_2extraspecial
- rank_DnQ
- exponent_pX1p2
- card_pX1p2
- pX1p2S
- card_DnQ
- DnQ_pgroup
- isog_pX1p2n
- rank_Dn
- DnQ_P
- Q8_extraspecial
- gactP
- Grp_pX1p2
- pX1p2n_extraspecial
- actP
- isog_2X1p2
- not_isog_Dn_DnQ
- pX1p2_extraspecial
- Ohm1_extraspecial_odd
- pX1p2id
- pX1p2n_pgroup
- path: mathcomp/algebra/ssrnum.v
theorems:
- gtr_pMr
- ler_nat
- ger_pMl
- lteifNl
- lteifNr0
- lerDl
- deg_le2_poly_ge0
- minr_nMr
- rootC_gt0
- normC_sum_eq1
- lerN10
- ltr_wpMn2r
- ler_ndivrMr
- nmulr_llt0
- trunc_itv
- degpN
- nmulr_lge0
- deg2_poly_minE
- lteifN2
- real_lerNnormlW
- sqa2
- oppr_min
- ler_distlBl
- real_normrEsign
- normr0
- ler_prod
- natf_div
- normrV
- ler0_norm
- lteif_nM2l
- invCi
- ImMr
- le00
- mulr_sign_norm
- rootC_ge0
- ltr0_ge_norm
- invf_nlt
- gtr0_sg
- nat_num1
- mulrn_wge0
- rootCK
- oppr_lt0
- pnatr_eq1
- ltr_nat
- ImM
- ler_distlDr
- ltrDl
- le0_add
- ltr_pMn2r
- natrK
- conj_Creal
- eqrXn2
- exprn_odd_le0
- agt0
- deg2_poly_factor
- deltam
- lteif_pM2l
- normC2_rect
- sqrtC0
- real_arg_minP
- r1N
- ler_normr
- ltr_prod
- deg2_poly_noroot
- lerD2r
- maxr_pMl
- normrMsign
- deg2_poly_ge0
- real_ler_distlCDr
- ler_iXn2l
- normr_real
- ltrD2l
- normr_unit
- real_exprn_even_lt0
- ltr_pDr
- subr_ge0
- conjC_ge0
- nneg_divr_closed
- ler_wpMn2l
- ler_pM2r
- ler0_ge_norm
- deg2_poly_root1
- deg_le2_poly_delta_le0
- posrE
- leif_mean_square_scaled
- trunc_subproof
- Im_div
- sqrtrV
- deg2_poly_gt0l
- ltr_distlCDr
- big_real
- subr_gt0
- real_mono
- ltr1n
- normrN1
- real_nmono
- ger0_real
- ler10
- poly_ivt
- eqr_pMn2r
- lef_nV2
- ger1_real
- mul_conjC_ge0
- Nreal_ltF
- subr_lteifr0
- eqr_norm2
- lerD
- real_ler_distlCBl
- subC_rect
- ler_wnMn2l
- ImE
- exprn_even_gt0
- real_ler_normlW
- leif_Re_Creal
- ltr0Sn
- invr_gt1
- ltr0_sqrtr
- lteif_ndivlMr
- real_ltgtP
- imaginaryCE
- ltr_distl
- eqr_nat
- mulr_ege1
- pmulr_lgt0
- real_maxNr
- real_nmono_in
- ler0_sqrtr
- lerBlDl
- pmulrn_rgt0
- leif_AGM_scaled
- real_leif_norm
- conjC_rect
- lteif_norml
- ltr01
- deg2_poly_le0
- le0N
- subr_lt0
- geC0_conj
- ler1n
- sgr_gt0
- sqrtC_inj
- lerMn2r
- rootC_subproof
- aa4gt0
- normrEsg
- a4gt0
- normr_le0
- pmulrn_lle0
- real_oppr_max
- deg2_poly_lt0m
- rootC_gt1
- intrE
- ImV
- sqrtC1
- conjC1
- ler_rootC
- leifBRL
- ltr_nnorml
- aneq0
- le_total
- ler_normlP
- eqC_semipolar
- ler_leVge
- ler_wnM2l
- exprn_even_lt0
- ltf_nV2
- ltr0n
- ler_pMn2r
- prod_real
- ltr_nDl
- mulr_gt0
- real0
- ltr_eXnr
- nat_num0
- deg2_poly_lt0r
- gtr_nMr
- aneq0
- deg2_poly_le0r
- poly_itv_bound
- invf_ngt
- lteif_ndivrMl
- lerD2l
- real_mono_in
- minr_to_max
- real_lteif_norml
- normM
- normr1
- rootCMr
- real_ltr_distlDr
- sqrtr_gt0
- conjCN1
- Creal_Im
- gtrBl
- gtr0_le_norm
- pmulr_rlt0
- oppr_ge0
- normM
- nz2
- lt0_cp
- sqrtC_eq0
- realNEsign
- nposrE
- deg2_poly_max
- a4gt0
- lerNnormlW
- nmulr_rge0
- ler_sqr
- b2a
- pexpIrn
- ler_pMl
- deg2_poly_root1
- ler_ltB
- ler_nMr
- minrN
- real_ltgt0P
- ltr_prod_nat
- lteif_pdivrMr
- le_total
- ltrN10
- ler_pMr
- ler_peMr
- int_num1
- exprn_gt0
- ltrBrDl
- leif_sum
- sqr_sqrtr
- sgr_norm
- lerBrDl
- normr_nneg
- deltaN
- mulrIn
- sgr0
- normr0P
- mulr_Nsign_norm
- realN
- ler_wnDl
- deg2_poly_ge0r
- deg2_poly_gt0r
- lteif01
- mulr_sg_eqN1
- conjC0
- pmulr_rle0
- exprn_even_ge0
- invf_gt1
- real_leP
- eq0_norm
- maxNr
- ImMl
- rootC0
- gt_ge
- normr_prod
- minr_nMl
- real_leif_mean_square
- natrG_neq0
- ltrB
- Crect
- prodr_gt0
- invf_le1
- lteifBrDr
- deltam
- sgrP
- addr_max_min
- degpN
- eqr_normN
- rootC_lt0
- deg2_poly_root2
- ler_neMr
- lt_le
- ler_nMn2l
- sgrV
- ler_nV2
- root1C
- nz2
- neq0Ci
- mulrn_wlt0
- leif_0_sum
- signr_le0
- mulr_le0
- eqr_norm_id
- nmulrn_rgt0
- invr_lt0
- eqr_sqrtC
- deg2_poly_factor
- ler_wpDr
- ltr0_sg
- expr_ge1
- ltr0_real
- Re_lock
- leN_total
- ltr_iXnr
- leif_pM
- real_addr_minl
- ler_ltD
- sqrtC_ge0
- ltr_normr
- sqrtCM
- invf_plt
- nnegrE
- real_leif_AGM2
- invr_gt0
- lteifD2l
- r2N
- exprn_egt1
- argCleP
- real_addr_closed
- lteifD2r
- mulrn_wgt0
- normr_nat
- lerB_dist
- sqrtC_gt0
- deg2_poly_le0l
- lef_pV2
- splitr
- deg2_poly_minE
- deg2_poly_lt0
- nmulr_rgt0
- ler_wpM2r
- gtr_pMl
- posrE
- ltr_distlDr
- gerBl
- addC_rect
- ler_distD
- sgr_id
- gtr_nMl
- ltr_pM2l
- lern0
- expr_lt1
- realB
- leif_normC_Re_Creal
- le00
- ImMil
- normCBeq
- rootC1
- int_num_subring
- CrealE
- num_real
- deg2_poly_gt0l
- real_exprn_odd_lt0
- ltr_nMl
- natf_indexg
- leif_rootC_AGM
- pmulrn_rge0
- sqrp_eq1
- leif_nM
- real1
- addr_ge0
- neqr0_sign
- invr_ge1
- real_ler_norm
- lerDr
- ltr_pMr
- ltr_wnDl
- oppr_gt0
- char_num
- mulr_ge0_le0
- deg2_poly_gt0r
- invr_ge0
- leif_pprod
- ltr_normlP
- ler_pdivlMl
- invf_ple
- signr_lt0
- real_addr_maxr
- real_ler_distl
- normCDeq
- lerNr
- poly_disk_bound
- truncP
- lt0r_neq0
- pos_divr_closed
- real_ltr_distlCBl
- Creal_ImP
- numNEsign
- ger0_norm
- ltrgt0P
- lteif_normr
- addr_ss_eq0
- le01
- ltr_nwDl
- realE
- bigmin_real
- mulr_egt1
- ler_iXnr
- normCKC
- nz2
- trunc_def
- natrP
- lerN2
- ger_pMr
- ltr01
- naddr_eq0
- ieexprn_weq1
- ltr_wnDr
- ler_norm
- sqrtr_ge0
- deg2_poly_lt0m
- sqrtrM
- ltr_leD
- ler_nnorml
- ltrXn2r
- ltr_ndivrMl
- Nreal_gtF
- deg2_poly_ge0
- lt0_add
- ReMir
- real_minr_nMr
- gt0_cp
- ler_eXnr
- sgr_def
- ltrr
- rootC_eq1
- ltr0N1
- normC_sum_upper
- le0r
- addr_ge0
- paddr_eq0
- lerr
- conj_normC
- mulr_ge0
- pmulrnI
- natrE
- ltrBrDr
- eqNr
- real_addr_maxl
- pmulr_rge0
- eqC
- ltrn0
- lteif_pdivrMl
- realn
- lerB_real
- min_real
- pneq0
- minNr
- numEsign
- le0r
- ltr_wpXn2r
- leif_nat_r
- invr_sg
- boundP
- leif_AGM2_scaled
- real_leNgt
- sqrtC_lt0
- sgrN
- deg2_poly_ge0l
- gtr0_real
- ReMl
- truncP
- ler_wMn2r
- real_comparable
- rootC_le0
- ler_niMl
- realEsqr
- lteifBlDl
- ltr_pM2r
- maxr_nMl
- max_real
- leif_AGM2
- ler_normlW
- normrEsign
- Re_is_additive
- rootC_Re_max
- leifBLR
- rootC_le1
- rootC_lt1
- real_ltr_normr
- invC_Crect
- lteifNr
- real_ltP
- ltr_nDr
- deg2_poly_ge0r
- exprn_odd_gt0
- mulr_ge0_gt0
- nnegrE
- deg2_poly_lt0l
- realn_mono_in
- ler_pM
- real_minrN
- ler_norml
- ler_distlCDr
- deg2_poly_le0m
- signr_gt0
- nmulr_lgt0
- sqr_ge0
- deg2_poly_factor
- pmulr_rgt0
- ger_nMr
- ltrD
- norm_conjC
- realn_nmono
- real_ltr_distlCDr
- rectC_mulr
- ltr_distlBl
- ltr_pdivlMr
- ltrMn2r
- realn_nmono_in
- ger0P
- invf_nge
- realV
- ger0_def
- ler_pdivrMl
- midf_lt
- sgr1
- deg2_poly_root2
- real_ler_normr
- sqrtr0
- normr_id
- ler_pV2
- nmulrn_rge0
- neg_unity_root
- ltrNr
- ler_weXn2l
- pexpr_eq1
- real_leif_AGM2_scaled
- real_exprn_odd_ge0
- deg2_poly_root2
- ltr_nM2l
- mulrn_eq0
- sqrCK
- sgr_nat
- sgr_le0
- le0_cp
- le0_mul
- ltrN2
- pmulrn_lgt0
- ltr_normlW
- exprn_ile1
- ltrNnormlW
- eqr_norml
- ler_eXn2l
- real_maxrN
- real_minr_nMl
- midf_le
- conjCi
- Re_conj
- subr_comparable0
- eqr_rootC
- ler_pM2l
- deg2_poly_gt0m
- deg2_poly_maxE
- lteif_nM2r
- nmulr_lle0
- real_ltr_normlP
- invf_pgt
- lteif_pdivlMl
- nonRealCi
- mul_conjC_gt0
- le_trans
- ler_ndivrMl
- ltr_pV2
- nmulrn_rle0
- lerBrDr
- normC_rect
- real_ler_distlDr
- le_def
- invf_ge1
- Creal_Re
- sum_real
- ltrBlDr
- ltrgtP
- deg2_poly_gt0
- CrealP
- normr_gt0
- normC2_Re_Im
- ler_sqrtC
- deg2_poly_factor
- realD
- prodr_ge0
- real_wlog_ltr
- ltr_leB
- realrM
- ltr_nV2
- real_ge0P
- ler1_real
- Creal_ReP
- ler_real
- deg2_poly_min
- ltr_pDl
- ler0_def
- deg2_poly_root1
- ler_distlC
- sgrM
- realEsg
- Im_rect
- real_mulr_sign_norm
- eqrMn2r
- rootCMl
- real_ltr_norml
- Im_is_additive
- deg2_poly_ge0l
- addr_min_max
- mulr_lt0
- pmulr_lge0
- ler_peMl
- ltr0_neq0
- maxrN
- ltr_ndivlMl
- le_normD
- real_wlog_ler
- invC_norm
- pmulr_rgt0
- comparable0r
- divC_rect
- real_minNr
- exprCK
- pexprn_eq1
- ler_wpDl
- eqr_sqrt
- CrealJ
- comparabler_trans
- exprn_ege1
- real_exprn_odd_gt0
- ler_distlCBl
- real_maxr_nMr
- natr_nat
- sqrtrP
- ltf_pV2
- conjC_nat
- ler_distl
- ler_addgt0Pl
- realEsign
- ler_piMr
- ger_nMl
- Cauchy_root_bound
- pmulr_llt0
- normCi
- ltr_pwDr
- ltr_wpDl
- sgr_eq0
- a2
- lteif_nnormr
- leifD
- ltr_pM
- exprn_ge0
- realX
- subr_le0
- ler_addgt0Pr
- expr_le1
- ler_wpM2l
- ler0N1
- real_maxr_nMl
- lteif_ndivlMl
- normC_sum_eq
- xb4
- real_exprn_even_ge0
- ler01
- sqrtCK
- ltr_ndivrMr
- lerP
- lerB
- deg_le2_poly_delta_ge0
- lteif_pdivlMr
- ltr_pMl
- exprn_ilt1
- ltr_rootC
- ImMir
- lteif_ndivrMr
- ltrBlDl
- addr_maxr
- real_leVge
- ler_nMl
- rootC_inj
- lteifBrDl
- ltW
- ltr_norml
- ltr_pMn2l
- mulr_sg_eq1
- normr_lt0
- addr_maxl
- lerNl
- ler_ndivlMl
- ler_wsqrtr
- conjC_eq0
