|
name: math-comp_train |
|
num_files: 75 |
|
language: COQ |
|
few_shot_data_path_for_retrieval: null |
|
few_shot_metadata_filename_for_retrieval: null |
|
dfs_data_path_for_retrieval: null |
|
dfs_metadata_filename_for_retrieval: local.meta.json |
|
theorem_cnt: 11381 |
|
datasets: |
|
- project: <path-to-repo>/math-comp/ |
|
files: |
|
- path: mathcomp/solvable/abelian.v |
|
theorems: |
|
- trivg_exponent |
|
- abelian_type_dvdn_sorted |
|
- Ohm_leq |
|
- abelem_Ohm1P |
|
- expg_exponent |
|
- TI_Ohm1 |
|
- rankJ |
|
- abelian_splits |
|
- isog_abelem |
|
- morphim_pElem |
|
- nElem1P |
|
- rank_Ohm1 |
|
- pnElem0 |
|
- rankS |
|
- pElemP |
|
- nElem0 |
|
- Ohm1Eexponent |
|
- p_rank_Ohm1 |
|
- rank_pgroup |
|
- pmaxElemS |
|
- is_abelemP |
|
- p_rank_pmaxElem_exists |
|
- exponent_witness |
|
- p_rank_dprod |
|
- abelian_type_dprod_homocyclic |
|
- morphim_rank_abelian |
|
- quotient_p_rank_abelian |
|
- dprod_exponent |
|
- abelem_cyclic |
|
- isog_rank |
|
- cprod_abelem |
|
- Ohm1_id |
|
- abelian_type_gt1 |
|
- morphim_LdivT |
|
- card_pnElem |
|
- isog_homocyclic |
|
- p_rankS |
|
- injm_pnElem |
|
- card_p1Elem |
|
- Ohm1_homocyclicP |
|
- morphim_Ohm |
|
- quotient_pnElem |
|
- eq_abelian_type_isog |
|
- abelian_type_sorted |
|
- p_rank_Hall |
|
- max_card_abelian |
|
- p_rank_p'quotient |
|
- isog_Mho |
|
- abelian_type_pgroup |
|
- LdivT_J |
|
- Ohm1Eprime |
|
- OhmEabelian |
|
- nElemS |
|
- abelem_Ohm1 |
|
- Mho1 |
|
- Mho_leq |
|
- pnElemP |
|
- quotient_LdivT |
|
- p_rank1 |
|
- nElemP |
|
- quotient_grank |
|
- exponent_quotient |
|
- abelemP |
|
- sub_Ldiv |
|
- Ohm1_eq1 |
|
- isog_abelem_card |
|
- rank_gt0 |
|
- fin_lmod_char_abelem |
|
- abelem_order_p |
|
- injm_rank |
|
- p_rank_le_logn |
|
- Ohm_dprod |
|
- pnElemPcard |
|
- pElemJ |
|
- pnat_exponent |
|
- rank_abelian_pgroup |
|
- injm_pElem |
|
- p_rank_le_rank |
|
- cyclic_abelem_prime |
|
- p_rank_gt0 |
|
- dprod_abelem |
|
- Ohm_Mho_homocyclic |
|
- injm_abelem |
|
- OhmS |
|
- pmaxElem_exists |
|
- pi_of_exponent |
|
- card_p1Elem_p2Elem |
|
- quotient_Ldiv |
|
- pmaxElem_LdivP |
|
- abelem_pgroup |
|
- OhmJ |
|
- Ohm0 |
|
- exponent_injm |
|
- grank_abelian |
|
- nElemI |
|
- pmaxElemP |
|
- partn_exponentS |
|
- abelian_type_subproof |
|
- injm_pmaxElem |
|
- abelem1 |
|
- abelem_homocyclic |
|
- Mho_sub |
|
- OhmPredP |
|
- exponent_isog |
|
- Mho_dprod |
|
- isog_Ohm |
|
- p_rank_witness |
|
- quotient_pElem |
|
- injm_nElem |
|
- exponent1 |
|
- exponentS |
|
- exponentP |
|
- trivg_Mho |
|
- Ohm_char |
|
- LdivJ |
|
- p_rankJ |
|
- Mho_normal |
|
- p_rankElem_max |
|
- size_abelian_type |
|
- Ohm_sub |
|
- cyclic_pgroup_dprod_trivg |
|
- quotient_abelem |
|
- pElemI |
|
- rank_abelem |
|
- nt_pnElem |
|
- exponent_Hall |
|
- isog_abelian_type |
|
- card_p1Elem_pnElem |
|
- dprod_homocyclic |
|
- exponent_cyclic |
|
- morphim_grank |
|
- morphim_abelem |
|
- LdivP |
|
- pmaxElemJ |
|
- Ohm_p_cycle |
|
- injm_Ldiv |
|
- cprod_exponent |
|
- p_rank_abelian |
|
- abelian_structure |
|
- abelemE |
|
- morphim_p_rank_abelian |
|
- MhoE |
|
- p1ElemE |
|
- Ohm1_abelem |
|
- fin_Fp_lmod_abelem |
|
- rank1 |
|
- Ohm_normal |
|
- homocyclic1 |
|
- Ohm1_cent_max |
|
- p2Elem_dprodP |
|
- morphim_pnElem |
|
- exponent_gt0 |
|
- group_Ldiv |
|
- p_rank_Sylow |
|
- prime_abelem |
|
- morphim_Ldiv |
|
- sub_LdivT |
|
- MhoJ |
|
- exponent_dvdn |
|
- Mho_cprod |
|
- Mho_char |
|
- Ohm_id |
|
- logn_le_p_rank |
|
- exponent_dprod_homocyclic |
|
- mul_card_Ohm_Mho_abelian |
|
- cycle_abelem |
|
- injm_p_rank |
|
- dvdn_exponent |
|
- pElemS |
|
- pnElemI |
|
- grank_min |
|
- OhmE |
|
- abelemJ |
|
- abelem_splits |
|
- grank_witness |
|
- Mho_p_elt |
|
- pnElemE |
|
- isog_p_rank |
|
- meet_Ohm1 |
|
- abelem_pnElem |
|
- pnElemJ |
|
- MhoEabelian |
|
- Ohm1_cyclic_pgroup_prime |
|
- rank_Sylow |
|
- abelian_type_abelem |
|
- rank_geP |
|
- homocyclic_Ohm_Mho |
|
- p_rank_quotient |
|
- abelian_type_homocyclic |
|
- MhoS |
|
- logn_quotient |
|
- card_homocyclic |
|
- abelian_exponent_gen |
|
- exponentJ |
|
- def_pnElem |
|
- isog_grank |
|
- is_abelem_pgroup |
|
- fin_ring_char_abelem |
|
- exponent_cycle |
|
- count_logn_dprod_cycle |
|
- abelian_rank1_cyclic |
|
- Mho_cont |
|
- piOhm1 |
|
- p_rank_geP |
|
- injm_grank |
|
- path: mathcomp/algebra/mxalgebra.v |
|
theorems: |
|
- mxrank_cap_compl |
|
- eqmxMfull |
|
- rowV0P |
|
- ltmx_irrefl |
|
- adds0mx |
|
- map_capmx_gen |
|
- addsmx_nop0 |
|
- cent_mx_ideal |
|
- mxrank_sum_leqif |
|
- mxrank0 |
|
- stablemxN |
|
- row_free_castmx |
|
- map_row_base |
|
- mulsmxDl |
|
- map_row_ebase |
|
- ltmx1 |
|
- capmx_eq_norm |
|
- mxrank_mul_ker |
|
- mxrankS |
|
- mxrankE |
|
- diffmxE |
|
- map_capmx |
|
- eqmxMfree |
|
- ltmxErank |
|
- eq_row_full |
|
- row_sub |
|
- sub_capmx |
|
- summx_sub |
|
- eqmx_conform |
|
- matrix_modr |
|
- row_fullP |
|
- mxrankM_maxr |
|
- capmx_idPl |
|
- cap0mx |
|
- mxrank_opp |
|
- logn_card_GL_p |
|
- mxrank_adds_leqif |
|
- rank_leq_row |
|
- map_submx |
|
- mulsmx_subP |
|
- stablemx0 |
|
- negb_row_free |
|
- stablemx_sums |
|
- mxring_id_uniq |
|
- sub_daddsmx |
|
- rank_ltmx |
|
- sub_addsmxP |
|
- eqmx_col |
|
- mxrank_fullrowsub |
|
- sub_dsumsmx |
|
- mxrank_ker |
|
- eqmx_eq0 |
|
- capmx_norm_eq |
|
- row_subP |
|
- capmxC |
|
- nary_mxsum_proof |
|
- addsmx_addKl |
|
- genmx_id |
|
- rowsub_comp_sub |
|
- sub_ltmx_trans |
|
- genmx_cap |
|
- addsmx_nop_eq0 |
|
- addsmx_compl_full |
|
- mxdirect_addsP |
|
- maxrowsub_free |
|
- mxrankMfree |
|
- mulsmxS |
|
- sub_rVP |
|
- lt1mx |
|
- eq_maxrowsub |
|
- row_full_unit |
|
- stablemxC |
|
- rank_rV |
|
- proj_mx_sub |
|
- center_mxP |
|
- fullrankfun_inj |
|
- addsmx_addKr |
|
- capmx_diff |
|
- sumsmx_subP |
|
- eqmxMunitP |
|
- mulsmxA |
|
- card_GL |
|
- mulmxKpV |
|
- stablemx_unit |
|
- memmx1 |
|
- mulmxP |
|
- eqmxP |
|
- lt0mx |
|
- center_mx_sub |
|