- numEsg
- natrG_gt0
- Im_conj
- ler_normB
- natr_indexg_neq0
- sgr_lt0
- nat_num_semiring
- divr_ge0
- normr_sg
- rootC_ge1
- distrC
- ltr_wMn2r
- ltr_iXn2l
- sqrtr_subproof
- real_divr_closed
- pmulrn_lge0
- signr_inj
- real_ler_distlBl
- ler_nM2l
- normrN
- real_mulr_Nsign_norm
- ReMr
- upper_nthrootP
- deg2_poly_noroot
- archi_boundP
- num_real
- divr_gt0
- ler0_real
- real_ler_norml
- ler_psqrt
- normr_idP
- ltr_sqr
- a4
- oppr_le0
- minr_pMr
- expr_gt1
- mulrn_wle0
- maxr_to_min
- real_exprn_even_le0
- normr_sign
- invC_rect
- real_oppr_min
- sgrX
- Nreal_geF
- lteifBlDr
- psumr_eq0P
- real_addr_minr
- ler0n
- exprn_even_le0
- invf_lt1
- geC0_unit_exp
- lteif_distl
- ler_sqrt
- realMr
- ltr_nM2r
- realrMn
- unitf_lt0
- pmulrn_llt0
- ger0_le_norm
- Re_rect
- sgr_smul
- ReV
- sqrCK_P
- ltr_wpDr
- mulr_le0_ge0
- real_eqr_norml
- gtrDl
- signr_ge0
- lt_def
- normC_def
- ler_neMl
- oppC_rect
- nmulr_rlt0
- rootCX
- norm_rootC
- deg2_poly_le0m
- ler_wnDr
- Im_lock
- invr_le1
- ger0_def
- Re_i
- ltr_rootCl
- sqrn_eq1
- sgr_cp0
- ltr_sqrtC
- ler_dist_normD
- real_lteif_normr
- ltr_eXn2l
- sqrtC_le0
- ler_dist_dist
- ler_pXn2r
- ltr_pdivlMl
- mulC_rect
- gtrN
- invr_le0
- rootCV
- subr_lteif0r
- maxr_pMr
- realM
- deg2_poly_ge0m
- lerBlDr
- real_le0P
- rootCpX
- real_leif_mean_square_scaled
- normf_div
- rectC_mull
- ler_pdivlMr
- sumr_ge0
- deltaN
- mul_conjC_eq0
- pmulr_lle0
- deg2_poly_root1
- gerDr
- le_normD
- lt01
- a2gt0
- mulCii
- invr_lt1
- sqr_sg
- eqCP
- neq0_mulr_lt0
- lteif_pM2r
- real_ler_normlP
- subr_gt0
- a1
- real_ltNge
- addr_minl
- ltr10
- invf_pge
- ReE
- gerDl
- ler_niMr
- ltr_pXn2r
- ler_pdivrMr
- maxr_nMr
- ltrD2r
- pmulrn_rlt0
- ler_piMl
- ltr_nMr
- sqrtr1
- ltr_ndivlMr
- rootC_eq0
- lteif0Nr
- real_exprn_even_gt0
- eq0_norm
- Re_div
- ler_sum
- pneq0
- sgrMn
- path: mathcomp/solvable/sylow.v
theorems:
- nilpotent_maxp_normal
- card_Syl_dvd
- Baer_Suzuki
- Sylow_exists
- nil_class3
- pgroup_nil
- nil_Zgroup_cyclic
- Hall_pJsub
- card_p2group_abelian
- trivg_center_pgroup
- morphim_Zgroup
- Hall_psubJ
- sub_nilpotent_cent2
- pgroup_fix_mod
- nil_class2
- Syl_trans
- pcore_sub_astab_irr
- nilpotent_Hall_pcore
- Sylow_setI_normal
- Sylow_trans
- Hall_setI_normal
- nontrivial_gacent_pgroup
- pgroup_sol
- nil_class_pgroup
- pcore_faithful_irr_act
- p2group_abelian
- Sylow's_theorem
- small_nil_class
- Sylow_subJ
- normal_pgroup
- Frattini_arg
- max_pgroup_Sylow
- nilpotent_pcoreC
- card_Syl
- coprime_mulG_setI_norm
- pi_center_nilpotent
- Sylow_subnorm
- normal_sylowP
- Sylow_gen
- Sylow_transversal_gen
- path: mathcomp/field/fieldext.v
theorems:
- size_Fadjoin_poly
- Fadjoin0
- mulfxC
- prodvAC
- base_aspaceOver
- minPolyxx
- field_subvMr
- field_module_eq
- monic_minPoly
- base_moduleOver
- root_minPoly
- mem1v
- p0z0
- Fadjoin_nil
- field_module_semisimple
- sub1v
- irredp_FAdjoin
- baseField_scaleDr
- aspaceOver_suproof
- nz_p0
- Fadjoin_polyX
- nonzero1fx
- field_mem_algid
- adjoin0_deg
- subfx_irreducibleP
- subfield_closed
- subfx_inj_is_additive
- map_minPoly
- vspaceOver_refBase
- subfx_scalerDr
- Fadjoin_poly_is_linear
- field_dimS
- Fadjoin_polyC
- pi_subfx_inj
- minPolyOver
- AEnd_lker0
- fieldExt_hornerX
- modp_polyOver
- subfx_poly_invE
- dim_sup_field
- poly_rV_modp_K
- vsval_invf
- Fadjoin_eq_sum
- aimg_is_aspace
- pi_subfext_add
- subfx_scaleAr
- subfx_inj_eval
- dim_Fadjoin
- AHom_lker0
- subfx_fieldAxiom
- fieldOver_scaleAl
- subfx_scalerA
- polyOver_subvs
- subfx_inj_base
- polyOverSv
- subfx_scalerDl
- fieldOver_scaleE
- subfx_inj_root
- mem_aspaceOver
- sup_field_module
- baseField_scale1
- addfxC
- Fadjoin_idP
- baseField_vectMixin
- pi_subfext_inv
- addfxA
- dim_vspaceOver
- nz_p
- baseField_scaleDl
- Fadjoin_polyP
- iotaPz_repr
- adjoin_deg_eq1
- z0Ciota
- iotaPz_modp
- sub_baseField
- add0fx
- aspaceOverP
- sub_adjoin1v
- subfx_eval_is_additive
- p0_mon
- dim_aspaceOver
- subfxEroot
- subvs_fieldMixin
- mempx_Fadjoin
- fieldOver_scaleDl
- field_module_dimS
- prodvCA
- gcdp_polyOver
- fieldOver_scaleDr
- root_small_adjoin_poly
- aspace_divr_closed
- baseVspace_module
- mul1fx
- prodvC
- fieldOver_scaleA
- FadjoinP
- minPoly_irr
- addfxN
- mulfxA
- fieldExt_hornerC
- baseField_scaleA
- F0ZEZ
- pi_subfext_opp
- equiv_subfext_is_equiv
- adjoin_degree_aimg
- subfx_scaleAl
- prodv_is_aspace
- subfx_eval_is_multiplicative
- fieldExt_hornerZ
- pi_subfext_mul
- min_subfx_vect
- subfx_evalZ
- field_subvMl
- algid1
- mem_baseVspace
- baseField_scaleE
- dim_cosetv
- alg_polyOver
- dim_baseVspace
- trivial_fieldOver
- nz_x_i
- mulfx_addl
- dim_field_module
- subfx_inv0
- fieldOver_vectMixin
- subfxE
- Fadjoin_poly_mod
- baseField_scaleAr
- fieldOver_scaleAr
- size_minPoly
- Fadjoin1_polyP
- vspaceOverP
- minPolyS
- Fadjoin_poly_eq
- baseField_scaleAl
- baseAspace_suproof
- Fadjoin_polyOver
- module_baseAspace
- adjoin_degreeE
- minPoly_XsubC
- Fadjoin_seqP
- n_gt0
- Fadjoin_sum_direct
- base_vspaceOver
- fieldOver_scale1
- subfx_injZ
- Fadjoin_poly_unique
- path: mathcomp/character/character.v
theorems:
- cfBigdprodi_lin_char
- cfker_constt
- cfcenter_sub
- lin_charV_conj
- cfDprodr_lin_char
- irr_inv
- cfMorph_charE
- subGcfker
- cfAut_lin_char
- cfDetRes
- xcfunZr
- cfDetMorph
- cfQuo_irr
- cfRepr_dsum
- dsumx_mul
- cap_cfker_normal
- neq0_has_constt
- cfConjC_irr1
- cfdot_sum_irr
- irr_prime_injP
- conjC_IirrK
- trow_is_linear
- cfAut_irr1
- Iirr_cast
- add_mx_repr
- cfker_reg_quo
- cfdot_Res_ge_constt
- irr_free
- tprodE
- cfRepr_inj
- dprodr_IirrE
- cfConjC_lin_char
- sdprod_IirrE
- TI_cfker_irr
- irr_classP
- card_afix_irr_classes
- mxtrace_prod
- irr_basis
- cfcenter_repr
- lin_char_unity_root
- cfRegE
- socle_of_Iirr_bij
- irr_eq1
- cfReg_sum
- cfRepr_standard
- isom_IirrE
- cfkerEirr
- cap_cfcenter_irr
- conjC_Iirr0
- cfaithful_reg
- dprod_IirrEl
- cfSdprod_irr
- cfun1_irr
- aut_IirrE
- irr1_gt0
- Res_irr_neq0
- cfnorm_Res_leif
- irrWnorm
- Iirr1_neq0
- cfDet_order_dvdG
- lin_char_prod
- Res_sdprod_irr
- cap_cfker_lin_irr
- lin_char_group
- char1_ge_constt
- reindex_irr_class
- Ind_irr_neq0
- cfnorm_irr
- cfRepr_subproof
- dprod_Iirr0r
- eq_irr_mem_classP
- conjC_IirrE
- cfInd_eq0
- cfRepr_sub
- lin_char_neq0
- eq_subZnat_irr
- cfMorph_char
- isom_Iirr0
- cfcenter_cyclic
- cfRes_lin_char
- char_sum_irr
- lin_charX
- dprodr_Iirr0
- prod_mx_repr
- trowbE
- cfMod_charE
- cfBigdprodi_char
- irr_of_socle_bij
- mod_Iirr0
- irr_cfcenterE
- cfRepr1
- cfExp_prime_transitive
- socle_Iirr0
- cfDprodr_irr
- cfker_irr0
- cfMod_irr
- Wedderburn_id_expansion
- cfMod_char
- dprod_Iirr0l
- lin_charM
- cfcenter_normal
- cfcenter_group_set
- irr_faithful_center
- max_cfRepr_mx1
- linear_char_divr
- dprod_Iirr_onto
- dprod_Iirr0
- cfRepr_char
- irr1_bound
- constt_Res_trans
- quo_Iirr_eq0
- dprod_IirrEr
- cfMorph_lin_char
- cfRepr_rsimP
- mod_IirrK
- eq_addZ_irr
- morph_Iirr_eq0
- cfBigdprod_irr
- cfConjC_irr
- cfBigdprodi_lin_charE
- cfQuo_lin_charE
- irrP
- cforder_lin_char
- constt_ortho_char
- cfdot_aut_char
- groupC
- constt_cfInd_irr
- cfkerE
- cfRes_char
- aut_Iirr_inj
- cfBigdprod_Res_lin
- cfBigdprod_lin_char
- irr_orthonormal
- sdprod_Iirr0
- cfBigdprod_char
- cfIsom_char
- cfRepr_morphim
- xcfun_id
- cfker_Res
- sAG
- dprod_IirrK
- dprodl_Iirr0
- irr_char
- cfIsom_irr
- dprodr_IirrK
- mul_conjC_lin_char
- eq_scaled_irr
- cfDetD
- card_Iirr_abelian
- dprod_IirrE
- irr_cyclic_lin
- cfDprodKl_abelian
- cfun1_char
- sdprod_Iirr_eq0
- morph_Iirr_inj
- quo_IirrK
- quo_IirrE
- cfBigdprodi_charE
- normC_lin_char
- cfDet_order_lin
- trow0
- cfIirrE
- aut_Iirr0
- cfcenter_eq_center
- isom_IirrKV
- cfDet_lin_char
- irr1_neq0
- cfun1_lin_char
- second_orthogonality_relation
- nKG
- cfBigdprodKabelian
- trowb_is_linear
- cfun0_char
- cfun_sum_cfdot
- class_IirrK
- character_table_unit
- cfDprod_irr
- congr_irr
- conjC_irrAut
- first_orthogonality_relation
- dprod_Iirr_inj
- isom_IirrK
- trow_mul
- cfcenter_fful_irr
- cfdot_dprod_irr
- cfMorph_irr
- cfSdprod_char
- detRepr_lin_char
- cfIirr_key
- mod_Iirr_eq0
- cfDprod_char
- cfkerEchar
- char_sum_irrP
- cfIsom_lin_char
- prod_repr_lin
- cfRes_lin_lin
- cfDetMn
- cfConjC_char1
- NirrE
- cfIirrPE
- dprod_Iirr_eq0
- mul_lin_irr
- Cnat_cfdot_char_irr
- sdprod_Res_IirrE
- cforder_irr_eq1
- lin_char_der1
- sdprod_IirrK
- irr_sum_square
- cfBigdprod_eq1
- xcfun_mul_id
- cfRepr_dadd
- eq_signed_irr
- irr1_degree
- isom_Iirr_eq0
- repr_rsim_diag
- cfDet_id
- cfDprodKr_abelian
- char1_ge_norm
- irr_reprP
- irr1_abelian_bound
- has_nonprincipal_irr