- inj_row_free |
|
- addsmx_idPr |
|
- eq_genmx |
|
- rowsub_sub |
|
- mxdirect_adds_center |
|
- proj_mx_compl_sub |
|
- row_full_inj |
|
- eq_row_base |
|
- eqmx_stable |
|
- mulmx_coker |
|
- row_subPn |
|
- genmx_sums |
|
- eq_rank_unitmx |
|
- addmx_sub_adds |
|
- submx_full |
|
- genmx_diff |
|
- rank_diag_block_mx |
|
- addsmx_nop_id |
|
- submx_rowsub |
|
- eqmx_sym |
|
- memmx_addsP |
|
- genmx0 |
|
- addsmxE |
|
- submx_refl |
|
- submxElt |
|
- ltmxE |
|
- capmx1 |
|
- capmx_idPr |
|
- submxMl |
|
- addsmxS |
|
- map_genmx |
|
- fullrowsub_full |
|
- lt_eqmx |
|
- mulmx1_min_rank |
|
- eqmx_rank |
|
- row_full_castmx |
|
- capmx_nopP |
|
- stablemxD |
|
- sub_sumsmxP |
|
- memmx0 |
|
- mxdirect_trivial |
|
- row_base_free |
|
- mxrank_tr |
|
- eqmx_scale |
|
- mxrank_disjoint_sum |
|
- mxrank_injP |
|
- maxrowsub_full |
|
- mxrank_leqif_sup |
|
- sub0mx |
|
- row_free_map |
|
- addsmx_diff_cap_eq |
|
- capmxMr |
|
- adds0mx_id |
|
- adds_eqmx |
|
- mem0mx |
|
- map_cokermx |
|
- pinvmx_full |
|
- mxrank_map |
|
- memmx_map |
|
- mulsmxP |
|
- eigenvalueP |
|
- kermx0 |
|
- mulsmx0 |
|
- eigenvectorP |
|
- mxdirect_sumsE |
|
- capmxSr |
|
- mulmx0_rank_max |
|
- add_proj_mx |
|
- submx0 |
|
- mxdirect_sums_center |
|
- nz_row_sub |
|
- complete_unitmx |
|
- scalar_mx_cent |
|
- map_center_mx |
|
- mulmxKp |
|
- eigenvalue_map |
|
- cokermx_eq0 |
|
- eqmx_opp |
|
- map_kermx |
|
- eqmx_sums |
|
- eq_fullrowsub |
|
- col_mx_sub |
|
- card_GL_1 |
|
- capmx0 |
|
- stablemxM |
|
- sub_kermxP |
|
- sumsmx_sup |
|
- muls0mx |
|
- eqmxMr |
|
- eq_row_sub |
|
- mxdirect_sumsP |
|
- mulVpmx |
|
- mxring_idP |
|
- mulsmxDr |
|
- mxrank1 |
|
- Gaussian_elimination_map |
|
- stable0mx |
|
- capmxE |
|
- sub_bigcapmxP |
|
- cap1mx |
|
- eqmx_refl |
|
- mxdirect_sums_recP |
|
- row_full_map |
|
- mxrank_scale_nz |
|
- mxrank_coker |
|
- row_free_inj |
|
- rV_subP |
|
- map_pinvmx |
|
- map_cent_mx |
|
- mxdirect_sum_eigenspace |
|
- cent_mx_fun_is_linear |
|
- mxrank_gen |
|
- cent_mxP |
|
- mulmxKV_ker |
|
- row_freeP |
|
- mxdirect_delta |
|
- rank_col_mx0 |
|
- scalemx_sub |
|
- comm_mx_stable |
|
- mxrank_delta |
|
- mxdirect_addsE |
|
- submx_trans |
|
- map_col_base |
|
- rank_copid_mx |
|
- comm_mx_stable_ker |
|
- capTmx |
|
- capmx_nop_id |
|
- map_eigenspace |
|
- stableCmx |
|
- eqmx0 |
|
- sub_qidmx |
|
- addsmx_sub |
|
- eqmx_sum_nop |
|
- capmx_normP |
|
- stablemx_row_base |
|
- mxdirectEgeq |
|
- memmx_sumsP |
|
- map_mulsmx |
|
- pinvmx_free |
|
- addsmxSr |
|
- rank_mxdiag |
|
- stableDmx |
|
- eqmx_rowsub_comp_perm |
|
- has_non_scalar_mxP |
|
- rank_col_0mx |
|
- capmxSl |
|
- mulmx_ebase |
|
- addsmx0_id |
|
- addsmxC |
|
- row_free_unit |
|
- ltmx_trans |
|
- genmx1 |
|
- genmx_bigcap |
|
- ltmx_sub_trans |
|
- mem_mulsmx |
|
- proj_mx_0 |
|
- maxrankfun_inj |
|
- map_eqmx |
|
- capmxA |
|
- qidmx_cap |
|
- mxrankM_maxl |
|
- eqmx_rowsub |
|
- stablemx_full |
|
- sumsmxMr |
|
- cap_eqmx |
|
- comm_mx_stable_eigenspace |
|
- mxdirectE |
|
- fullrowsub_free |
|
- submxMr |
|
- bigcapmx_inf |
|
- memmx_subP |
|
- mxrank_leqif_eq |
|
- addsmxMr |
|
- mulmxVp |
|
- map_col_ebase |
|
- fullrowsub_unit |
|
- rank_row_mx0 |
|
- submx0null |
|
- eqmx_cast |
|
- matrix_modl |
|
- ltmx0 |
|
- mxdirectP |
|
- sub_sums_genmxP |
|
- mxrank_add |
|
- addsmx_idPl |
|
- card_GL_2 |
|
- ltmxW |
|
- eigenspaceP |
|
- cent_mx_ring |
|
- mxrank_Frobenius |
|
- diffmxSl |
|
- sub_kermx |
|
- submxMfree |
|
- row_ebase_unit |
|
- mxrank_mul_min |
|
- genmx_witnessP |
|
- memmx_eqP |
|
- sumsmxS |
|
- capmx_witnessP |
|
- map_complmx |
|
- addsmx0 |
|
- mxrank_scale |
|
- sub_capmx_gen |
|
- submxE |
|
- muls_eqmx |
|
- sub1mx |
|
- capmx_compl |
|
- proj_mx_id |
|
- cent_rowP |
|
- rank_row_0mx |
|
- eqmx_trans |
|
- mulmx_free_eq0 |
|
- submxP |
|
- addsmxSl |
|
- capmxT |
|
- sumsmxMr_gen |
|
- col_leq_rank |
|
- submx1 |
|
- eqmx0P |
|
- ltmxEneq |
|
- mxrank_unit |
|
- map_diffmx |
|
- genmx_adds |
|
- rank_pid_mx |
|
- map_addsmx |
|
- path: mathcomp/algebra/matrix.v |
|
theorems: |
|
- map_col_mx |
|
- det0 |
|
- scalemx_inj |
|
- mx11_scalar |
|
- mxcol_const |
|
- mxcol_sum |
|
- unitmx1 |
|
- trmxK |
|
- lin1_mx_key |
|
- row_mxEl |
|
- map_mx_key |
|
- mxsize_recl |
|
- eq_mxdiag |
|
- mul_mxcol_mxrow |
|
- mul_row_block |
|
- col_permM |
|
- mxrow0 |
|
- mxrowD |
|
- mxvecE |
|
- colsub_comp |
|
- row_usubmx |
|
- mx_vec_lin |
|
- scalar_mx_sum_delta |
|
- map2_usubmx |
|
- scale1mx |
|
- det_inv |
|
- map2_col_perm |
|
- mxtrace_is_scalar |
|
- map_mxN |
|
- map2_row_mx |
|
- mul_scalar_mx |
|
- add_row_mx |
|
- unitmxE |
|
- mx0_is_diag |
|
- map_xcol |
|
- delta_mx_rshift |
|
- map2_row |
|
- col_mxblock |
|
- mxtrace_mxblock |
|
- col'_eq |
|
- col_mx_key |
|
- map2_mxsub |
|
- tr_scalar_mx |
|
- mxblockEh |
|
- row_mx0 |
|
- determinant_alternate |
|
- mul_rVP |
|
- submxblockB |
|
- trmx_adj |
|
- row_mxKr |
|
- col_rsubmx |
|
- map2_1mx |
|
- mxsub_comp |
|
- mxcolB |
|
- mx_rV_lin |
|
- map_mx_id_in |
|
- trmx_delta |
|
- mulVmx |
|
- scalar_mx_block |
|
- trmx_drsub |
|
- is_perm_mx_tr |
|
- mulmx_is_scalable |
|
- addmx_key |
|
- map_tperm_mx |
|
- det_mulmx |
|
- eq_castmx |
|
- scale_scalar_mx |
|
- map2_lsubmx |
|
- scalar_mx_is_additive |
|
- tr_col |
|
- mulmxN |
|
- mulmx_colsub |
|
- is_diag_block_mx |
|
- map_row_mx |
|
- mul_pid_mx |
|
- mxcol_recu |
|
- scalemxAr |
|
- usubmxEsub |
|
- mxsub_mul |
|
- mxvec_cast |
|
- diag_mx_sum_delta |
|
- cast_col_mx |
|
- mulNmx |
|
- mulmxBl |
|
- rowE |
|
- map2_conform_mx |
|
- trmx_const |
|
- invmx_out |
|
- xcolE |
|
- mulmx1 |
|
- submxblockK |
|
- mxblock_recul |
|
- rowP |
|
- xcol_const |
|
- perm_mxV |
|
- diag_const_mx |
|
- row_mxsub |
|
- mulKVmx |
|
- mul_rV_lin |
|
- colP |
|
- comm_mx_sym |
|
- map_mxsub |
|
- col_mx_eq0 |
|
- tr_row_mx |
|
- xrowEsub |
|
- flatmxOver |
|
- rowsubE |
|
- det_diag |
|