- xcfun_is_additive
- mx_rsim_socle
- irr_prime_lin
- mod_IirrE
- repr_irr_classK
- inv_dprod_Iirr0
- irr0
- morph_Iirr0
- cfRepr_sim
- cforder_lin_char_gt0
- cfker_center_normal
- isom_Iirr_inj
- cfQuo_charE
- lin_charW
- cfdot_irr
- cfAut_char1
- irr_neq0
- cfBigdprodi_irr
- cfDprod_eq1
- cfdot_char_r
- solvable_has_lin_char
- cfInd_char
- cfAut_irr
- coord_cfdot
- cfQuo_lin_char
- mx_rsim_dsum
- cfcenter_subset_center
- Cnat_irr1
- irrK
- cfDet0
- cfBigdprodKlin
- cfSdprod_lin_char
- card_subcent1_coset
- cfker_Ind
- xcfunG
- mx_rsim_dadd
- cfDprodl_char
- conjC_Iirr_eq0
- lin_char_irr
- lin_irr_der1
- dprodl_IirrE
- card_Iirr_cyclic
- invr_lin_char
- Cnat_char1
- generalized_orthogonality_relation
- cfRepr0
- mem_irr
- dprodl_IirrK
- char_reprP
- morph_IirrE
- mx_rsim_standard
- cfDetIsom
- Nxi
- cfDprodl_lin_char
- irrWchar
- usumx_mul
- char1_eq0
- cfMod_lin_charE
- constt_irr
- cfConjC_char
- Res_Iirr0
- aut_Iirr_eq0
- quo_Iirr0
- fful_lin_char_inj
- cfDet_mul_lin
- XX'_1
- conjC_charAut
- irrRepr
- xiMV
- socle_of_IirrK
- irrEchar
- xcfun_repr
- cfDprodr_char
- cfDetRepr
- tprod_tr
- cfReg_char
- cfMorph_lin_charE
- mul_char
- cfQuo_char
- char_abelianP
- card_lin_irr
- mx_repr0
- quo_IirrKeq
- lin_char_unitr
- eq_scale_irr
- char_inv
- cfun_sum_constt
- cforder_lin_char_dvdG
- char_cfcenterE
- cfDprod_lin_char
- char1_ge0
- dprodr_Iirr_eq0
- cfcenter_Res
- det_is_repr
- irr_aut_closed
- irr_of_socleK
- constt_cfRes_irr
- lin_char1
- sdprod_Res_IirrK
- cfker_nzcharE
- cfReprReg
- mod_Iirr_bij
- add_char
- path: mathcomp/field/algnum.v
theorems:
- Aint_aut
- Crat_spanP
- eqAmodMr0
- eqAmod_refl
- eqAmod_addl_mul
- restrict_aut_to_normal_num_field
- eqAmod0_rat
- Crat_span_zmod_closed
- eqAmodMl0
- dec_Cint_span
- eqAmodN
- restrict_aut_to_num_field
- fin_Csubring_Aint
- Aint0
- eqAmodMl
- Cint_span_zmod_closed
- eqAmod0_nat
- eqAmodD
- dvdA_zmod_closed
- num_field_exists
- mem_Cint_span
- Aint_prim_root
- Aint1
- eqAmod0
- Aint_subring
- eqAmod_rat
- rmorphZ_num
- eqAmodm0
- eqAmodMr
- dvdn_orderC
- Aint_Cint
- eqAmod_transl
- exp_orderC
- eqAmod_sym
- root_monic_Aint
- Crat_spanM
- Aint_unity_root
- eqAmod_transr
- alg_num_field
- mem_Crat_span
- Crat_spanZ
- Aint_Cnat
- map_Qnum_poly
- eqAmod_trans
- num_field_proj
- eqAmod_nat
- eqAmodM
- Cint_spanP
- Crat_span_subproof
- fmorph_numZ
- Aint_int
- extend_algC_subfield_aut
- eqAmodDl
- eqAmodDr
- algC_PET
- Cint_rat_Aint
- path: mathcomp/algebra/poly.v
theorems:
- drop_poly_is_linear
- comm_poly_exp
- multiplicity_XsubC
- mul_0poly
- coefXM
- root_ZXsubC
- polyOverZ
- comp_poly0
- mul_poly_key
- size_map_polyC
- size_Poly
- fmorph_unity_root
- nderivnC
- monicXnaddC
- prim_root_dvd_eq0
- map_polyXaddC
- nderivnMn
- size_polyC_leq1
- odd_polyE
- commr_polyXn
- dvdn_prim_root
- lead_coefM
- aa4
- polySpred
- polyOverNr
- comm_polyX
- rpred_horner
- size_polyXn
- size_exp_leq
- prim_root_natf_neq0
- derivnC
- derivnB
- scale_poly_eq0
- rootE
- comp_poly_eq0
- nderivnXn
- lead_coefDr
- size_poly_eq
- mul_polyDr
- derivMXaddC
- poly2_root
- comp_polyXaddC_K
- horner_eval_is_linear
- prim_order_dvd
- scale_polyC
- mul_poly0
- derivn1
- coefMXn
- horner_coef_wide
- lead_coefX
- nderivn_def
- polyOver0
- size_exp
- polyseqXn
- rreg_polyMC_eq0
- hornerN
- prim_expr_order
- lead_coef_monicM
- root_exp_XsubC
- scale_1poly
- polyC0
- root_polyC
- deg2_poly_root1
- size1_polyC
- even_polyD
- monic_neq0
- coefXn
- coef_opp_poly
- derivnXn
- lead_coef_map_inj
- closed_nonrootP
- size_odd_poly
- rmorph_root
- lead_coefMX
- polyOver_addr_closed
- monic_lreg
- polyX_key
- map_polyZ
- commr_horner
- monic_exp
- aneq0
- polyXsubC_eq0
- deg2_poly_canonical
- lead_coef_exp
- polyOverC
- closed_rootP
- rootN
- coef0
- polyOverXaddC
- map_poly_inj
- mul_polyC
- rmorph_unity_root
- hornerXn
- poly_inj
- polyCM
- mapf_root
- coef0_prod_XsubC
- polyOver_poly
- factor_Xn_sub_1
- size_prod_seq
- comp_poly_multiplicative
- scale_poly_key
- lead_coefXnsubC
- factor_theorem
- prim_root_charF
- size_exp_XsubC
- take_polyDMXn
- odd_polyD
- comm_polyM
- unity_rootE
- root0
- horner_prod
- deg2_poly_root1
- polyOver_deriv
- root_prod_XsubC
- drop_polyDMXn
- size_prod_seq_eq1
- size_prod_leq
- coefB
- derivnMNn
- derivMNn
- even_polyZ
- lead_coef_map
- rootPt
- polyOverXnsubC
- polyCV
- comm_poly1
- polyCMn
- derivMn
- take_poly0l
- coef_map_id0
- dec_factor_theorem
- odd_polyZ
- size_drop_poly
- map_poly_is_multiplicative
- prim_rootP
- coef_drop_poly
- sum_odd_poly
- sum_even_poly
- coef_comp_poly_Xn
- poly_mulVp
- polyseq_cons
- hornerMX
- rootPf
- map_poly_com
- prim_expr_mod
- size_prod_eq1
- polyCK
- derivXsubC
- size_add
- size_comp_poly2
- coefMn
- polyOverXn
- map_polyC
- comp_poly_is_linear
- nderivn0
- hornerD
- size_opp
- coefCM
- nderivnMNn
- comp_polyM
- prim_root_eq0
- commr_polyX
- map_prod_XsubC
- prim_root_exp_coprime
- roots_geq_poly_eq0
- lead_coefDl
- poly_take_drop
- unity_rootP
- derivnMXaddC
- hornerXsubC
- mul_lead_coef
- deg2_poly_root2
- map_polyE
- map_comm_coef
- deriv_exp
- map_poly_comp_id0
- map_poly_is_additive
- root_exp
- horner_map
- coefXnM
- coefPn_prod_XsubC
- poly_intro_unit
- monic_map
- size_polyC
- poly_inv_out
- even_polyE
- eqp_take_drop
- polyOverXsubC
- size_poly
- size_poly0
- size_Mmonic
- size_polyX
- lead_coefE
- comp_polyX
- rootZ
- derivM
- max_poly_roots
- odd_polyMX
- size_even_poly_eq
- even_polyC
- polyC_inj
- polyseqXaddC
- comp_polyZ
- monic_mulr_closed
- monic_prod_XsubC
- polyseqMX
- polyOver_mulr_2closed
- polyC_eq0
- take_polyMXn_0
- horner_algX
- nderiv_taylor_wide
- polyX_eq0
- poly_even_odd
- rreg_size
- comp_poly_MXaddC
- prim_root_pi_eq0
- polyseqC
- coef_mul_poly
- comp_polyB
- lead_coef_Mmonic
- comp_poly0r
- derivXn
- poly_idomainAxiom
- horner0
- size_map_inj_poly
- polyC1
- nderivn_map
- mem_root
- coef_odd_poly
- map_comm_poly
- polyP
- deg2_poly_canonical
- drop_polyZ
- mul_polyA
- size_XmulC
- derivnZ
- size_sum
- root_XaddC
- coef_cons
- polyseqK
- aut_unity_rootC
- horner_coef0
- scale_polyAl
- comp_polyXr
- add_poly0
- sqa2neq0
- poly_mul_comm
- max_unity_roots
- hornerCM
- coef0_prod
- multiplicity_XsubC
- monicXaddC
- fmorph_root
- lead_coef_eq0
- derivSn
- nderiv_taylor
- horner_comp
- monic1
- size_poly_gt0
- coefMC
- nderivnB
- horner_is_linear
- monicXn
- poly_initial
- size_map_poly
- in_alg_comm
- polyOver_derivn
- hornerX
- size_mulXn
- deriv0
- rootM
- comm_coef_poly
- lead_coef_lreg
- size_prod_XsubC
- multiplicity_XsubC
- polyseqMXn
- polyseq0
- polyC_natr
- lead_coef1
- derivn_is_linear
- polyseqXsubC
- horner_exp
- polyCD
- coef0M
- prim_order_gt0
- coef_derivn
- lead_coefN
- aut_unity_rootP
- nderivn_is_linear
- coef_deriv
- coefMr
- eq_map_poly
- rreg_lead
- map_diff_roots
- comm_polyD
- opp_poly_key
- drop_poly0r
- size_MXaddC
- coefX
- map_Poly
- comp_polyE
- coefC
- monicMl
- size_mul
- coef_nderivn
- horner_morphX
- coef_poly
- cons_poly_def
- deriv_mulC
- lt_size_deriv
- horner_is_multiplicative
- polyseq_poly
- derivnS
- polyOverXnaddC
- even_polyMX
- deriv_comp
- polyC_multiplicative
- closed_rootP
- map_polyXn
- polyOver_comp
- take_poly0r
- derivn0
- aut_prim_rootP
- comp_poly2_eq0
- prod_map_poly
- a1
- polyOver_mul1_closed
- poly0Vpos
- size_Cmul
- horner_algC
- hornerC
- size_prod
- nderivnZ
- deg2_poly_factor
- map_inj_poly
- monicP
- size_scale_leq
- hornerM_comm
- map_poly_id
- eq_poly
- poly_key
- size_proper_mul
- polyseqX
- map_polyK
- size_cons_poly
- drop_poly_sum
- comp_polyD
- derivn_map
- max_ring_poly_roots
- root_size_gt1
- eq_prim_root_expr
- deriv_map
- take_polyD
- polyOverX
- eq_in_map_poly_id0
- size_poly1
- eq_in_map_poly
- lead_coefXsubC
- size_even_poly
- poly_morphX_comm
- coefZ
- monicE
- coef_map
- lead_coef0
- pneq0
- splitr
- poly_invE
- poly_unitE
- coef_take_poly
- rreg_div0
- derivC
- monic_prod
- map_uniq_roots
- lead_coefZ
- coefp0_multiplicative
- monic_rreg
- all_roots_prod_XsubC
- polyOver_nderivn
- a2neq0
- lreg_lead0
- coef_Poly
- lreg_lead
- pE
- monicXnsubC
- rootX
- lead_coef_map_eq
- horner_cons
- derivnD
- size_mul_eq1
- char_poly
- coefD
- drop_poly0l
- poly_def
- lead_coefXnaddC
- coef_sum
- rootP
- horner_exp_comm
- PolyK
- coefMNn
- map_poly0
- add_polyA
- derivn_poly0
- gt_size_poly_neq0
- lead_coefC
- size_take_poly
- lead_coef_comp
- derivB
- nderivn_poly0
- size_map_poly_id0
- coef_even_poly
- scale_polyA
- lreg_polyZ_eq0
- size_poly1P
- lead_coefXn
- root_XsubC
- drop_polyMXn
- odd_poly_is_linear
- lead_coef_prod_XsubC
- derivnMn
- lead_coef_poly
- horner_morphC
- nderivnMXaddC
- exp_prim_root
- size_monicM
- map_poly_comp
- alg_polyC
- comp_Xn_poly
- sum_drop_poly
- map_polyX
- take_poly_id
- fmorph_primitive_root
- size_comp_poly
- comp_poly_Xn
- horner_eval_is_multiplicative
- mem_unity_roots
- monicX
- size_XnsubC
- lead_coef_proper_mul
- poly1_neq0
- hornerZ
- map_polyC_eq0
- lead_coef_prod
- coefK
- derivD
- nderivnN
- coef_mul_poly_rev
- add_polyN
- monicXsubC
- mul_poly1
- hornerMXaddC
- size_XsubC
- take_poly_sum
- uniq_roots_prod_XsubC
- horner_sum
- uniq_rootsE
- size_mul_leq
- nderivnD
- mul_1poly
- coefM
- nderivn1
- mul_polyDl
- drop_polyMXn_id
- nil_poly
- horner_Poly
- odd_polyC
- polyCN
- take_polyZ
- comp_polyC
- monic_comreg
- horner_poly
- even_poly_is_linear
- hornerMn
- polyOverS
- scale_polyDr
- root_comp
- path: mathcomp/field/separable.v
theorems:
- extendDerivation_id
- separable_generatorP
- adjoin_separable_eq
- separable_polyP
- extendDerivation_horner
- separable_deriv_eq0
- separable_refl
- poly_square_freeP
- strong_Primitive_Element_Theorem
- make_separable
- eqp_separable
- separableS
- Derivation_scalar
- Derivation_separable
- sub_inseparable
- charf_n_separable
- separableP
- adjoin_separableP
- Primitive_Element_Theorem
- separable_Fadjoin_seq
- cyclic_or_large
- extendDerivation_scalable_subproof
- extendDerivationP
- separable_generator_mem
- separable_poly_neq0
- charf0_separable
- separable_map
- separable_root
- separableSl
- purely_inseparableP
- purely_inseparable_trans
- separable_root_der
- finite_PET
- eq_adjoin_separable_generator
- adjoin_separable
- Derivation_exp
- separablePn
- separable_elementP
- inseparable_sum
- sub_adjoin_separable_generator
- separable_sum
- separable_inseparable_decomposition
- inseparable_add
- extendDerivation_additive_subproof
- Derivation1
- separable_coprime
- separable_mul
- separable_elementS
- separable_nz_der
- charf_p_separable
- Derivation_separableP
- purely_inseparable_elementP
- DerivationS
- separableSr
- Derivation_mul
- Derivation_horner
- separable_exponent
- purely_inseparable_refl
- large_field_PET
- separable_nosquare
- separable_trans
- path: mathcomp/solvable/extremal.v
theorems:
- r_gt0
- cyclic_SCN
- odd_pgroup_rank1_cyclic
- Grp_2dihedral
- defQ
- dihedral2_structure
- modular_group_classP
- card_quaternion
- def2qr
- card_ext_dihedral
- def_q
- prime_Ohm1P
- involutions_gen_dihedral
- maximal_cycle_extremal
- ltqm
- card_2dihedral
- modular_group_structure
- Grp_ext_dihedral
- generators_modular_group
- cyclic_pgroup_Aut_structure
- Grp_quaternion
- r_gt0
- def_r
- dihedral_classP
- def_p
- bound_extremal_groups
- card_modular_group
- card_semidihedral
- card
- generators_quaternion
- generators_semidihedral
- quaternion_structure
- aut_dvdn
- Grp'_dihedral
- semidihedral_structure
- card_dihedral
- act_dom
- extremal2_structure
- eq_Mod8_D8
- ltrq
- Grp_dihedral
- Grp
- Grp_modular_group
- q_gt1
- q_gt0
- symplectic_type_group_structure
- Grp_semidihedral
- semidihedral_classP
- quaternion_classP
- cancel_index_extremal_groups
- path: mathcomp/solvable/maximal.v
theorems:
- injm_Fitting
- Fitting_group_set
- SCN_P
- der1_stab_Ohm1_SCN_series
- Ohm1_stab_Ohm1_SCN_series
- card_extraspecial
- p_index_maximal
- Phi_Mho
- p3group_extraspecial
- charsimple_dprod
- isog_extraspecial
- index_maxnormal_sol_prime
- p_core_Fitting
- Phi_quotient_abelem
- trivg_Phi
- Fitting_sub
- pcore_Fitting
- Phi_nongen
- injm_special
- sol_prime_factor_exists
- Phi_joing
- extraspecial_prime
- solvable_norm_abelem
- exponent_special
- Phi_normal
- Phi_sub
- SCN_max
- simple_sol_prime
- charsimpleP
- Phi_quotient_cyclic
- maxnormal_charsimple
- cprod_extraspecial
- injm_extraspecial
- center_special_abelem
- Fitting_pcore
- Fitting_normal
- p_maximal_index
- minnormal_solvable
- Fitting_nil
- Fitting_eq_pcore
- FittingEgen
- Fitting_char
- split1_extraspecial
- Phi_char
- PhiJ
- card_subcent_extraspecial
- p_abelem_split1
- Frattini_continuous
- abelem_split_dprod
- Phi_sub_max
- critical_extraspecial
- cent1_extraspecial_maximal
- Phi_min
- quotient_Phi
- Thompson_critical
- Phi_cprod
- Phi_mulg
- critical_class2
- p_maximal_normal
- injm_Phi
- extraspecial_nonabelian
- trivg_Fitting
- morphim_Fitting
- abelem_charsimple
- charsimple_solvable
- center_aut_extraspecial
- pmaxElem_extraspecial
- isog_Phi
- PhiS
- card_center_extraspecial
- Ohm1_cent_max_normal_abelem
- Phi_proper
- max_SCN
- isog_Fitting
- exponent_Ohm1_class2
- morphim_Phi
- abelian_charsimple_special
- FittingS
- minnormal_charsimple
- exponent_2extraspecial
- Phi_quotient_id
- extraspecial_structure
- SCN_abelian
- critical_p_stab_Aut
- path: mathcomp/field/falgebra.v
theorems:
- prodv_sub
- agenvX
- vsval_invr
- memv_adjoin
- id_is_ahom
- prodvSr
- memv_algid
- expv_line
- adim1P
- adjoinSl
- ker_sub_ahom_is_aspace
- centraliser_is_aspace
- prod1v
- adjoin_seqSl
- FalgType_proper
- agenvS
- agenvE
- subvs_mulDr
- skew_field_algid1
- agenvM
- adjoin_seq1
- aimg_adjoin_seq
- prodv1
- aimgM
- lfun_mulE
- adjoin_seqSr
- prodvS
- subvs_mul1
- adjoin_nil
- dim_cosetv_unit
- sub_agenv
- unitrP
- expv_id
- mulVr
- amull1
- aspacef_subproof
- algid_eq1
- prodv0
- expv2
- Falgebra_FieldMixin
- subvs_scaleAr
- amulr_inj
- prodvDl
- skew_field_dimS
- centv1
- aimgX
- aspace1_subproof
- cent1v1
- agenvEr
- not_asubv0
- amulr_is_linear
- regular_fullv
- lfun_invr_out
- memvM
- limg_amulr
- unitr_algid1
- prodv_line
- prodvP
- dim_algid
- centraliser1_is_aspace
- adim_gt0
- subvs_mu1l
- algid_neq0
- memvV
- amE
- aimg_agen
- asubv
- aspace_cap_subproof
- lker0_amulr
- skew_field_module_semisimple
- divrr
- subv_adjoin
- centv_algid
- algidl
- expv0n
- expvD
- amullM
- has_algid1
- cent1v_id
- agenv_modl
- prodvSl
- centvP
- prod0v
- expvS
- subvs_mulA
- prodv_id
- lfun_compE
- vbasis1
- subv_cent1
- linfun_is_ahom
- amull_inj
- cent1vC
- algid_subproof
- centvsP
- polyOver1P
- expvSr
- subvs_scaleAl
- adjoinC
- aimg_adjoin
- cent1vX
- agenv_modr
- skew_field_module_dimS
- ahomWin
- agenv_is_aspace
- memv_mul
- lfun_unitrP
- prodvA
- lker0_amull
- agenv_id
- amulr_is_multiplicative
- algid_center
- subvP_adjoin
- lfun1_poly
- vsval_unitr
- ahomP
- subvs_mulDl
- comp_is_ahom
- expvSl
- invr_out
- lfun_mulrV
- agenv_sub_modr
- adjoin_rcons
- seqv_sub_adjoin
- subv_adjoin_seq
- has_algidP
- centvC
- dim_prodv
- ahom_is_multiplicative
- ahom_inP
- vspace1_neq0
- dimv1
- centvX
- agenvEl
- agenv_add_id
- expv1
- expvM
- memv_cosetP
- aimg1
- prodv_key
- algid_decidable
- lfun_mulVr
- cent1vP
- path: mathcomp/algebra/mxpoly.v
theorems:
- geigenspaceE
- eigenpoly_map
- codiagonalizable1
- sub_kermxpoly_conjmx
- eigenvalue_conjmx
- mxminpoly_linear_is_scalar
- submx_form_qf
- integral_root
- kermxpolyX
- integral_nat
- degree_mxminpoly_proof
- nth_row_env
- mx_root_minpoly
- resultant_eq0
- char_poly_monic
- diagonalizablePeigen
- horner_rVpolyK
- conjmx_scalar
- conjmxK
- map_resultant
- integral_add
- size_mod_mxminpoly
- rVpolyK
- mxminpoly_conj
- diagonalizableP
- algebraic_sub
- diagonalizable_for_sum
- integral_sub
- char_block_diag_mx
- diagonalizable0
- conj1mx
- stablemx_restrict
- sub_eigenspace_conjmx
- mxdirect_sum_geigenspace
- eval_col_mx
- kermxpolyM
- companion_map_poly
- coef_rVpoly_ord
- horner_mx_C
- conjuMumx
- integral_rmorph
- map_geigenspace
- size_seq_of_rV
- Exists_rowP
- integral0
- mxminpoly_dvd_char
- simmxP
- minpoly_mx_free
- eigenpolyP
- mulmx_delta_companion
- intR_XsubC
- integral_horner_root
- algebraic0
- diagonalizable_diag
- eval_mulmx
- diagonalizable_for_mxminpoly
- conjmx_eigenvalue
- row'_col'_char_poly_mx
- diagonalizable_scalar
- conjMmx
- size_char_poly
- map_kermxpoly
- horner_mx_conj
- algebraic_div
- mxminpoly_min
- poly_rV_K
- eigenvalue_root_min
- kermxpolyC
- comm_horner_mx
- companionmxK
- integral_opp
- horner_mx_mem
- comm_mx_stable_kermxpoly
- codiagonalizable_on
- root_mxminpoly
- integral_div
- size_diagA
- minpoly_mx_ring
- mxminpoly_uconj
- algebraic_opp
- algebraic_id
- codiagonalizablePfull
- mx_poly_ring_isom
- map_rVpoly
- integral1
- size_mxminpoly
- mxminpoly_map
- horner_mx_stable
- comm_mx_stable_geigenspace
- integral_inv
- map_powers_mx
- integral_mul
- integral_root_monic
- eigenspace_sub_geigen
- conjMumx
- comm_mx_horner
- rVpoly_delta
- stablemx_comp
- eval_row_var
- minpoly_mx1
- char_poly_trig
- eval_mxrank
- eigenvalue_poly
- char_poly_det
- poly_rV_is_linear
- algebraic_mul
- diagonalizable_for_row_base