- map_mxZ |
|
- mxblockD |
|
- mul_vec_lin_row |
|
- rsubmxEsub |
|
- tr_row' |
|
- map_ursubmx |
|
- trmx_usub |
|
- row_mx_key |
|
- mul_delta_mx |
|
- diag_mx_is_linear |
|
- invmx_scalar |
|
- mxOver_opp_subproof |
|
- cormen_lup_correct |
|
- mul_block_col |
|
- row_rowsub |
|
- eq_mxsub |
|
- delta_mx_dshift |
|
- pid_mx_row |
|
- scalemxDl |
|
- rowK |
|
- curry_mxvec_bij |
|
- map_lin1_mx |
|
- block_mxEdr |
|
- map_mxB |
|
- comm_mxB |
|
- lift0_perm_eq0 |
|
- castmxKV |
|
- mxOverM |
|
- map2_col_mx |
|
- scale_col_mx |
|
- map2_mxC |
|
- col_mxsub |
|
- idmxE |
|
- mxtrace_scalar |
|
- is_perm_mxMr |
|
- mul_row_col |
|
- tr_submxblock |
|
- submxK |
|
- lift0_perm0 |
|
- col_mxdiag |
|
- map2_mxvec |
|
- trmx_cast |
|
- map_row_perm |
|
- block_mx0 |
|
- eq_mxcol |
|
- mul_diag_mx |
|
- mul_xcol |
|
- mxcolN |
|
- map_drsubmx |
|
- map2_vec_mx |
|
- map2_mx0 |
|
- mxOverZ |
|
- opp_row_mx |
|
- block_mxEul |
|
- const_mx_key |
|
- col_perm_const |
|
- vec_mx_eq0 |
|
- scalemxDr |
|
- map2_mxA |
|
- intro_unitmx |
|
- map2_ursubmx |
|
- tr_mxrow |
|
- trmx1 |
|
- col_colsub |
|
- map2_mx1 |
|
- row1 |
|
- map_mxM |
|
- row'Kd |
|
- mxblock0 |
|
- GL_VxE |
|
- opp_block_mx |
|
- mul_rowsub_mx |
|
- col'_const |
|
- tr_mxcol |
|
- map2_rsubmx |
|
- is_diag_trmx |
|
- mxEmxrow |
|
- scalemxAl |
|
- tr_pid_mx |
|
- submxrow_matrix |
|
- eq_rowsub |
|
- trigmx_ind |
|
- mul_mxrow_mxblock |
|
- block_mxEdl |
|
- submxrowD |
|
- row_permEsub |
|
- adjZ |
|
- map2_mx_left |
|
- expand_det_row |
|
- det_lblock |
|
- map_col_perm |
|
- is_scalar_mx_is_diag |
|
- ursubmxEsub |
|
- col_eq |
|
- row_mxrow |
|
- rowsub_comp |
|
- vsubmxK |
|
- lift0_perm_lift |
|
- mxblockK |
|
- mulmx_sum_row |
|
- mxOverS |
|
- mxOver_diagE |
|
- mulmxDr |
|
- tr_xrow |
|
- col_mxEu |
|
- map_scalar_mx |
|
- mxrowP |
|
- cast_row_mx |
|
- matrix_key |
|
- mx0_is_trig |
|
- det_tr |
|
- rowEsub |
|
- cormen_lup_upper |
|
- diagsqmx_ind |
|
- map2_mx_key |
|
- mul_mx_row |
|
- tr_row |
|
- is_trig_mxblockP |
|
- GL_ME |
|
- mul_mxdiag_mxcol |
|
- GL_unitmx |
|
- block_mx_eq0 |
|
- mul_mxdiag_mxblock |
|
- mxdiagN |
|
- tr_perm_mx |
|
- mul_mxrow |
|
- mxsub_id |
|
- mxtrace_is_semi_additive |
|
- mxsub_ffun |
|
- row_perm1 |
|
- mul_mx_scalar |
|
- is_diag_mxP |
|
- submxcol_sum |
|
- mxcol_mul |
|
- row_mx_eq0 |
|
- mx0_is_scalar |
|
- is_scalar_mx_is_trig |
|
- mxrowN |
|
- tr_col' |
|
- castmx_comp |
|
- is_perm_mxMl |
|
- map_lin_mx |
|
- mx11_is_diag |
|
- eq_block_mx |
|
- lin_mulmx_is_linear |
|
- addNmx |
|
- mxrow_const |
|
- mul_pid_mx_copid |
|
- opp_col_mx |
|
- trmx0 |
|
- trmx_mxsub |
|
- row_mxA |
|
- mxvec_delta |
|
- delta_mx_key |
|
- col_mx0 |
|
- rV0Pn |
|
- mxdiagD |
|
- is_diag_mxEtrig |
|
- unitmxZ |
|
- mxcol0 |
|
- map_mxD |
|
- map_usubmx |
|
- eq_mxblockP |
|
- row_permM |
|
- tr_block_mx |
|
- map2_trmx |
|
- invmx_block_diag |
|
- col_perm_key |
|
- mulmx1_unit |
|
- dsubmxEsub |
|
- comm_mxM |
|
- summxE |
|
- scale_block_mx |
|
- ulsubmx_diag |
|
- mul_delta_mx_cond |
|
- add_block_mx |
|
- eq_in_map_mx |
|
- col0 |
|
- mul_dsub_mx |
|
- map2_xcol |
|
- unitmx_mul |
|
- vec_mxK |
|
- mxtraceD |
|
- trmx_mul |
|
- map2_mxDl |
|
- trmxV |
|
- cV0Pn |
|
- col'Kl |
|
- mxOver_scalarE |
|
- cofactor_map_mx |
|
- mul_mxblock |
|
- mxOver_add_subproof |
|
- mxOver_constE |
|
- pid_mx_col |
|
- mxblockEv |
|
- mxvec_indexP |
|
- all_comm_mx1 |
|
- map_copid_mx |
|
- mul_adj_mx |
|
- map_diag_mx |
|
- block_mxKdl |
|
- mxblock_recu |
|
- mxsub_ffunl |
|
- pid_mx_minh |
|
- unitmx_inv |
|
- conform_castmx |
|
- mxOverP |
|
- mxsub_const |
|
- submxrowN |
|
- mxrowB |
|
- scalemxA |
|
- mxdiagB |
|
- col'_col_mx |
|
- col_lsubmx |
|
- map_pid_mx |
|
- map_mx_id |
|
- submxcol_matrix |
|
- cofactorZ |
|
- col1 |
|
- map2_dlsubmx |
|
- is_trig_mxP |
|
- is_trig_block_mx |
|
- col_permE |
|
- delta_mx_lshift |
|
- eq_row_mx |
|
- xrowE |
|
- mxsubcr |
|
- mxdiag0 |
|
- scalemx_const |
|
- comm_mxN |
|
- copid_mx_id |
|
- trmx_inv |
|
- vec_mx_delta |
|
- mxOver_const |
|
- mx1_sum_delta |
|
- eq_map2_mx |
|
- submxcolN |
|
- row_mx_const |
|
- map_mx_eq0 |
|
- lift0_permK |
|
- col_const |
|
- pid_mx_id |
|
- all_comm_mxP |
|
- pid_mx_block |
|
- row_const |
|
- ulsubmxEsub |
|
- block_mxKul |
|
- scalar_mx_key |
|
- colKr |
|
- comm_mxE |
|
- delta_mx_ushift |
|
- row_mxdiag |
|
- row_diag_mx |
|
- comm1mx |
|
- diagmx_ind |
|
- scalar_mx_is_diag |
|
- row_permE |
|
- det_mx11 |
|
- swizzle_mx_is_semi_additive |
|
- col_mxA |
|
- comm_mx_refl |
|
- ursubmx_trig |
|
- is_diag_mxblock |
|
- trmx_mul_rev |
|
- scalar_mx_is_multiplicative |
|
- map_mx_is_scalar |
|
- mul_mxblock_mxrow |
|
- mxcolK |
|
- xrow_const |
|
- submxcol0 |
|
- castmx_id |
|
- submxrow0 |
|
- eq_map_mx |
|
- map_mx_is_multiplicative |
|
- scalar_mxM |
|
- mxvec_eq0 |
|
- mulmx1C |
|
- usubmx_key |
|
- tr_col_mx |
|
- mxsub_ffunr |
|
- col_permEsub |
|
- mulmx0 |
|
- submxblockN |
|
- map_const_mx |
|
- trmx_dlsub |
|
- trmx_dsub |
|
- mxsub_ind |
|
- map_mx_adj |
|
- submxblockEv |
|
- mulmx_lsub |
|
- col_mxKd |
|
- map2_ulsubmx |
|
- mulmxA |
|
- pid_mx_minv |
|
- colsub_cast |
|
- submxblockEh |
|
- row_perm_const |
|
- unitmx_tr |
|
- row_eq |
|
- all_comm_mx2P |
|
- block_mxEh |
|
- mul_copid_mx_pid |
|
- scalar_mxC |
|
- map_row |
|
- submxrow_sum |
|
- eq_colsub |
|
- castmx_sym |
|
- submxblock_diag |
|
- mul_col_perm |
|
- submxrowB |
|
- map_lsubmx |
|
- col_mxcol |
|
- block_mxEv |
|
- row'_const |
|
- is_perm_mxP |
|
- comm_mxP |
|
- mxcolD |
|
- mulmx_diag |
|
- matrix_eq0 |
|
- map2_0mx |
|
- diag_mx_comm |
|
- mxrowK |
|
- castmxK |
|
- eq_col_mx |
|
- mul_rV_lin1 |
|
- colKl |
|
- drsubmx_diag |
|
- perm_mxM |
|
- row'_eq |
|
- flatmx0 |
|
- map_block_mx |
|
- eq_mxcolP |
|
- all_comm_mx_cons |
|
- trace_map_mx |
|
- map_conform_mx |
|
- ringmx_ind |
|
- mul_submxrow |
|
- map2_const_mx |
|