- mxminpoly_monic
- horner_mx_X
- mxminpoly_minP
- simmx_minpoly
- conjuMmx
- integral_poly
- map_mx_inv_horner
- Cayley_Hamilton
- integral_id
- diagonalizable_forPp
- eigenpoly_conjmx
- degree_mxminpoly_map
- mxminpoly_nonconstant
- eval_vec_mx
- conjVmx
- Sylvester_mxE
- kermxpoly_prod
- mxdirect_kermxpoly
- mxminpoly_diag
- simmxLR
- eval_submx
- conjmx0
- kermxpoly_min
- minpoly_mxM
- integral_algebraic
- nth_seq_of_rV
- eigenvalue_root_char
- mx_inv_hornerK
- mxdirect_sum_kermx
- map_poly_rV
- horner_mx_uconj
- eigenspace_poly
- simmxPp
- eval_mx_term
- codiagonalizableP
- horner_rVpoly
- simmxRL
- diagonalizable_forP
- dvd_mxminpoly
- diagonalizable_conj_diag
- kermxpoly1
- XsubC0
- resultant_in_ideal
- algebraic1
- diagonalizable_forLR
- mxrank_form_qf
- horner_mxZ
- horner_mxK
- conjmxVK
- path: mathcomp/field/closed_field.v
theorems:
- qf_cps_if
- eval_amulXnT
- rgdcop_recT_qf
- holds_ex_elim
- redivp_rec_loopP
- rgcdp_loopT_qf
- redivpTP
- rgcdpTP
- rgdcopTP
- abstrX1
- rgcdpTsP
- rgcdpT_qf
- rseq_poly_map
- isnull_qf
- rpoly_map_mul
- rgdcop_recTP
- redivp_rec_loopT_qf
- sizeTP
- abstrXP
- holds_conjn
- rsumpT
- eval_poly_mulM
- lead_coefTP
- countable_algebraic_closure
- rgdcopT_qf
- redivp_rec_loopTP
- eval_lift
- ex_elim_seqP
- ex_elim_seq_qf
- eval_poly1
- wf_ex_elim
- redivpT_qf
- eval_opppT
- holds_conj
- qf_simpl
- eval_mulpT
- isnullP
- countable_field_extension
- ramulXnT
- rabstrX
- lead_coefT_qf
- rgcdpTs_qf
- qf_cps_ret
- abstrX_mulM
- qf_cps_bind
- eval_sumpT
- rgcdp_loopP
- sizeT_qf
- eval_natmulpT
- path: mathcomp/fingroup/automorphism.v
theorems:
- Aut_conj_aut
- Aut_morphic
- Aut_isomM
- char_norm_trans
- conj_isom
- char_normal
- Aut_aut
- eq_Aut
- im_Aut_isom
- injm_char
- im_autm
- conj_autE
- perm_in_inj
- perm_inE
- Aut_Aut_isom
- Aut_isomP
- char_injm
- conj_aut_morphM
- charI
- morphim_conj
- Aut_closed
- autmE
- imset_autE
- perm_in_on
- lone_subgroup_char
- char_refl
- char_norm
- conjgmE
- charP
- Aut_isom_subproof
- char_sub
- injm_Aut_isom
- morphim_fixP
- char_norms
- Aut1
- preim_autE
- ker_conj_aut
- char_trans
- injm_autm
- charM
- Aut_isomE
- norm_conjg_im
- out_Aut
- norm_conj_isom
- norm_conj_autE
- char_normal_trans
- aut_closed
- conj_isog
- path: mathcomp/ssreflect/fingraph.v
theorems:
- same_connect
- order_gt0
- finv_inv
- fconnect_invariant
- iter_findex
- eq_n_comp_r
- connect_closed
- eq_fcard
- predC_closed
- eq_order_cycle
- injectivePcycle
- fconnect_cycle
- fconnect1
- fpath_finv_cycle
- fpath_finv_in
- size_orbit
- finv_in
- connect_cycle
- connect_sub
- fcycle_consEflatten
- fcycle_consE
- orbit_uniq
- subset_dfs
- same_fconnect_finv
- fcard_id
- connect_trans
- rgraphK
- eq_roots
- fclosed1
- order_finv
- image_orbit
- fconnect_finv
- same_fconnect1
- eq_n_comp
- iter_finv_in
- eq_root
- orbit_id
- closure_closed
- fconnect_id
- f_finv_in
- eq_connect0
- fcard_order_set
- orbitPcycle
- root_root
- subset_closure
- order_cycle
- finv_inj_cycle
- froots_id
- prevE
- connect1
- looping_order
- mem_orbit
- fpath_f_finv_cycle
- froot_id
- finv_bij
- finv_cycle
- adjunction_closed
- fpath_finv
- undup_cycle_cons
- intro_closed
- cycle_orbit
- connectP
- fpath_finv_f_cycle
- path_connect
- fconnect_f
- strict_adjunction
- cycle_orbit_cycle
- eq_fconnect
- in_orbit_cycle
- fcycleEflatten
- fconnect_iter
- root_connect
- n_comp_connect
- iter_order
- finv_f_in
- iter_order_cycle
- n_comp_closure2
- same_connect_r
- same_connect1r
- fconnect_findex
- order_id_cycle
- closed_connect
- fcard_gt0P
- dfsP
- intro_adjunction
- orbitE
- fconnect_orbit
- same_connect1
- findex_eq0
- n_compC
- findex_max
- connect_root
- f_finv
- finv_inj
- orderPcycle
- mem_closure
- iter_finv_cycle
- same_connect_rev
- f_finv_cycle
- fconnect_sym
- eq_finv
- findex_iter
- iter_order_in
- fconnect_eqVf
- dfs_pathP
- rootP
- fcard_gt1P
- in_orbit
- order_le_cycle
- eq_connect
- fconnect_sym_in
- same_fconnect1_r
- finv_f
- fpath_f_finv_in
- fpath_finv_f_in
- iter_finv
- connect_rev
- fcard_finv
- fcycle_rconsE
- orderSpred
- path: mathcomp/algebra/ssrint.v
theorems:
- nmulrz_rlt0
- exprz_pintl
- mulr0z
- distn_eq1
- rpredMz
- sgz_odd
- ltr_piXz2l
- ltr1z
- ler_int
- pmulrz_llt0
- exprzD_ss
- NegzE
- distn_eq0
- scalerMzr
- lez_total
- nonzero1z
- mulzn_eq1
- mulrz_le0
- intr_norm
- abszMsign
- ltr_int
- sgzX
- ltr_nXz2r
- expfz_eq0
- abszN1
- ler_pMz2l
- ltr_pXz2r
- mulrzAC
- distnn
- ltr0_sgz
- oppzK
- rmorphMz
- mulr_absz
- exprSzr
- commr_int
- intrV
- fmorphXz
- exprzMzl
- PoszD
- lerz0
- mul2z
- eqz_nat
- subSz1
- natr_absz
- exprnP
- ler_wpXz2r
- pmulrz_lgt0
- mulrbz
- mulrz_nat
- ltz1D
- Frobenius_aut_int
- mulrz_suml
- rpredZint
- realz
- commrXz
- nmulrz_rgt0
- ffunMzE
- rmorphXz
- unitr_n0expz
- derivMz
- mulz_Nsign_abs
- pexprz_eq1
- is_intE
- leqifD_distz
- linearMn
- abszM
- normr_sgz
- natz
- sgz_le0
- sgzP
- ltNz_nat
- ler_wpMz2l
- sgz_smul
- exprzD_Nnat
- invz_out
- absz_eq0
- lez_abs
- lez0_abs
- expfz_neq0
- mulr1z
- nmulrz_lge0
- horner_int
- oppzD
- distnEl
- sgrMz
- ler_niXz2l
- commrMz
- intr_sign
- mulrz_int
- mul0rz
- invr_expz
- raddfMz
- mulNrNz
- abszX
- lez_anti
- sgz_sgr
- mulrzDr_tmp
- gtz0_ge1
- mulr2z
- ltr_eXz2l
- ler_wnXz2r
- ler_wpiXz2l
- is_natE
- exprMz_comm
- ltzD1
- truncP
- Znat_def
- expfzMl
- ler_nMz2r
- intr_sg
- ler_weXz2l
- mulzA
- mulrz_neq0
- rmorphzP
- distn0
- mulz0
- absz1
- pexpIrz
- ieexprIz
- Frobenius_autMz
- absz0
- exprnN
- mul0z
- mulrzr
- mulrz_le0_ge0
- addNz
- exprzMl
- lez1D
- exprz_pMzl
- abszEsg
- ltr_pMz2r
- ler_eXz2l
- distSn
- lez_nat
- intS
- lez_mul
- abszN
- ltr_nMz2l
- sgz_def
- mulrzA_C
- intmul1_is_multiplicative
- pmulrz_rle0
- nmulrz_lgt0
- eqr_int
- leqD_dist
- ltzN_nat
- rpredXz
- expNrz
- lerz1
- lez_add
- ler1z
- ltz_nat
- ltrz1
- le0z_nat
- sgz_eq0
- unitrXz
- eqrXz2
- ler0z
- scalezrE
- distnS
- nmulrz_rle0
- addzC
- mulrzz
- ltr0z
- polyCMz
- mulNrz
- unitzPl
- mulrzAl
- mulpz
- intr_eq0
- raddf_int_scalable
- abszE
- natsum_of_intK
- PoszM
- mulzC
- normzN
- sgz_gt0
- mulz_sign_abs
- absz_gt0
- mulrz_ge0
- exp1rz
- sgrEz
- mulrzBr
- sgz_eq
- sgz1
- prodMz
- nmulrn
- nmulrz_llt0
- sgz_cp0
- mulz_addl
- gez0_norm
- distnC
- exprN1
- sumMz
- intrM
- mulNz
- mulrz_ge0_le0
- distnDl
- pmulrz_lle0
- normrMz
- ler_wpMz2r
- mulz_sg
- expr0z
- rpred_int
- pmulrz_rgt0
- sgz_ge0
- intz
- absz_sign
- subz_ge0
- commrXz_wmulls
- int_rect
- leNz_nat
- intP
- exprzDr
- exprz_inv
- scalerMzl
- mulrNz
- intEsg
- mulrzBl
- intrB
- mulz_sg_eq1
- ler_wniXz2l
- ltr_nMz2r
- sgzN
- abszEsign
- subzSS
- lez0_nat
- ZnatP
- ltz0_abs
- sgz_int
- ler_nMz2l
- ltr_niXz2l
- ler_pXz2r
- mulrzDl_tmp
- mulzN
- lezD1
- mul1z
- expfz_n0addr
- mulrz_sumr
- mulrzA
- sgzM
- expfzDr
- nmulrz_rge0
- idomain_axiomz
- gtr0_sgz
- sgrz
- add1Pz
- add0z
- subzn
- ler_wnMz2r
- predn_int
- mulVz
- ler_wneXz2l
- ltrz0
- pmulrz_rge0
- mulrIz
- pmulrz_lge0
- int_rect
- ler_wpeXz2l
- dist0n
- mulrzl
- intrD
- expr1z
- sgz_id
- exprzAC
- exprz_gt0
- predn_int
- intrN
- ler_nXz2r
- NegzE
- expfV
- nmulrz_lle0
- ltz_def
- gez0_abs
- mulrzAr
- addzA
- exprzD_nat
- mulz_sg_eqN1
- absz_sg
- sgz_lt0
- normr_sg
- ler_piXz2l
- exprz_ge0
- pmulrn
- exprz_exp
- sgz0
- addPz
- absz_nat
- hornerMz
- intEsign
- rmorph_int
- absz_id
- lezN_nat
- gtz0_abs
- path: mathcomp/algebra/vector.v
theorems:
- vsof_sub
- limg_line
- capv_idPl
- addvA
- lfun_vect_iso
- vsproj_key
- cat_basis
- limg_dim_eq
- b2mxK
- memv_span1
- vsprojK
- vs2mxI
- span_lfunP
- dimv_add_leqif
- gen_vs2mx
- lker0_compfK
- lfun_img_key
- eq_limg_ker0
- add_lfunE
- span_subvP
- memv_cap
- funmx_linear
- memv0
- vsvalK
- comp_lfun0r
- lpreimK
- subv_anti
- memvB
- freeP
- span_def
- free_cons
- lfun_key
- lker0_compVKf
- subvsP
- mem0v
- congr_subvs
- mxof_comp
- SubvsE
- rVof_sub
- diffvSl
- capv_compl
- coord_free
- dimv_sum_leqif
- memvN
- lpreimS
- mxof1
- memv_line
- comp_lfunDr
- memvD
- directv_addP
- v2r_inj
- fixedSpace_id
- subv_sumP
- comp_lfunNr
- nil_free
- limg_cap
- dim_vline
- sumv_pi_sum
- fixedSpace_limg
- limgE
- coord_sum_free
- basis_free
- ffun_vect_iso
- span_seq1
- capfv
- subvP
- vecof_delta
- addv_pi2_proj
- msofK
- basis_not0
- span_key
- subv0
- lfun_scale1
- hommxE
- addv0
- directv_sumE
- basisEdim
- subvv
- coord_vbasis
- vlineP
- lker_proj
- vecof_eq0
- lfun_addA
- addvS
- capv_idPr
- memvf
- rVof_linear
- vecof_linear
- subvs_vect_iso
- lker0_lfunK
- addv_pi1_pi2
- v2rK
- capvv
- dimv_cap_compl
- coord_is_scalar
- span_nil
- directv_addE
- mul_b2mx
- memv_ker
- lim1g
- leigenspaceE
- limgD
- memv_suml
- lfun_is_linear
- vsof_eq0
- mxof_eq0
- projv_id
- nil_basis
- capv_diff
- subvPn
- sumv_pi_uniq_sum
- basisEfree
- dimv_leqif_eq
- limg_span
- comp_lfun1r
- comp_lfunZl
- scale_lfunE
- hommx_linear
- rVof_mul
- vsproj_is_linear
- span_b2mx
- rVof_app
- bigcat_basis
- addvv
- catr_free
- lker0_compfVK
- perm_free
- dimvf
- subvf
- msof_sub
- fixedSpacesP
- vs2mxK
- mx2vs_subproof
- addv_diff_cap
- subv_bigcapP
- bigcat_free
- addv_complf
- vecof_mul
- addvC
- vs2mxF
- dimvS
- vs2mxD
- addv_pi2_id
- msof0
- eqEdim
- vs2mx0
- free_b2mx
- hommx_eq0
- dimv_eq0
- eq_in_limg
- vspaceP
- add0v
- sum_lfunE
- lkerE
- comp_lfunZr
- filter_free
- directvP
- hommxK
- directvEgeq
- subvs_inj
- mxofK
- span_cons
- subv_trans
- limg_ker_compl
- limg_ker0
- vs2mx_sum_expr_subproof
- comp_lfunA
- vsolve_eqP
- vspace_modl
- bigcapv_inf
- memv_sumP
- lker0_limgf
- matrix_vect_iso
- directv_trivial
- sub_vsof
- lpreim0
- directv_add_unique
- projv_proj
- limg_basis_of
- daddv_pi_id
- vbasis_mem
- memv_projC
- comp_lfun1l
- free_uniq
- lker_ker
- opp_lfunE
- inv_lfun_def
- binary_addv_subproof
- lpreim_cap_limg
- limg_sum
- subv_cap
- vecofK
- subv_add
- size_basis
- mxof_linear
- eqEsubv
- nary_addv_subproof
- memv_sumr
- lim0g
- lfun_scaleDr
- sub0v
- sumfv
- memv_pi2
- rVof_eq0
- lfun1_neq0
- lker0_lfunVK
- addv_idPl
- directv_sum_unique
- addv_diff
- pair_vect_iso
- limgS
- capvf
- coord_vecof
- capvSr
- limg_lfunVK
- memv_sum_pi
- id_lfunE
- lfun_scaleA
- basis_mem
- coord_rVof
- memv_span
- r2v_inj
- vpick0
- rVofK
- memv_proj
- dimv_leqif_sup
- memv_addP
- addvSr
- sumv_pi_nat_sum
- linear_of_free
- r2vK
- limg_ker_dim
- daddv_pi_proj
- free_not0
- memv_submod_closed
- lfunE
- lker0_compKf
- vbasisP
- lfun_add0
- capvC
- hom_vecof
- directv_sum_independent
- sub_msof
- dimv_disjoint_sum
- vsof0
- mem_vecof
- memvZ
- cap0v
- r2v_subproof
- limg_proj
- free_directv
- directv_sumP
- capv0
- addv_pi1_proj
- memv_preim
- subset_limgP
- dimv_compl
- comp_lfunE
- rVofE
- memv_img
- addvSl
- coord_basis
- lker0_compVf
- fullv_lfunP
- regular_vect_iso
- coord0
- dimv_sum_cap
- directvE
- memv_pi
- addvf
- limg0
- fixedSpaceP
- dim_matrix
- memvE
- lfun_scaleDl
- lfunPn
- lin_b2mx
- v2r_subproof
- addv_idPr
- capvS
- memv_pi1
- limg_bigcap
- eq_span
- hommx_mul
- vsval_is_linear
- coord_span
- row_b2mx
- catl_free
- vsofK
- memv_imgP
- lker0P
- limg_comp
- eqlfun_inP
- msof_eq0
- eqlfunP
- perm_basis
- dimv_leq_sum
- freeE
- mx2vsK
- diffv_eq0
- mem_r2v
- lker0_img_cap
- freeNE
- memv_pick
- span_cat
- daddv_pi_add
- path: mathcomp/ssreflect/path.v
theorems:
- suffix_sorted
- e'_e
- eq_in_path
- undup_sorted
- cycle_path
- homo_sorted_in
- homo_path_in
- all_sort
- mem2_map
- sort_stable_in
- cycle_from_next
- order_path_min_in
- filter_sort
- nextE
- loopingP
- mono_cycle_in
- sub_in_cycle
- merge_uniq
- path_relI
- take_sorted
- map_merge
- perm_sort_inP
- pop_stable
- size_traject
- sorted_leq_nth
- cat_path
- merge_stable_sorted
- rcons_path
- e_e'
- take_traject
- sorted_mask_in
- inj_cycle
- cycle_from_prev
- right_arc
- sort_pairwise_stable
- mem2_last
- sub_in_path
- perm_sortP
- subseq_sorted
- count_sort
- sorted_filter
- homo_path
- sub_in_sorted
- mem_next
- mem2_seq1
- subseq_sort_in
- homo_sort_map_in
- eq_in_cycle
- nth_traject
- rev_path
- mem_fcycle
- leElex
- path_filter_in
- next_prev
- mem_sort
- sorted_ltn_nth_in
- mem2_cat
- mono_sorted
- next_nth
- merge_path
- all_merge
- path_mask_in
- homo_sorted
- prefix_sorted
- ucycle_uniq
- path_sorted
- looping_uniq
- sort_map
- rev_sorted
- mem_prev
- mono_path
- path_le
- irr_sorted_eq
- homo_cycle_in
- homo_cycle
- eq_cycle
- leT_tr'
- infix_sorted
- prev_nth
- cycle_map
- pathP
- sorted_mask_sort_in
- prev_rot
- sort_uniq
- eq_in_sorted
- perm_sort
- perm_iota_sort
- sorted_uniq
- sorted_sort_in
- mono_sorted_in
- ucycle_cycle
- pairwise_sorted
- subseq_sort
- sortedP
- map_sort
- merge_sorted
- mem2r
- path_pairwise
- size_sort
- cycle_catC
- sub_path
- path_filter
- undup_path
- pairwise_sort
- rot_cycle
- splitP
- cat_sorted2
- prev_rev
- prev_next
- merge_map
- fpath_traject
- traject_iteri
- eq_path
- sort_sorted
- count_merge
- mono_cycle
- sorted_ltn_index
- mem2_splice1
- size_merge
- sort_sorted_in
- path_sortedE
- prev_map
- path_map
- subseq_path_in
- sorted_filter_in
- sorted_uniq_in
- path_sorted_inE
- size_merge_sort_push
- sorted_relI
- sorted_merge
- fpathE
- sorted_leq_nth_in
- eq_fcycle
- sorted_subseq_sort
- mask_sort_in
- merge_stable_path
- cycle_all2rel
- irr_sorted_eq_in
- next_cycle
- subseq_sorted_in
- mem2_sort
- mem2lf
- mono_path_in
- sorted_pairwise_in
- eq_count_merge
- next_rev
- sorted_leq_index_in
- next_rotr
- mem2_cons
- mem2l_cat
- last_traject
- prefix_path
- mask_sort
- trajectSr
- trajectP
- path_pairwise_in
- fpathP
- sub_cycle
- left_arc
- sorted_leq_index
- mergeA
- path_mask
- splitPl
- sort_iota_stable
- sorted_ltn_nth
- cycle_all2rel_in
- next_rot
- mem2l
- sorted_eq
- eq_sorted
- sortE
- iota_ltn_sorted
- mem2_splice
- sub_sorted
- rot_ucycle
- sorted_pairwise
- cycle_next
- order_path_min
- next_map
- sorted_mask_sort
- ltn_sorted_uniq_leq
- filter_sort_in
- sorted_mask
- push_stable
- rev_cycle
- trajectD
- mem2_sort_in
- prev_cycle
- path: mathcomp/field/finfield.v
theorems:
- finDomain_mulrC
- card_finField_unit
- order_primeChar
- card_finCharP
- finField_galois_generator
- primeChar_scaleDl
- natrFp
- Fermat's_little_theorem
- finField_galois
- primeChar_dimf
- lregR
- ffT_splitting_subproof
- galLgen
- expf_card
- finRing_gt1
- card_primeChar
- card_vspacef
- card_vspace
- primeChar_scaleDr
- finField_is_abelem
- primeChar_pgroup
- pr_p
- FinSplittingFieldFor
- card_vspace1
- finField_genPoly
- primeChar_vectAxiom
- PrimePowerField
- galL
- primeChar_scaleAr
- primeChar_scaleA
- finDomain_field
- finCharP
- path: mathcomp/solvable/gseries.v
theorems:
- quotient_subnormal
- subnormalP
- quotient_simple
- normal_subnormal
- subnormalEsupport
- setI_subnormal
- cosetpre_maximal
- isog_simple
- invariant_subnormal
- maximal_exists
- maxnormal_minnormal
- maximalJ
- mulg_normal_maximal
- subnormal_refl
- subnormal_trans
- central_central_factor
- cosetpre_maximal_eq
- injm_maxnormal
- maxnormal_normal
- simple_maxnormal
- chief_series_exists
- maxnormal_sub
- quotient_maximal_eq
- injm_minnormal
- subnormal_sub
- path_setIgr
- morphim_subnormal
- injm_maximal_eq
- maximal_eqP
- subnormalEl
- chief_factor_minnormal
- maxnormalM
- central_factor_central
- injm_maximal
- ex_maxnormal_ntrivg
- maxnormal_proper
- acts_irrQ
- path: mathcomp/algebra/zmodp.v
theorems:
- Fp_nat_mod
- add_1_Zp
- char_Fp_0
- Zp_addC
- unitZpE
- Fp_fieldMixin
- add_N1_Zp
- Zp_nat
- Zp1_expgz
- rshift1
- card_Fp
- card_Zp
- Zp_nontrivial
- Zp_mul1z
- val_Fp_nat
- valZpK
- split1
- order_Zp1
- Zp_inv_out
- Zp_addA
- Zp_intro_unit
- natr_Zp
- Zp_cycle
- char_Zp
- Zp_mulA
- Zp_mul_addl
- Zp_mul_addr
- modZp
- unitFpE
- Zp_mulz1
- card_units_Zp
- unit_Zp_expg
- Zp_expg
- units_Zp_abelian
- Zp_add0z
- Zp_mulgC
- add_Zp_1
- Zp_mulrn
- Zp_mulC
- lshift0
- Zp_nat_mod
- val_Zp_nat
- char_Fp
- Zp_cast
- Zp_mulzV
- mem_Zp
- ord1
- Zp_addNz
- natr_negZp
- path: mathcomp/character/integral_char.v
theorems:
- mxZn_inj
- Burnside_p_a_q_b
- group_num_field_exists
- faithful_degree_p_part
- gring_class_sum_central
- gring_classM_coef_sum_eq
- nonlinear_irr_vanish
- gring_mode_class_sum_eq
- Aint_char
- mx_irr_gring_op_center_scalar
- index_support_dvd_degree
- dvd_irr1_index_center
- Aint_irr
- gring_classM_expansion
- Aint_gring_mode_class_sum
- coprime_degree_support_cfcenter
- sum_norm2_char_generators
- set_gring_classM_coef
- cfRepr_gring_center
- gring_irr_modeM
- Aint_class_div_irr1
- dvd_irr1_cardG
- primes_class_simple_gt1
- path: mathcomp/ssreflect/prime.v
theorems:
- mem_primes
- logn_gt0
- primeNsig
- pfactorKpdiv
- sub_in_partn
- up_log_gt0
- partnC
- prime_nt_dvdP
- primePns
- pdiv_gt0
- partn_lcm
- dvdn_partP
- ltn_log0
- primeP
- up_logMp
- ltn_logl
- Euclid_dvdM
- pfactor_gt0
- max_pdiv_dvd
- partn1
- elogn2P
- pdiv_leq
- trunc_log_eq
- Euclid_dvdX
- p_natP
- up_log_min
- totient_pfactor
- partn0
- p'natEpi
- Euclid_dvd1
- trunc_log1
- pi_pnat
- partn_biggcd
- pi_pdiv
- logn_count_dvd
- primes_part
- p_part_eq1
- logn_lcm
- pi_p'nat
- pnat_div
- eq_partn_from_log
- up_log_eq0
- up_log_bounds
- odd_prime_gt2
- part_p'nat
- pnat_pi
- sub_pnat_coprime
- pi_of_dvd
- pnatX