- comm_mx_scalar |
|
- det_map_mx |
|
- mul_col_row |
|
- eq_mxrow |
|
- trmx_lsub |
|
- map_mx_inv |
|
- detM |
|
- submxblock0 |
|
- expand_det_col |
|
- comm0mx |
|
- card_mx |
|
- rowKd |
|
- tr_xcol |
|
- pid_mx_key |
|
- castmxEsub |
|
- lsubmxEsub |
|
- row'_row_mx |
|
- row0 |
|
- swizzle_mx_is_additive |
|
- rowKu |
|
- submxblock_sum |
|
- oppmx_key |
|
- map_dsubmx |
|
- map2_dsubmx |
|
- col_row_permC |
|
- mxOver0 |
|
- map2_col' |
|
- dlsubmxEsub |
|
- diag_mxrow |
|
- map_unitmx |
|
- map_mx_comp |
|
- hsubmxK |
|
- pid_mx_1 |
|
- scalar_mx_is_trig |
|
- trace_mx11 |
|
- mulmx_block |
|
- const_mx_is_additive |
|
- map2_mx_right_in |
|
- mxsub_eq_id |
|
- scalar_mx_is_scalar |
|
- mxtrace_is_additive |
|
- detZ |
|
- map_mx1 |
|
- ulsubmx_trig |
|
- block_diag_mx_unit |
|
- mul_row_perm |
|
- mul_vec_lin |
|
- mul1mx |
|
- dsubmx_key |
|
- map_dlsubmx |
|
- diag_mx_row |
|
- cormen_lup_lower |
|
- exp_block_diag_mx |
|
- vec_mx_key |
|
- mxdiag_recl |
|
- map_row' |
|
- eq_mxblock |
|
- map_mx_inj |
|
- row_thin_mx |
|
- xcolEsub |
|
- map2_drsubmx |
|
- map_invmx |
|
- mulKmx |
|
- map2_row_perm |
|
- perm_mx1 |
|
- col_mx_const |
|
- map_mx_unit |
|
- add_col_mx |
|
- mul0mx |
|
- det_mx00 |
|
- mx'_cast |
|
- swizzle_mx_is_scalable |
|
- det_scalar1 |
|
- mxblock_sum |
|
- mul_usub_mx |
|
- is_diag_mxblockP |
|
- eq_mxrowP |
|
- colE |
|
- mxtraceZ |
|
- map_trmx |
|
- mxtrace_tr |
|
- trmx_conform |
|
- is_perm_mxV |
|
- col'Esub |
|
- mxblock_recl |
|
- matrixP |
|
- invmxZ |
|
- mxtrace1 |
|
- nz_row_eq0 |
|
- mxsub_eq_colsub |
|
- row_ind |
|
- mxOver_scalar |
|
- mx11_is_trig |
|
- mxEmxblock |
|
- mulmx_key |
|
- tperm_mxEsub |
|
- map2_mx_right |
|
- unitmx_perm |
|
- mulmxK |
|
- eq_in_map2_mx |
|
- comm_mxD |
|
- map_ulsubmx |
|
- mxvecK |
|
- mxdiagZ |
|
- diag_mx_key |
|
- dlsubmx_diag |
|
- GL_MxE |
|
- det_perm |
|
- mxdiag_sum |
|
- mxsub_eq_rowsub |
|
- GL_1E |
|
- row_mxKl |
|
- map2_block_mx |
|
- col_perm1 |
|
- mxE |
|
- mxvec_dotmul |
|
- lin_mul_row_is_linear |
|
- eq_mxdiagP |
|
- GL_det |
|
- mulmxE |
|
- comm_mx_sum |
|
- row_matrixP |
|
- map2_castmx |
|
- mxEmxcol |
|
- tr_row_perm |
|
- col_id |
|
- trmx_rsub |
|
- map_delta_mx |
|
- map2_col |
|
- is_trig_mxblock |
|
- castmxE |
|
- det0P |
|
- map2_mxDr |
|
- unitr_trmx |
|
- det1 |
|
- row_row_mx |
|
- diag_mxP |
|
- rowsub_cast |
|
- map_col |
|
- det_trig |
|
- det_ublock |
|
- cormen_lup_perm |
|
- comm_scalar_mx |
|
- is_diag_mx_is_trig |
|
- GL_unit |
|
- matrix_sum_delta |
|
- col_flat_mx |
|
- cofactor_tr |
|
- mul_mxrow_mxcol |
|
- mxtrace_mulC |
|
- colEsub |
|
- mul_mx_adj |
|
- diag_mx_is_trig |
|
- submxrowK |
|
- mxtrace_diag |
|
- lift0_mx_perm |
|
- diag_mxC |
|
- scalemx1 |
|
- row'Esub |
|
- trigsqmx_ind |
|
- trmx_eq0 |
|
- scalemx_key |
|
- adjugate_key |
|
- lin_mulmxr_is_linear |
|
- row_mul |
|
- map2_mx_left_in |
|
- mulmx_suml |
|
- is_perm_mx1 |
|
- row_id |
|
- trmx_ulsub |
|
- map_mx0 |
|
- submxblockD |
|
- map_perm_mx |
|
- tr_mxdiag |
|
- pid_mxErow |
|
- mxblock_const |
|
- scale_row_mx |
|
- submxcol_mul |
|
- row_mxEr |
|
- sqmx_ind |
|
- map_mxvec |
|
- castmx_const |
|
- pid_mxEcol |
|
- mulmxKV |
|
- mxsubrc |
|
- detV |
|
- mulmxDl |
|
- mxOver_diag |
|
- GL_VE |
|
- mxtrace0 |
|
- expand_cofactor |
|
- mxrow_sum |
|
- mx_ind |
|
- mulmx_sumr |
|
- mulmxBr |
|
- matrix0Pn |
|
- matrix_nonzero1 |
|
- col'Kr |
|
- row_mxcol |
|
- col_mxKu |
|
- map_vec_mx |
|
- determinant_multilinear |
|
- perm_mx_is_perm |
|
- tr_col_perm |
|
- mulmxnE |
|
- drsubmx_trig |
|
- comm_mxN1 |
|
- diag_mx_is_additive |
|
- mxblockN |
|
- col_col_mx |
|
- mxblockP |
|
- submxcolB |
|
- row_mxblock |
|
- row_sum_delta |
|
- lsubmx_key |
|
- comm_mx0 |
|
- det_Vandermonde |
|
- nonconform_mx |
|
- conform_mx_id |
|
- mxcolEblock |
|
- block_mx_const |
|
- map_rsubmx |
|
- block_mxKur |
|
- rsubmx_key |
|
- trmx_key |
|
- tr_mxblock |
|
- block_mxKdr |
|
- thinmx0 |
|
- mxsub_cast |
|
- pid_mx_0 |
|
- trmx_inj |
|
- mulmxV |
|
- path: mathcomp/ssreflect/order.v |
|
theorems: |
|
- lt_Taggedl |
|
- diffE |
|
- leU2E |
|
- bigmin_inf |
|
- sub_bigmax_seq |
|
- joinxB |
|
- gt_min |
|
- le_sorted_filter |
|
- join0x |
|
- min_minKx |
|
- joinUA |
|
- meetUr |
|
- subset_bigmax |
|
- ltxi_tuplePlt |
|
- rcomplPmeet |
|
- refl |
|
- lcomparable_leP |
|
- comparable_lteifNE |
|
- codiffErcompl |
|
- bigmaxD1 |
|
- compl_joins |
|
- setKIC |
|
- arg_maxP |
|
- refl |
|
- comparable_bigl |
|
- lexU |
|
- lt_def |
|
- meetUl |
|
- leIxr |
|
- orEbool |
|
- le0x |
|
- trans |
|
- meetxx |
|
- enumT |
|
- le0s |
|
- size_enum_ord |
|
- nhomo_ltn_lt_in |
|
- ltxx |
|
- join_cons |
|
- disj_diffr |
|
- lcmE |
|
- lt_def |
|
- sig_bij_on |
|
- trans |
|
- join_idPr |
|
- decnP |
|
- ltn_def |
|
- ltgtP |
|
- trans |
|
- incomparable_eqF |
|
- count_lt_nth |
|
- joinKIC |
|
- diffxB |
|
- meet_eq1 |
|
- eq_minr |
|
- comparable_contra_leq_lt |
|
- le_sig |
|
- joinBI |
|
- contra_not_lt |
|
- comparable_contra_leq_le |
|
- sub_in_bigmax |
|
- complEcodiff |
|
- incn_inP |
|
- enum_setT |
|
- meetUl |
|
- comparable_lteif_minr |
|
- lt_asym |
|
- meetUA |
|
- mono_leif |
|
- eq_le |
|
- rcomplPmeet |
|
- compl_inj |
|
- diffxx |
|
- le_path_filter |
|
- count_lt_ge |
|
- le_meetU |
|
- les0 |
|
- sub_bigmin |
|
- enum_val_inj |
|
- opred_joins |
|
- meetKU |
|
- meetIB |
|
- meet1x |
|
- contra_lt_le |
|
- joinKI |
|
- diffKI |
|
- sort_le_sorted |
|
- bigmin_geP |
|
- meetUl |
|
- rcomplPmeet |
|
- max_r |
|
- maxxx |
|
- meetUl |
|
- comparable_maxl |
|
- comparable_contra_lt_le |
|
- maxEge |
|
- ltxi_cons |
|
- opred1 |
|
- bigmax_eq_arg |
|
- comparable_contraTle |
|
- joinA |
|
- contra_leq_le |
|
- leifP |
|
- le_path_min |
|
- lteifN |
|
- sig2K |
|
- lt_sorted_pairwise |
|
- meet_def_le |
|
- comparable_leNgt |
|
- ltxi0s |
|
- lcomparable_ltP |
|
- joinE |
|
- comparable_min_maxr |
|
- leU2l_le |
|
- botEprodlexi |
|
- nmono_in_leif |
|
- count_lt_le_mem |
|
- minEge |
|
- min_l |
|
- bigmin_le_cond |
|
- le_cons |
|
- bigmax_ge_id |
|
- meetxC |
|
- diffBx |
|
- comparable_arg_maxP |
|
- sub_tprod_lexi |
|
- comparable_ge_max |
|
- inj_homo_lt_in |
|
- lteif_minr |
|
- le_bigmax_ord |
|
- joinxx |
|
- compl_meets |
|
- comparable_contraPle |
|
- joinC |
|
- ge_trans |
|
- comparable_minC |
|
- join_r |
|
- comparable_maxEge |
|
- joinUKC |
|
- anti |
|
- comparable_le_max |
|
- joins_disjoint |
|
- subset_bigmin |
|
- le_bigmax2 |
|
- homo_ltn_lt_in |
|
- comparable_minCA |
|
- comparable_max_idPl |
|
- leU2 |
|
- eqTleif |
|
- lex1 |
|
- comparable_ltgtP |
|
- eq_diff |
|
- leI2 |
|
- ltEnat |
|
- leI2l_le |
|
- joinIKC |
|
- gt_comparable |
|
- le_anti |
|
- eq_joinl |
|
- joinEprod |
|
- comparable_contra_not_le |
|
- minEgt |
|
- max_minl |
|
- anti |
|
- eq_leLR |
|
- leC |
|
- total |
|
- enum_val_nth |
|
- gcdE |
|
- nonincnP |
|
- lexi_pair |
|
- leUx |
|
- comparable_contraFle |
|
- nth_count_le |
|
- idfun_is_join_morphism |
|
- joinBx |
|
- diff1x |
|
- bigmin_idl |
|
- filter_le_nth |
|
- meetUKC |
|
- le_lt_asym |
|
- diffIx |
|
- min_idPl |
|
- lt1x |
|
- refl |
|
- lexUr |
|
- maxElt |
|
- enum_uniq |
|
- leW_mono |
|
- ge_comparable |
|
- lteif_imply |
|
- lt_val |
|
- rcomplEprod |
|
- lt_trans |
|
- lexi_tupleP |
|
- le_anti |
|
- maxKx |
|
- lexUl |
|
- leUl |
|
- trans |
|
- enum_ord |
|
- omorph0 |
|
- bigmin_gtP |
|
- meetUl |
|
- le_Taggedl |
|
- le_bigmin_nat_cond |
|
- leEseq |
|
- lex1 |
|
- lexI |
|
- maxCA |
|
- joinA |
|
- join_idPl |
|
- wlog_lt |
|
- lt_Taggedr |
|
- comparable_sym |
|
- contra_leq_lt |
|
- diffKU |
|
- lexI |
|
- minC |
|
- eqRank |
|
- comparable_maxKx |
|
- lt_max |
|
- le_max |
|
- enum_valP |
|
- lt_min |
|
- bigmax_mkcondl |
|
- nth_enum_ord |
|
- enum_valK |
|
- maxAC |
|
- tnth_meet |
|
- comparable_max_minr |
|
- enum_rank_inj |
|
- omorphI |
|
- joinKI |
|
- le_anti |
|
- le_enum_val |
|
- refl |
|
- eq_bigmax |
|
- joinAC |
|
- bigmax_idr |
|
- sub_prod_lexi |
|
- codiffEprod |
|
- joinUC |
|
- leif_le |
|
- le_bigmin_ord_cond |
|
- meets_total |
|
- comparable_minEgt |
|
- join1x |
|
- bigmin_set1 |
|
- le_trans |
|
- sig_bij |
|
- lt_path_sortedE |
|
- leEsig |
|
- diffUx |
|
- leEseqlexi |
|
- meetEprod |
|
- joinxx |
|
- topEdual |
|
- diffErcompl |
|
- comparable_contra_lt |
|
- bigmax_mkcond |
|
- meetA |
|
- lteif_maxl |
|
- lt_eqF |
|
- tnth_join |
|
- joinIl |
|
- dec_inj |
|
- comparable_contraNlt |
|
- codiffErcompl |
|
- botEtprod |
|
- bigmin_eq_arg |
|
- topEord |
|
- sigK |
|
- bigmax_ltP |
|
- ltx1 |
|
- mask_sort_le |
|
- leEdual |
|
- joinEsubset |
|
- lt_def |
|
- joinCx |
|
- tnth_codiff |
|
- meetEsubset |
|
- lt_leif |
|
- subseq_lt_sorted |
|
- diffKI |
|
- bigmax_le |
|
- lteifNE |
|
- meets_setU |
|
- eq_meetr |
|
- le_def |
|
- le_max_id |
|
- rank_bij |
|
- comparable_maxAC |
|
- leI2E |
|
- meetsP_seq |
|
- neqhead_ltxiE |
|
- subseq_lt_path |
|
- leBRL |
|
- lt_sorted_leq_nth |
|
- lteifF |
|
- diffErcompl |
|
- subseq_le_sorted |
|
- lcomparable_ltgtP |
|
- subseq_le_path |
|
- joinx1 |
|
- meets_inf_seq |
|
- meetKUC |
|
- bigmin_mkcondl |
|
- enum_rank_bij |
|
- count_le_gt |
|
- opred_meets |
|
- rcomplEtprod |
|
- codiffErcompl |
|
- ltrW_lteif |
|
- contra_lt_not |
|
- lt_nsym |
|
- neq_lt |
|
- meetUl |
|
- comparable_contra_ltn_le |
|
- lt_neqAle |
|
- joinA |
|
- bigmin_idr |
|
- gtE |
|
- meet_eq0E_diff |
|
- valI |
|
- ltxI |
|
- bigminUl |
|
- lt_sorted_eq |
|
- sort_lt_sorted |
|
- bigminUr |
|
- inj_homo_lt |
|
- maxEgt |
|
- comparable_ge_min |
|
- comparable_contra_le |
|
- comparable_lt_min |
|
- le_eqVlt |
|
- index_enum_ord |
|
- le_meets |
|
- diff0x |
|
- sub_in_bigmin |
|
- eq_joinr |
|
- set_enum |
|
- comparable_maxxK |
|
- le_bigmax_nat_cond |
|
- rankEsum |
|
- comparable_contraPlt |
|
- valD |
|
- ge_anti |
|
- bigmax_eq_id |
|
- botEsubset |
|
- omorphU |
|
- meetIKC |
|
- diffxU |
|
- inj_nhomo_lt |
|
- leif_trans |
|
- meetKI |
|
- contra_ltF |
|
- joinKU |
|
- meetKU |
|
- lt_rank |
|
- sorted_mask_sort_le |
|
- lt_path_pairwise |
|
- nth_enum_rank_in |
|
- gt_max |
|
- nth_count_gt |
|
- enum_rankK_in |
|
- bigmax_idl |
|
- ltEprod |
|
- comparable_contra_le_lt |
|
- joinsP_seq |
|
- ltEseqlexi |
|
- contra_leF |
|
- leI2r_le |
|
- le_bigmin |
|
- joins_setU |
|
- le_le_trans |
|
- prod_display_unit |
|
- sort_lt_id |
|
- lteif_maxr |
|
- lexI |
|
- meetA |
|
- comparable_minl |
|
- maxEle |
|
- bigmin_split |
|
- leIl |
|
- rcomplPmeet |
|
- maxC |
|
- ltn_def |
|
- rcomplKU |
|
- lt_pair |
|
- eq_leRL |
|
- dvdE |
|
- sub_bigmin_seq |
|
- complK |
|
- rcomplPmeet |
|
- ltW_nhomo_in |
|
- inj_nhomo_lt_in |
|
- omorph_lt |
|
- meet0x |
|
- perm_sort_leP |
|
- diffxI |
|
- leEtprod |
|
- rank_inj |
|
- joinKI |
|
- nmono_leif |
|
- le_min |
|
- complEsubset |
|
- comparable_minAC |
|
- le_enum_rank |
|
- comp_is_bottom_morphism |
|
- joinA |
|
- comparable_lteif_maxl |
|
- ord_display |
|
- joins_min_seq |
|
- lex1 |
|
- le_bigmax |
|
- le_sorted_ltn_nth |
|
- le_sorted_eq |
|
- count_le_nth |
|
- leif_refl |
|
- anti |
|
- sdvdE |
|
- complEbool |
|
- meet_idPr |
|
- le_def |
|
- nth_count_ge |
|
- val1 |
|
- meetUC |
|
- lt_def |
|
- le_gtF |
|
- diffEtprod |
|
- meetBx |
|
- anti |
|
- meetsP |
|
- ltW_homo_in |
|
- meetE |
|
- leBUK |
|
- comparable_minEge |
|
- complEdiff |
|
- meetx1 |
|
- complEcodiff |
|
- disj_leC |
|
- lt_def |
|
- mem_enum |
|
- meet_cons |
|
- comparable_le_min |
|
- joinBIC |
|
- meets_inf |
|
- comparable_arg_minP |
|
- sub_bigmax_cond |
|
- minElt |
|
- meetA |
|
- complEtprod |
|
- joinKI |
|
- incnP |
|
- meetxx |
|
- lteifNF |
|
- topEsubset |
|
- bigminD1 |
|
- bigmaxIr |
|
- gt_def |
|
- nat_display |
|
- lteif_trans |
|
- comparable_minACA |
|
- le_trans |
|
- meets_ge |
|
- Rank1K |
|