- sorted_divisors_ltn
- ifnzP
- sorted_primes
- p'natE
- prime_oddPn
- p'nat_coprime
- prime_decompE
- logn_prime
- primes_prime
- pnatI
- filter_pi_of
- up_log_trunc_log
- prime_gt0
- coprime_has_primes
- pfactorK
- eq_in_pnat
- divisors_uniq
- widen_partn
- mem_prime_decomp
- logn_coprime
- part_pnat_id
- part_gt0
- eq_partn
- trunc_expnK
- trunc_log1n
- all_prime_primes
- primesM
- trunc_logMp
- eq_negn
- pi'_p'nat
- pi_max_pdiv
- coprime_pi'
- pdiv_dvd
- divisors_correct
- trunc_lognn
- dvdn_pfactor
- totientE
- pi_of_exp
- leq_trunc_log
- up_expnK
- up_log0
- prime_coprime
- up_log2S
- logn0
- trunc_log_gt0
- logn_part
- dvdn_sum
- p_part_gt1
- partnM
- coprime_partC
- pnat_1
- pfactor_dvdn
- logn_gcd
- primePn
- modn_partP
- max_pdiv_prime
- pnatPpi
- logn1
- max_pdiv_gt0
- pnat_dvd
- p_part
- up_lognn
- prime_above
- max_pdiv_max
- negnK
- lognE
- trunc_log_eq0
- prime_gt1
- pnatNK
- partn_eq1
- pi_ofM
- trunc_log0n
- partnNK
- pnatE
- prime_decomp_correct
- up_log_gtn
- trunc_log2_double
- partn_gcd
- up_log_eq
- trunc_log0
- trunc_log2S
- dvdn_part
- edivn2P
- divisor1
- odd_2'nat
- pnat_coprime
- pdivP
- primes_eq0
- primes_uniq
- trunc_log_bounds
- even_prime
- eqn_from_log
- leq_up_log
- eq_pnat
- pnatP
- partn_dvd
- pi_of_part
- lognX
- pnat_id
- eq_piP
- pdiv_prime
- divisors_id
- pfactor_coprime
- partnT
- ltn_pdiv2_prime
- up_log1
- pi_of_prime
- sub_in_pnat
- totient_coprime
- up_logP
- eq_primes
- sorted_divisors
- partn_pi
- partnI
- partn_biglcm
- totient_gt1
- dvdn_leq_log
- trunc_log_max
- prod_prime_decomp
- logn_Gauss
- totient_gt0
- pdiv_min_dvd
- pfactor_dvdnn
- part_pnat
- dvdn_divisors
- path: mathcomp/character/mxabelem.v
theorems:
- rVabelemN
- GLmx_faithful
- mx_group_homocyclic
- rowg_mxS
- faithful_repr_extraspecial
- abelem_mx_faithful
- GL_mx_repr
- abelem_rV_S
- abelem_rV_X
- rstabs_abelem
- pcore_faithful_mx_irr
- comp_reprGLm
- rowg_mx1
- im_abelem_rV
- rfix_pgroup_char
- scale_actE
- abelian_type_mx_group
- card_rowg
- rVabelem_minj
- astab_rowg_repr
- rVabelemD
- mxsimple_abelemP
- mxrank_rowg
- sub_rVabelem
- abelem_rV_V
- exponent_mx_group
- mx_repr_is_groupAction
- abelem_rV_injm
- rowg_mx_eq0
- pcore_sub_rstab_mxsimple
- eq_rowg
- card_rVabelem
- abelem_mx_irrP
- val_reprGLm
- rowgS
- rker_abelem
- rVabelem_injm
- im_rVabelem
- rfix_abelem
- rVabelem0
- mxmodule_abelem_subg
- rowg0
- rowg_stable
- afix_repr
- astab_setT_repr
- scale_is_groupAction
- abelem_rV_isom
- mxsimple_abelem_subg
- p_pr
- gacent_repr
- mx_repr_is_action
- abelem_rV_K
- dim_abelemE
- extraspecial_repr_structure
- rowgI
- eq_abelem_subg_repr
- rVabelemK
- mx_Fp_stable
- abelem_rV_inj
- dprod_rowg
- astab1_scale_act
- mx_Fp_abelem
- stable_rowg_mxK
- card_abelem_rV
- rowgK
- abelem_rV_M
- mx_repr_actE
- rowg_mxSK
- rVabelem_inj
- abelem_rV_1
- abelem_rowgJ
- reprGLmM
- sub_abelem_rV_im
- bigdprod_rowg
- mxmodule_abelemG
- abelem_mx_linear_proof
- rVabelem_mK
- rVabelemS
- sub_rVabelem_im
- cprod_rowg
- rowgD
- mem_rowg
- rsim_abelem_subg
- mxmodule_abelem
- mxsimple_abelemGP
- trivg_rowg
- abelem_rV_J
- sub_im_abelem_rV
- isog_abelem_rV
- modIp'
- abelem_mx_repr
- ker_reprGLm
- abelem_rV_mK
- bigcprod_rowg
- pcore_sub_rker_mx_irr
- rstab_abelem
- acts_rowg
- mem_rVabelem
- rstabs_abelemG
- rank_mx_group
- rVabelemJ
- mem_im_abelem_rV
- rowg_mxK
- scale_is_action
- rV_abelem_sJ
- rVabelemZ
- path: mathcomp/character/vcharacter.v
theorems:
- zchar_split
- zchar_onS
- dirr_constt_oppr
- dirr_dchi
- dirr_norm1
- cfnorm_map_orthonormal
- irr_constt_to_dirr
- Aint_vchar
- cfdot_sum_orthonormal
- Z_S
- ndirr_inj
- Zisometry_of_cfnorm
- dirr_opp
- cfdot_dirr_eq1
- mul_vchar
- char_vchar
- isometry_in_zchar
- vchar_mulr_closed
- zchar_trans
- zchar_small_norm
- notS0
- cfdot_add_dirr_eq1
- cfdot_dirr
- ndirrK
- dchi_ndirrE
- cfnorm_orthonormal
- sub_aut_zchar
- dirr_dIirrE
- cnorm_dconstt
- dirr_constt_oppl
- zcharW
- dIrrP
- cfInd_vchar
- Cnat_cfnorm_vchar
- dirrP
- cfdot_sum_orthogonal
- zchar_on
- cfproj_sum_orthonormal
- zcharD1
- Zchar_zmod
- cfnorm_sum_orthogonal
- dchi_vchar
- cfnorm_sum_orthonormal
- zchar_tuple_expansion
- zchar_nth_expansion
- map_pairwise_orthogonal
- cfdot_dchi
- dirr_constt_oppI
- zchar_filter
- zchar_span
- orthonormal_span
- Cnat_dirr
- dirr_small_norm
- dirrE
- cfAut_vchar
- cfRes_vchar
- scale_zchar
- vchar_norm1P
- Zisometry_inj
- vchar_aut
- cfdot_sum_dchi
- conjC_vcharAut
- zchar_subseq
- cfproj_sum_orthogonal
- dirr_aut
- support_zchar
- dirr_consttE
- zchar_onG
- dirr_sign
- Zisometry_of_iso
- dirr_dIirrPE
- cfdot_vchar_r
- mem_zchar_on
- cfun0_zchar
- irr_dirr
- sub_conjC_vchar
- Frobenius_kernel_exists
- dchi1
- map_orthonormal
- vchar_orthonormalP
- dirr_oppr_closed
- ndirr_diff
- irr_vchar
- cfun_sum_dconstt
- cfRes_vchar_on
- cfAut_zchar
- zchar_trans_on
- cfdot_todirrE
- Cint_cfdot_vchar_irr
- of_irrK
- to_dirrK
- cfdot_aut_vchar
- Cint_cfdot_vchar
- nS1
- Cint_vchar1
- zchar_sub_irr
- zchar_expansion
- cfnorm_orthogonal
- irr_vchar_on
- path: mathcomp/solvable/burnside_app.v
theorems:
- R50_inj
- F_Sv
- F_r034
- Fid3
- is_isoP
- r41_inv
- F_r32
- dir_s0p
- burnside_app_iso_2_4col
- card_Fid
- F_s6
- r14_inv
- act_f_morph
- F_r012
- act_g_morph
- group_set_iso3
- F_r013
- card_n4
- iso_eq_F0_F1_F2
- R021_inj
- rot_eq_c0
- s14
- sd2_inv
- iso0_1
- R32_inj
- Lcorrect
- card_n
- burnside_app_rot
- prod_t_correct
- ecubes_def
- r3_inv
- S2_inv
- F_r021
- rot_is_rot
- F_Sh
- card_Fid3
- isometries_iso
- r2_inv
- F_r05
- burnside_app_iso
- sd1_inv
- act_g_1
- s23_inv
- R043_inj
- R042_inj
- R1_inj
- group_set_diso3
- R14_inj
- R013_inj
- Sh_inj
- F_r3
- card_n3s
- S5_inv
- R2_inj
- R024_inj
- Sv_inj
- card_n2
- group_set_iso
- r1_inv
- r50_inv
- F_s05
- eqperm
- S0_inv
- S14_inj
- sop_inj
- R012_inj
- group_set_rot
- sop_spec
- Sd2_inj
- burnside_app2
- F_r14
- R031_inj
- card_n2_3
- sv_inv
- F_r042
- iso3_ndir
- seqs1
- F_r41
- rotations_is_rot
- group_set_iso2
- F_r23
- F_Sd2
- F_Sd1
- iso_eq_F0_F1
- act_f_1
- F_s1
- F_s2
- F_r2
- F_s5
- card_n3_3
- L_iso
- stable
- group_set_rotations
- F_r024
- dir_iso_iso3
- R23_inj
- S4_inv
- uniq4_uniq6
- R41_inj
- S6_inv
- R3_inj
- R05_inj
- F_r031
- card_n3
- burnside_app_iso_3_3col
- F_s4
- eqperm_map
- F_r043
- F_s3
- F_r1
- R034_inj
- Fid
- gen_diso3
- ndir_s0p
- is_iso3P
- burnside_app_iso3
- card_rot
- F_r50
- card_iso2
- diff_id_sh
- F_s14
- ord_enum4
- burnside_formula
- sop_morph
- path: mathcomp/algebra/finalg.v
theorems:
- unit_is_groupAction
- mulrV
- unit_actE
- zmod_mulgC
- val_unitV
- zmodXgE
- zmodVgE
- invr_out
- mulVr
- unit_mul_proof
- unit_mul1u
- unit_muluA
- decidable
- card_finRing_gt1
- card_finField_unit
- zmod1gE
- val_unit1
- intro_unit
- val_unitX
- val_unitM
- unit_mulVu
- zmodMgE
- path: mathcomp/ssreflect/binomial.v
theorems:
- bin2_sum
- binS
- fermat_little
- card_partial_ord_partitions
- ffact_small
- cards_draws
- bin_gt0
- bin0
- bin_sub
- binSn
- ffactnS
- bin2
- bin_ffact
- bin1
- prime_modn_expSn
- leq_bin2l
- bin_small
- mul_bin_left
- prime_dvd_bin
- ffact_factd
- binn
- modn_summ
- predn_exp
- bin2odd
- Wilson
- dvdn_pred_predX
- card_uniq_tuples
- mul_bin_down
- subn_exp
- ffactE
- ffact_fact
- bin_ffactd
- card_ltn_sorted_tuples
- expnDn
- logn_fact
- card_sorted_tuples
- card_ord_partitions
- ffactn1
- ffact0n
- ffactnn
- Vandermonde
- binE
- bin0n
- card_inj_ffuns
- ffact_prod
- ffactn0
- bin_fact
- card_inj_ffuns_on
- card_draws
- fact_prod
- mul_bin_diag
- path: mathcomp/ssreflect/div.v
theorems:
- dvdn_lcm
- divnMA
- lcmnAC
- gcdnMDl
- lcmn_gt0
- divn1
- divn0
- edivnB
- modn1
- divnK
- chinese_modr
- divnn
- modnMDl
- dvdn1
- modnDmr
- coprime_dvdl
- gcdn_gt0
- modn0
- dvdnn
- gcdnMr
- dvdnP
- modnDml
- divn2
- coprimen1
- leq_div2r
- divnDl
- modn_small
- dvd1n
- gcdnC
- divnAC
- dvdn_add_eq
- dvdn_addr
- edivn_pred
- leq_mod
- gcdn_idPl
- modnD
- egcd0n
- edivn_eq
- gcdnDl
- divn_gt0
- Bezoutl
- gcdnAC
- ltn_ceil
- Gauss_dvdl
- modn_pred
- dvdn_mull
- lcmnMl
- dvdn_exp2r
- dvdn_gcd
- leq_div
- coprimeXl
- gcdnDr
- gcdn_modr
- Gauss_dvd
- gcdnA
- dvdn_exp
- modnMl
- dvdn_gcdr
- gcdn0
- divn_eq
- chinese_modl
- ltn_divRL
- divnDMl
- coprimeXr
- modnDl
- gcdnCA
- divnB
- dvdn_addl
- coprime_pexpr
- coprimen2
- mulKn
- modn2
- dvdn_pexp2r
- gcdnACA
- dvdn_gcdl
- gcd1n
- coprime_modr
- lcmn_idPr
- Gauss_gcdl
- ltn_Pdiv
- modnS
- lcmn_idPl
- leq_divDl
- dvdn_add
- gcdn_idPr
- leqDmod
- dvd0n
- expnB
- dvdn_pmul2l
- divnMBl
- lcmnCA
- dvdn_Pexp2l
- mod0n
- dvdn_subl
- geq_divBl