- joinC |
|
- contra_le_not |
|
- lt_wval |
|
- comparable_contraTlt |
|
- ltW |
|
- cardT |
|
- leW_mono_in |
|
- le_path_mask |
|
- arg_minP |
|
- eq_Rank |
|
- joinxx |
|
- lteif_anti |
|
- complU |
|
- leIx2 |
|
- join_l |
|
- ge_leif |
|
- lt_sorted_mask |
|
- nth_count_lt |
|
- bigmax_leP |
|
- meet_idPl |
|
- eqhead_ltxiE |
|
- nondecnP |
|
- opredU |
|
- min_minxK |
|
- meetxx |
|
- le_bigmin_nat |
|
- le_comparable |
|
- bigminD |
|
- leEord |
|
- comparable_maxr |
|
- bigmaxD |
|
- meetUl |
|
- meets_seq |
|
- min_maxr |
|
- maxEnat |
|
- maxA |
|
- comparable_min_maxl |
|
- bigminIr |
|
- leBr |
|
- leEbool |
|
- contra_ltn_lt |
|
- homo_ltn_lt |
|
- enum_set0 |
|
- enum_val_bij |
|
- complEdiff |
|
- ltEbool |
|
- botEord |
|
- subset_bigmin_cond |
|
- lexI |
|
- meet_eql |
|
- lexis0 |
|
- bigmax_imset |
|
- join_eq0 |
|
- complEprod |
|
- disjoint_lexUr |
|
- codiffErcompl |
|
- le_mono_in |
|
- totalT |
|
- minACA |
|
- compl0 |
|
- setKUC |
|
- rcomplPjoin |
|
- leIr |
|
- complB |
|
- lex1 |
|
- ltx0 |
|
- joinsP |
|
- rect |
|
- comparable_maxA |
|
- leIx |
|
- leEmeet |
|
- le_sig1 |
|
- leUidr |
|
- cover_leIxr |
|
- le_pair |
|
- meetEtotal |
|
- comparable_eq_maxl |
|
- enum_valK_in |
|
- joinUKI |
|
- comparable_lteif_minl |
|
- joinBKC |
|
- comp_is_nondecreasing |
|
- complEcodiff |
|
- meetUK |
|
- leP |
|
- rank_bij_on |
|
- diffUK |
|
- mono_sorted_enum |
|
- le_bigmax_cond |
|
- sorted_filter_le |
|
- leU2r_le |
|
- wlog_le |
|
- posxP |
|
- minxx |
|
- leNgt |
|
- bigmaxU |
|
- contra_ltT |
|
- joins_min |
|
- lexI |
|
- rcomplKI |
|
- bigmax_split |
|
- leEjoin |
|
- complEdiff |
|
- mono_in_leif |
|
- meetxB |
|
- RankEsum |
|
- lt_sorted_filter |
|
- comparable_leP |
|
- lexi_display |
|
- setTDsym |
|
- bigmaxID |
|
- contra_le_leq |
|
- leUx |
|
- leBLR |
|
- meet_r |
|
- lt_sig |
|
- leCx |
|
- bigmax_set1 |
|
- min_idPr |
|
- trans |
|
- filter_sort_le |
|
- comparable_lteif_maxr |
|
- leW_nmono |
|
- le_trans |
|
- lt_total |
|
- mono_unique |
|
- contra_leT |
|
- le0x |
|
- bigmaxIl |
|
- complEdiff |
|
- bigmax_lt |
|
- contra_le_lt |
|
- le_sorted_mask |
|
- comparable_min_idPr |
|
- joinIr |
|
- opredI |
|
- comparable_minKx |
|
- joinxC |
|
- comparable_max_minl |
|
- ltxi_pair |
|
- leB2 |
|
- idfun_is_top_morphism |
|
- inc_inj |
|
- nondecn_inP |
|
- comparable_ltNge |
|
- complErcompl |
|
- min_r |
|
- le_Taggedr |
|
- le_rank |
|
- subEsubset |
|
- le_total |
|
- refl |
|
- complEcodiff |
|
- leEsubset |
|
- lex0 |
|
- bigmin_imset |
|
- topEtlexi |
|
- lexI |
|
- sub_bigmin_cond |
|
- meetKU |
|
- bigminID |
|
- ltxU |
|
- comparable_minxK |
|
- le_sorted_pairwise |
|
- lteif_minl |
|
- diffEprod |
|
- ltW_nhomo |
|
- bigmin_mkcond |
|
- filter_lt_nth |
|
- eq_enum_rank_in |
|
- comparable_eq_minr |
|
- seqprod_display |
|
- diffx0 |
|
- val0 |
|
- bigmaxUl |
|
- leBC |
|
- lcomparableP |
|
- le0x |
|
- le_anti |
|
- leIidr |
|
- sig_inj |
|
- contra_not_le |
|
- le0x |
|
- omorph1 |
|
- topEprod |
|
- meetEdual |
|
- leEjoin |
|
- contraFle |
|
- joinUK |
|
- ltEdual |
|
- tnth_compl |
|
- meetCx |
|
- ltUx |
|
- lt_comparable |
|
- leEprodlexi |
|
- enum0 |
|
- contra_lt_ltn |
|
- bigminU |
|
- eq_bigmin |
|
- comparable_maxACA |
|
- contra_ltN |
|
- nth_enum_rank |
|
- le_mono |
|
- dec_inj_in |
|
- comparableT |
|
- le_bigmax_nat |
|
- total |
|
- orbE |
|
- setIDv |
|
- ltIx |
|
- comparable_contra_not_lt |
|
- lteifW |
|
- ge_total |
|
- ge_min |
|
- leIxl |
|
- enum_rank_in_inj |
|
- rankE |
|
- lt_def |
|
- minEnat |
|
- botEprod |
|
- contraPle |
|
- comparable_lt_max |
|
- joinEdual |
|
- trans |
|
- lt_geF |
|
- contraFlt |
|
- topEprodlexi |
|
- meetKU |
|
- nth_ord_enum |
|
- nat1E |
|
- sub_bigmax |
|
- meetIK |
|
- ge_antiT |
|
- comparableP |
|
- comp_is_join_morphism |
|
- meets_max_seq |
|
- geE |
|
- joinBK |
|
- joinEtotal |
|
- eq_leif |
|
- leEnat |
|
- lt_path_filter |
|
- ltxi_lehead |
|
- card |
|
- minA |
|
- nth_count_eq |
|
- inc_inj_in |
|
- eq_cardT |
|
- ge_anti |
|
- subEbool |
|
- le_lt_trans |
|
- joinC |
|
- contra_lt |
|
- leEmeet |
|
- le0x |
|
- lt_bigmin |
|
- meetUl |
|
- val_enum_ord |
|
- lteifS |
|
- disjoint_lexUl |
|
- lt0B |
|
- diffErcompl |
|
- ltEord |
|
- disj_le |
|
- comparablexx |
|
- le_bigmax_ord_cond |
|
- seqlexi_display |
|
- eq_minl |
|
- meetUKU |
|
- ltNleif |
|
- le1x |
|
- dvd_display |
|
- leUx |
|
- eqhead_lexiE |
|
- meetKI |
|
- meet_l |
|
- enum_val_bij_in |
|
- leUx |
|
- contra_le_ltn |
|
- comp_is_meet_morphism |
|
- meetx0 |
|
- contra_le |
|
- comparable_minA |
|
- botEtlexi |
|
- contraPlt |
|
- total |
|
- contra_lt_leq |
|
- opredU |
|
- joinKI |
|
- bigmin_le_id |
|
- joinEseq |
|
- meetC |
|
- min_maxl |
|
- disj_diffl |
|
- lt_Rank |
|
- comparable_maxEgt |
|
- meetC |
|
- lexi_lehead |
|
- le_trans |
|
- joins_seq |
|
- Rank2K |
|
- sub_seqprod_lexi |
|
- mem2_sort_le |
|
- lt_le_trans |
|
- lt_sorted_uniq_le |
|
- bigmin_eq_id |
|
- botEnat |
|
- le_path_sortedE |
|
- valU |
|
- sorted_subseq_sort_le |
|
- lt_leAnge |
|
- subset_bigmax_cond |
|
- max_maxxK |
|
- le_bigmin_ord |
|
- comparable_contraNle |
|
- lt0x |
|
- leif_eq |
|
- lexU2 |
|
- rankK |
|
- sigE12 |
|
- minKx |
|
- bigmax_mkcondr |
|
- sorted_filter_ge |
|
- meetKIC |
|
- meetEtprod |
|
- meetxx |
|
- subseq_sort_le |
|
- le0x |
|
- leIidl |
|
- totalU |
|
- ltxis0 |
|
- lt_def |
|
- comparable_contraFlt |
|
- tnth_diff |
|
- ltEtprod |
|
- contra_ltn_le |
|
- joinIB |
|
- meets_max |
|
- nhomo_ltn_lt |
|
- andEbool |
|
- leW_nmono_in |
|
- comparable_minr |
|
- lteifT |
|
- minCA |
|
- leEprod |
|
- bool_display |
|
- contraNlt |
|
- sorted_filter_lt |
|
- eq_maxr |
|
- LatticePred.opred_meets |
|
- le_joins |
|
- bigmin_le |
|
- lt_sorted_uniq |
|
- disj_leC |
|
- andbE |
|
- minxK |
|
- omorph_le |
|
- join_def_le |
|
- meetACA |
|
- botEdual |
|
- eq_ltRL |
|
- le_bigmin2 |
|
- max_l |
|
- ltxi_tupleP |
|
- gt_eqF |
|
- rcomplPjoin |
|
- eq_enum |
|
- anti |
|
- lt_val |
|
- meetC |
|
- topEsig |
|
- rcomplPjoin |
|
- joinx0 |
|
- cardE |
|
- topEtprod |
|
- joinEtprod |
|
- refl |
|
- maxACA |
|
- cover_leIxl |
|
- joinIl |
|
- nat0E |
|
- codiffEtprod |
|
- eq_maxl |
|
- max_maxKx |
|
- joins_le |
|
- lexi0s |
|
- lexC |
|
- joinIK |
|
- sorted_filter_gt |
|
- path: mathcomp/solvable/gfunctor.v |
|
theorems: |
|
- idGfun_closed |
|
- gFmod_cont |
|
- gFgroupset |
|
- gFnormal_trans |
|
- trivGfun_cont |
|
- gFmod_hereditary |
|
- gFunctorS |
|
- morphimF |
|
- injmF_sub |
|
- gFnorm_trans |
|
- gFsub_trans |
|
- injmF |
|
- pcontinuous_is_hereditary |
|
- gFisog |
|
- idGfun_cont |
|
- gFcont |
|
- gFnorm |
|
- gFunctorI |
|
- gFmod_closed |
|
- idGfun_monotonic |
|
- gFchar |
|
- gFnorms |
|
- gFcompS |
|
- gFchar_trans |
|
- gFhereditary |
|
- continuous_is_iso_continuous |
|
- gFiso_cont |
|
- gFcomp_cont |
|
- gFnormal |
|
- gFid |
|
- gFcomp_closed |
|
- gF1 |
|
- gFisom |
|
- pmorphimF |
|
- pcontinuous_is_continuous |
|
- path: mathcomp/ssreflect/ssrnat.v |
|
theorems: |
|
- expnS |
|
- addnK |
|
- lt0b |
|
- ltn_subCl |
|
- ltn0 |
|
- eq_binP |
|
- ltn_sqr |
|
- addnn |
|
- contra_leqF |
|
- mono_leqif |
|
- eqSS |
|
- ltn_predRL |
|
- minnSS |
|
- ltnSE |
|
- sqrnD_sub |
|
- leq_nmono |
|
- eq_ex_maxn |
|
- gtn_max |
|
- leq_eqVlt |
|
- ltn_Sdouble |
|
- addnBCA |
|
- ltn_pmul2r |
|
- half_leq |
|
- ltn_exp2l |
|
- maxnSS |
|
- minnMl |
|
- leqW |
|
- anti_leq |
|
- subnBAC |
|
- doubleS |
|
- odd_geq |
|
- add1n |
|
- subnDr |
|
- addn4 |
|
- gtn_half_double |
|
- iter_muln |
|
- leq_mul2l |
|
- doubleE |
|
- half_bit_double |
|
- leq_addr |
|
- addn_eq0 |
|
- leq_total |
|
- subnAC |
|
- ltn_predK |
|
- addn_eq1 |
|
- muln_eq0 |
|
- leqP |
|
- ltn_neqAle |
|
- iter_succn |
|
- mulnAC |
|
- addnE |
|
- expn_eq0 |
|
- subnCBA |
|
- iter_addn_0 |
|
- eqn_add2l |
|
- leq_sqr |
|
- minKn |
|
- ltnNge |
|
- eqnP |
|
- eq_iterop |
|
- doubleD |
|
- addSnnS |
|
- addn_negb |
|
- muln_gt0 |
|
- leq_subCl |
|
- doubleK |
|
- leq_exp2r |
|
- leq_add2l |
|
- nat_of_mul_pos |
|
- contraTltn |
|
- subDnCAC |
|
- ltn_psubLR |
|
- prednK |
|
- muln0 |
|
- eqnE |
|
- ltn_sub2l |
|
- minn_maxl |
|
- decn_inj_in |
|
- expnAC |
|
- addE |
|
- ltn_pfact |
|
- addnAC |
|
- uphalf_leq |
|
- subDnAC |
|
- expIn |
|
- leq_sub |
|
- mulSnr |
|
- oddB |
|
- addn_maxr |
|
- contra_ltn |
|
- maxn_minr |
|
- subSS |
|
- exp1n |
|
- leq_subRL |
|
- ubnPleq |
|
- minn_idPl |
|
- ltnW |
|
- mulnDl |
|
- leq_pmull |
|
- addnBAC |
|
- ltn_add2l |
|
- contra_leqN |
|
- ltnNleqif |
|
- leqif_eq |
|
- leq_exp2l |
|
- posnP |
|
- double_eq0 |
|
- leq_sub2rE |
|
- oddE |
|
- anti_geq |
|
- inj_homo_ltn_in |
|
- maxnAC |
|
- subn1 |
|
- inj_homo_ltn |
|
- ltP |
|
- leqNgt |
|
- nat_of_add_bin |
|
- expnMn |
|
- iter_muln_1 |
|
- addnI |
|
- addBnA |
|
- leq_fact |
|
- ex_maxnP |
|
- leqif_mul |
|
- ltn_subRL |
|
- ltn_min |
|
- odd_uphalfK |
|
- eq_leq |
|
- lt0n |
|
- maxnn |
|
- mulnDr |
|
- ltn_subrR |
|
- addn_minl |
|
- iteropS |
|
- nat_semi_morph |
|
- ltnP |
|
- eqn_pmul2r |
|
- contra_ltnN |
|
- ltn_subLR |
|
- minnK |
|
- leqSpred |
|
- mulnn |
|
- minn_idPr |
|
- addnCA |
|
- eq_ex_minn |
|
- factS |
|
- even_halfK |
|
- leqif_refl |
|
- expnM |
|
- doubleB |
|
- oddD |
|
- subn_minl |
|
- ltn_psubCl |
|
- max0n |
|
- addn_maxl |
|
- subn0 |
|
- geq_minr |
|
- iter_in |
|
- nat_of_mul_bin |
|
- subn_maxl |
|
- contra_leq_ltn |
|
- find_ex_minn |
|
- ltn_addl |
|
- leq_pfact |
|
- halfD |
|
- oddX |
|
- expE |
|
- ltngtP |
|
- leq_min |
|
- ltn_double |
|
- addn1 |
|
- add3n |
|
- leq_uphalf_double |
|
- muln1 |
|
- leq_sub2r |
|
- nat_AGM2 |
|
- minn_maxr |
|
- geq_leqif |
|
- eqb0 |
|
- expnE |
|
- plusE |
|
- double0 |
|
- leq_mul2r |
|
- exp0n |
|
- eq_leqif |
|
- iter_predn |
|
- expnSr |
|
- minnACA |
|
- subnBl_leq |
|
- add2n |
|
- expn0 |
|
- neq0_lt0n |
|
- addnBl_leq |
|
- addnCBA |
|
- eqn_add2r |
|
- eqn_exp2r |
|
- subn_eq0 |
|
- iterX |
|
- muln_eq1 |
|
- subnK |
|
- ltn_fact |
|
- oddS |
|
- iterM |
|
- leqifP |
|
- leqW_mono_in |
|
- ltn_mul2r |
|
- addnBA |
|
- minusE |
|
- minnA |
|
- minnCA |
|
- leq_sub2lE |
|
- factE |
|
- mulnb |
|
- add4n |
|
- contra_not_leq |
|
- iteriS |
|
- mulnACA |
|
- ltn_sub2rE |
|
- eqn_sub2rE |
|
- addnACl |
|
- nat_Cauchy |
|
- maxnMr |
|
- gtn_eqF |
|
- maxn0 |
|
- even_uphalfK |
|
- leq_half_double |
|
- leq_maxl |
|
- lt0n_neq0 |
|
- contraFleq |
|
- contra_ltn_not |
|
- oddN |
|
- leqif_trans |
|
- doubleMl |
|
- oddb |
|
- uphalfE |
|
- fact_geq |
|
- homo_ltn |
|
- eqn_leq |
|
- uphalf_gt0 |
|
- leq_addl |
|
- iterS |
|
- addnBr_leq |
|
- addnS |
|
- ltn_Pmulr |
|
- ltn_expl |
|
- subnDAC |
|
- iter_addn |
|
- nat_of_binK |
|
- mulnC |
|
- incn_inj_in |
|
- addn2 |
|
- ltn_trans |
|
- mulnA |
|
- ltn_addr |
|
- ltn_pexp2l |
|
- eqn0Ngt |
|
- iterSr |
|
- doubleE |
|
- ltn_exp2r |
|
- ltn_pmul2l |
|
- decn_inj |
|
- leq_double |
|
- maxnCA |
|
- incn_inj |
|
- mulnS |
|
- homo_leq |
|
- sqrn_gt0 |
|
- fact_gt0 |
|
- mulnBr |
|
- maxnC |
|
- contra_leq_not |
|
- leq_subrR |
|
- gtn_neqAge |
|
- addnBn |
|
- odd_ltn |
|
- nat_of_exp_bin |
|
- subnDl |
|
- eqb1 |
|
- contraPltn |
|
- iter_fix |
|
- eqn_pmul2l |
|
- homo_ltn_in |
|
- contraFltn |
|
- inj_nhomo_ltn_in |
|
- subnKC |
|
- leq_pexp2l |
|
- subn_if_gt |
|
- lt_irrelevance |
|
- maxnK |
|
- leqnSn |
|
- ltn_add2r |
|
- odd_double |
|
- eqn_sub2lE |
|
- maxKn |
|
- sub1b |
|
- subnSK |
|
- ltnW_homo |
|
- eq_iteri |
|
- ltn_mul |
|
- maxnE |
|
- contraNleq |
|
- leq_b1 |
|
- ltn_predL |
|
- leq_maxr |
|
- geq_half_double |
|
- maxnACA |
|
- mulnBl |
|
- bin_of_natK |
|
- eqn_mul2r |
|
- nat_of_succ_pos |
|
- ltnn |
|
- subSKn |
|
- addn0 |
|
- ubnPeq |
|
- muln2 |
|
- expnD |
|
- expn1 |
|
- eqn_sqr |
|
- odd_double_half |
|
- maxn_idPr |
|
- ltn_eqF |
|