- eqn_modDr
- muln_lcm_gcd
- coprimeP
- coprime_dvdr
- modn_mod
- divn_modl
- coprimenS
- edivnS
- modn_def
- dvdn_mul
- dvdn_fact
- modnMml
- coprimeMl
- gcdn_def
- dvdn_odd
- divnMr
- coprimeMr
- expn_max
- muln_gcdr
- coprimeSn
- divn_pred
- dvdn_double_leq
- muln_divCA
- lcmnA
- modn_coprime
- muln_modr
- dvdn_exp2l
- lcmnACA
- coprime1n
- gcdnE
- modnMr
- edivn_def
- divn_small
- dvdn_pmul2r
- lcmn1
- divnA
- leq_divLR
- dvdn_div
- dvdn_divRL
- muln_divA
- edivnD
- egcdnP
- eqn_mul
- coprimenP
- modnDr
- dvdn_gt0
- modnMm
- gcd0n
- gcdn_modl
- leq_div2l
- coprime_modl
- coprime2n
- odd_mod
- divnDr
- modnn
- dvdn_double_ltn
- lcmnMr
- divnMl
- divnD
- lcm0n
- muln_divCA_gcd
- ltn_pmod
- muln_lcmr
- Gauss_gcdr
- divn_mulAC
- muln_gcdl
- muln_modl
- Bezoutr
- divnBMl
- lcmn0
- gtnNdvd
- expn_min
- dvdn_leq
- gcdnMl
- eqn_dvd
- lcm1n
- chinese_mod
- dvdn2
- chinese_remainder
- modnDm
- dvdn_trans
- modn_divl
- ltn_divLR
- div0n
- muln_lcml
- coprimePn
- coprime_egcdn
- ltn_mod
- dvdn_divLR
- Gauss_dvdr
- dvdn_mulr
- divnBl
- mulnK
- gcdnn
- divnS
- gcdn1
- divnMDl
- path: mathcomp/algebra/interval.v
theorems:
- mem0_itvoo_xNx
- mid_in_itvcc
- BInfty_leE
- le_bound_refl
- itv_bound_can
- BRight_BLeft_leE
- itv_splitI
- oppr_itvcc
- subset_itv
- itv_meetA
- bound_lex1
- subitvPl
- subitvP
- BLeft_ltE
- BInfty_le_eqE
- miditv_ge_right
- itv_splitU
- BLeft_BRight_ltE
- BInfty_BInfty_ltE
- itv_meetUl
- bound_meetA
- subset_itv_oo_cc
- itv_le0x
- in_segmentDgt0Pr
- in_segmentDgt0Pl
- miditv_le_left
- bound_lexx
- subitvPr
- bound_joinA
- mid_in_itv
- itv_ge
- itv_dec
- BInfty_geE
- mem_miditv
- subset_itv_co_cc
- ge_pinfty
- BInfty_gtF
- itv_meetKU
- itv_total_meet3E
- bound_leEmeet
- itvxx
- in_itv
- itvP
- oppr_itvoo
- bound_meetC
- bound_meetKU
- leBRight_ltBLeft
- lteif_in_itv
- subitv_trans
- BInfty_ltF
- boundr_in_itv
- lt_ninfty
- ltBSide
- subitvE
- predC_itv
- bound_le0x
- boundl_in_itv
- gt_pinfty
- bound_joinKI
- BLeft_BSide_leE
- BInfty_ltE
- predC_itvr
- itv_joinA
- ltBRight_leBLeft
- bound_ltxx
- itv_bound_total
- itv_splitU1
- BSide_ltE
- lt_in_itv
- oppr_itvoc
- itv_bound_display
- in_itvI
- bound_joinC
- oppr_itv
- BInfty_gtE
- itv_splitUeq
- mid_in_itvoo
- BSide_leE
- subitv_anti
- itv_boundlr
- subset_itv_oo_oc
- itvxxP
- predC_itvl
- subset_itv_oc_cc
- lt_bound_def
- itv_lex1
- BInfty_ge_eqE
- subset_itv_oo_co
- le_bound_anti
- itv_meetC
- interval_can
- itv_total_join3E
- itv_joinC
- BRight_leE
- BRight_BSide_ltE
- mem0_itvcc_xNx
- itv_xx
- subitv_refl
- interval_display
- path: mathcomp/solvable/center.v
theorems:
- center_class_formula
- xcprodmI
- xcprodmEl
- cprod_by_uniq
- subcentP
- ker_cprod_by_central
- subcent1_cycle_sub
- subcent1_id
- injm_cpairg1
- xcprodm_cent
- im_cpair_cprod
- ncprod1
- xcprodP
- center_bigdprod
- injm_cpair1g
- sub_center_normal
- injm_xcprodm
- xcprodmE
- cprod_center_id
- im_cpair_cent
- subcent1C
- cpairg1_dom
- center_bigcprod
- center_cprod
- ncprodS
- cpair1g_dom
- xcprod_subproof
- subcent_norm
- injgz
- subcent_sub
- cpair1g_center
- isog_xcprod
- center_normal
- Aut_cprod_by_full
- cpairg1_center
- ker_cprod_by_is_group
- gzZchar
- im_xcprodm
- center_char
- center_idP
- isog_cprod_by
- Aut_cprod_full
- subcent1_cycle_normal
- center_ncprod0
- centerP
- cprod_by_key
- morphim_center
- subcent_normal
- center_abelian
- center1
- subcent1_cycle_norm
- in_cprodM
- subcent1_sub
- xcprodmEr
- cyclic_center_factor_abelian
- cpair_center_id
- im_cpair
- isog_center
- eq_cpairZ
- gzZ_lone
- ncprod0
- injm_center
- ker_in_cprod
- im_xcprodml
- centerC
- subcent1P
- subcent_char
- ncprod_key
- cyclic_factor_abelian
- Aut_ncprod_full
- setI_im_cpair
- gzZ
- im_xcprodmr
- path: mathcomp/solvable/jordanholder.v
theorems:
- maxainv_norm
- qacts_coset
- maxainvM
- asimpleP
- section_reprP
- asimpleI
- StrongJordanHolderUniqueness
- simple_compsP
- maxainvS
- maxainv_exists
- trivg_acomps
- asimple_acompsP
- qacts_cosetpre
- maxainv_ainvar
- section_repr_isog
- gactsM
- compsP
- exists_comps
- qact_dom_doms
- maxainv_sub
- asimple_quo_maxainv
- acomps_cons
- trivg_comps
- acts_qact_doms
- exists_acomps
- comps_cons
- path: mathcomp/solvable/commutator.v
theorems:
- derJ
- commXg
- quotient_cents2
- sub_der1_abelian
- commg_subr
- dergS
- commgV
- normsRr
- commXXg
- commgMJ
- commg_normal
- normsRl
- commMgR
- der_normalS
- derg1
- commg_normr
- der_abelian
- commgAC
- Hall_Witt_identity
- quotient_der
- sub_der1_norm
- commg_sub
- commG1
- commg_norm
- commg_normSr
- commg_norml
- sub_der1_normal
- der1_min
- der_sub
- commg_normSl
- comm1G
- commMGr
- commVg
- charR
- der_normal
- expMg_Rmul
- commgMR
- der_cont
- morphim_der
- der_norm
- comm_norm_cent_cent
- der_group_set
- commMgJ
- dergSn
- conjg_mulR
- commg_subl
- commg_subI
- three_subgroup
- der1_joing_cycles
- derG1P
- conjg_Rmul
- path: mathcomp/ssreflect/finfun.v
theorems:
- card_pfamily
- tnth_fgraph
- ffunK
- card_ffun
- ffunE
- eq_dffun
- supportP
- FinfunK
- tuple_of_finfunK
- nth_fgraph_ord
- tfgraph_inj
- ffunP
- codom_ffun
- fgraphK
- tagged_tfgraph
- fgraph_codom
- familyP
- pffun_onP
- card_dep_ffun
- finfun_of_tupleK
- pfamilyP
- ffun_onP
- card_ffun_on
- card_family
- card_pffun_on
- eq_ffun
- codom_tffun
- fgraph_ffun0
- tfgraphK
- ffun0
- path: mathcomp/ssreflect/ssrfun.v
theorems:
- eq_omap
- inj_omap
- omapK
- omap_id
- path: mathcomp/ssreflect/choice.v
theorems:
- chooseP
- pair_of_tagK
- ltn_code
- seq_of_optK
- nat_pickleK
- gtn_decode
- codeK
- bool_of_unitK
- pickle_invK
- xchooseP
- pickleK_inv
- sigW
- eq_xchoose
- pickle_seqK
- sig_eqW
- PCanHasChoice
- nat_hasChoice
- opair_of_sumK
- codeK
- eq_choose
- tag_of_pairK
- sig2_eqW
- decodeK
- pcan_pickleK
- xchoose_subproof
- path: mathcomp/algebra/polyXY.v
theorems:
- map_div_annihilantP
- swapXYK
- swapXY_is_multiplicative
- size_poly_XaY
- max_size_lead_coefXY
- swapXY_comp_poly
- horner_polyC
- swapXY_poly_XaY
- swapXY_map
- horner_poly_XaY
- max_size_evalC
- div_annihilant_in_ideal
- lead_coef_poly_XaY
- sizeY_mulX
- poly_XaY_eq0
- swapXY_key
- root_annihilant
- max_size_evalX
- poly_XmY0
- coef_swapXY
- swapXY_map_polyC
- swapXY_polyC
- horner2_swapXY
- swapXY_eq0
- sizeY_eq0
- algebraic_root_polyXY
- horner_swapXY
- div_annihilant_neq0
- size_poly_XmY
- swapXY_Y
- swapXY_poly_XmY
- map_sub_annihilantP
- poly_XmY_eq0
- horner_poly_XmY
- sub_annihilant_neq0
- div_annihilantP
- sub_annihilantP
- swapXY_is_additive
- sub_annihilant_in_ideal
- path: mathcomp/algebra/ring_quotient.v
theorems:
- rquot_IdomainAxiom
- nonzero1q
- idealMr
- mulqC
- idealr_closed_nontrivial
- idealr1
- pi_is_multiplicative
- idealrDE
- addqC
- addNq
- idealr_closedB
- pi_is_additive
- pi_opp
- addqA
- mul1q
- idealrBE
- equivE
- pi_mul
- idealr0
- mulq_addl
- add0q
- pi_add
- path: mathcomp/solvable/hall.v
theorems:
- strongest_coprime_quotient_cent
- coprime_Hall_trans
- ext_coprime_quotient_cent
- quotient_TI_subcent
- coprime_cent_mulG
- Hall_exists_subJ
- SchurZassenhaus_trans_actsol
- Hall_superset
- sol_coprime_Sylow_subset
- external_action_im_coprime
- ext_norm_conj_cent
- Hall_subJ
- SchurZassenhaus_split
- Hall_exists
- coprime_norm_cent
- ext_coprime_Hall_exists
- coprime_Hall_subset
- Hall_Frattini_arg
- sol_coprime_Sylow_trans
- norm_conj_cent
- coprime_norm_quotient_cent
- sol_coprime_Sylow_exists
- SchurZassenhaus_trans_sol
- ext_coprime_Hall_subset
- Hall_trans
- ext_coprime_Hall_trans
- coprime_Hall_exists
- path: mathcomp/ssreflect/ssrAC.v
theorems:
- serial_Op
- set_pos_trecE
- cforallP
- pos_set_pos
- proof
- path: mathcomp/field/cyclotomic.v
theorems:
- prod_cyclotomic
- size_cyclotomic
- Cintr_Cyclotomic
- root_cyclotomic
- Cyclotomic_monic
- C_prim_root_exists
- minCpoly_cyclotomic
- prod_Cyclotomic
- cyclotomic_monic
- separable_Xn_sub_1
- size_Cyclotomic
- Cyclotomic0
- path: mathcomp/solvable/primitive_action.v
theorems:
- n_act0
- stab_ntransitive
- dtuple_on_add_D1
- ntransitive_weak
- ntransitive1
- n_act_add
- ntransitive_primitive
- trans_prim_astab
- ntransitive0
- n_act_dtuple
- dtuple_on_add
- stab_ntransitiveI
- prim_trans_norm
- dtuple_on_subset
- dtuple_onP
- card_uniq_tuple
- path: mathcomp/ssreflect/ssrbool.v
theorems:
- if_add
- classic_ex
- classic_sigW
- if_or
- if_implybC
- if_and
- relpre_trans
- homo_mono1
- path: mathcomp/field/algebraics_fundamentals.v
theorems:
- rat_algebraic_archimedean
- minPoly_decidable_closure
- rat_algebraic_decidable
- Fundamental_Theorem_of_Algebraics
- alg_integral