- double_gt0 |
|
- ex_minnP |
|
- maxnA |
|
- subSnn |
|
- leq_mul |
|
- ltn_subrL |
|
- addnABC |
|
- maxnMl |
|
- subDnCA |
|
- subKn |
|
- fact0 |
|
- leq_psubCr |
|
- maxn_minl |
|
- mulnCA |
|
- ltn_uphalf_double |
|
- subnDA |
|
- contra_ltnF |
|
- nat_semi_ring |
|
- leq_nmono_in |
|
- subnBr_leq |
|
- ltn_geF |
|
- contraPleq |
|
- minnMr |
|
- subBnAC |
|
- succnK |
|
- ltnSn |
|
- addKn |
|
- leq_max |
|
- leq_ltn_trans |
|
- mulnbl |
|
- addn3 |
|
- ltn_sub2r |
|
- addnACA |
|
- leq_subr |
|
- mulSn |
|
- geq_minl |
|
- leqW_nmono_in |
|
- uphalf_double |
|
- leq_pmul2l |
|
- addnA |
|
- mulnE |
|
- add0n |
|
- ltn_mul2l |
|
- ltnW_nhomo_in |
|
- geq_min |
|
- addnC |
|
- iter_succn_0 |
|
- gtn_uphalf_double |
|
- subn_sqr |
|
- min0n |
|
- contra_leqT |
|
- minn0 |
|
- contraTleq |
|
- addBnCAC |
|
- ltn_leqif |
|
- leq_pred |
|
- addn_min_max |
|
- leq_gtF |
|
- addn_minr |
|
- subn_gt0 |
|
- sub0n |
|
- oddM |
|
- leqnn |
|
- contra_ltn_leq |
|
- le_irrelevance |
|
- eqTleqif |
|
- minnC |
|
- leq_mono_in |
|
- sqrn_inj |
|
- ltnW_homo_in |
|
- succn_inj |
|
- mulnbr |
|
- subnBA |
|
- add_mulE |
|
- minnn |
|
- leq0n |
|
- mul0n |
|
- leq_subLR |
|
- leP |
|
- ltn0Sn |
|
- neq_ltn |
|
- mul1n |
|
- ltn_subCr |
|
- inj_nhomo_ltn |
|
- subnS |
|
- ubnP |
|
- subnn |
|
- addn_gt0 |
|
- contra_leq |
|
- expnI |
|
- addnCAC |
|
- nat_of_add_pos |
|
- contraNltn |
|
- nat_power_theory |
|
- subnE |
|
- eqn_mul2l |
|
- ltn_Pmull |
|
- minnAC |
|
- sqrnB |
|
- expn_gt0 |
|
- odd_gt0 |
|
- addIn |
|
- leq_trans |
|
- leq_Sdouble |
|
- geq_max |
|
- eq_iter |
|
- leqVgt |
|
- path: mathcomp/solvable/nilpotent.v |
|
theorems: |
|
- nilpotentS |
|
- nilpotent1 |
|
- lcn_normalS |
|
- ucn_char |
|
- ucn_sub |
|
- lcn_norm |
|
- quotient_sol |
|
- injm_sol |
|
- der_bigdprod |
|
- lcn_cont |
|
- lcn1 |
|
- ucn_nilpotent |
|
- abelian_nil |
|
- der_bigcprod |
|
- quotient_center_nil |
|
- nil_comm_properl |
|
- lcn_sub |
|
- ucn0 |
|
- morphim_ucn |
|
- isog_nil_class |
|
- nil_class0 |
|
- morphim_nil |
|
- ucn_norm |
|
- lcnSnS |
|
- nilpotent_proper_norm |
|
- sol_der1_proper |
|
- ucnSn |
|
- cyclic_nilpotent_quo_der1_cyclic |
|
- isog_nil |
|
- der_cprod |
|
- der_dprod |
|
- lcnSn |
|
- lcn_char |
|
- series_sol |
|
- nilpotent_sub_norm |
|
- derivedP |
|
- abelian_sol |
|
- centrals_nil |
|
- ucn_lcnP |
|
- ucn_bigcprod |
|
- morphim_lcn |
|
- ucn_normalS |
|
- ucn_normal |
|
- ucn_group_set |
|
- ucn_central |
|
- lcnE |
|
- metacyclic_sol |
|
- bigdprod_nil |
|
- lcn_bigcprod |
|
- ucn_dprod |
|
- lcn_dprod |
|
- ucn_bigdprod |
|
- ucnP |
|
- morphim_sol |
|
- ucn_subS |
|
- nil_class_quotient_center |
|
- ucn_cprod |
|
- nilpotent_sol |
|
- lcn0 |
|
- ucn_nil_classP |
|
- ucn_pmap |
|
- mulg_nil |
|
- nil_class_injm |
|
- solvable1 |
|
- lcn2 |
|
- lcn_sub_leq |
|
- lcnS |
|
- ucn_comm |
|
- nilpotent_class |
|
- nil_class_morphim |
|
- nil_comm_properr |
|
- ucn_sub_geq |
|
- center_nil_eq1 |
|
- cprod_nil |
|
- nil_class1 |
|
- lcn_normal |
|
- lcn_nil_classP |
|
- injm_ucn |
|
- dprod_nil |
|
- lcnP |
|
- lcn_bigdprod |
|
- quotient_ucn_add |
|
- lcn_central |
|
- lcn_cprod |
|
- ucnE |
|
- nilpotent_subnormal |
|
- nil_class_ucn |
|
- ucnSnR |
|
- lcn_group_set |
|
- isog_sol |
|
- path: mathcomp/algebra/fraction.v |
|
theorems: |
|
- pi_opp |
|
- addN_l |
|
- mulC |
|
- pi_mul |
|
- tofracMn |
|
- tofrac_eq0 |
|
- pi_inv |
|
- equivf_def |
|
- equivf_r |
|
- Ratio_numden |
|
- Ratio0 |
|
- tofrac_is_multiplicative |
|
- tofracMNn |
|
- tofrac1 |
|
- addC |
|
- denom_ratioP |
|
- inv0 |
|
- equivf_l |
|
- tofracB |
|
- mulA |
|
- mul1_l |
|
- Ratio_numden |
|
- add0_l |
|
- tofracD |
|
- tofracM |
|
- RatioP |
|
- mul_addl |
|
- equivf_refl |
|
- pi_add |
|
- numer0 |
|
- tofrac_eq |
|
- equivfE |
|
- denom_Ratio |
|
- numer_Ratio |
|
- addA |
|
- tofracXn |
|
- nonzero1 |
|
- tofrac_is_additive |
|
- tofracN |
|
- mulV_l |
|
- path: mathcomp/fingroup/action.v |
|
theorems: |
|
- astab1Js |
|
- actpermM |
|
- orbit_transl |
|
- atrans_dvd_index_in |
|
- orbit_inv |
|
- is_total_action |
|
- astabR |
|
- gacent1 |
|
- qactE |
|
- porbit_actperm |
|
- afix_cycle |
|
- injm_faithful |
|
- sub_astabQ |
|
- setactVin |
|
- contra_orbit |
|
- astabsR |
|
- orbit_sym |
|
- afix_gen_in |
|
- conjG_is_action |
|
- astabs_Aut_isom |
|
- gact_stable |
|
- acts_joing |
|
- afix_actby |
|
- abelian_classP |
|
- actperm_id |
|
- afixS |
|
- quotient_astabQ |
|
- gactX |
|
- comp_is_groupAction |
|
- afixRs_rcosets |
|
- sub_afixRs_norms |
|
- orbit_in_sym |
|
- astab_setact_in |
|
- subset_faithful |
|
- qact_domE |
|
- acts_quotient |
|
- qact_proof |
|
- restr_permE |
|
- astab_norm |
|
- astabs_act |
|
- aperm_is_action |
|
- conj_astabQ |
|
- astabs_mod |
|
- orbit_conjsg_in |
|
- gacent_ract |
|
- setactE |
|
- trans_subnorm_fixP |
|
- orbitE |
|
- orbit_partition |
|
- card_orbit_stab |
|
- comp_is_action |
|
- acts_sum_card_orbit |
|
- astab_comp |
|
- afixJ |
|
- acts_in_orbit |
|
- sub_afixRs_norm |
|
- acts_subnorm_fix |
|
- gacent_actby |
|
- astabsP |
|
- acts_ract |
|
- astabQ |
|
- atrans_supgroup |
|
- card_orbit1 |
|
- astabsJ |
|
- dom_qactJ |
|
- gacentY |
|
- orbit_in_eqP |
|
- actCJV |
|
- acts_gen |
|
- afix_cycle_in |
|
- atrans_acts |
|
- subgroup_transitiveP |
|
- actXin |
|
- astabU |
|
- astab1_set |
|
- amoveK |
|
- act_reprK |
|
- atrans_dvd_in |
|
- astabs_comp |
|
- afix_comp |
|
- sum_card_class |
|
- acts_subnorm_subgacent |
|
- astab_gen |
|
- astabs_range |
|
- acts_sub_orbit |
|
- afix_ract |
|
- orbitJ |
|
- gacentM |
|
- qactJ |
|
- actX |
|
- astabsU |
|
- afixM |
|
- sub_astab1_in |
|
- im_actm |
|
- gacentIdom |
|
- actsI |
|
- modactEcond |
|
- astabP |
|
- im_restr_perm |
|
- mem_setact |
|
- astab_normal |
|
- autactK |
|
- astabs_setact |
|
- card_setact |
|
- astab_subact |
|
- orbit_conjsg |
|
- fixSH |
|
- Cayley_isom |
|
- act_inj |
|
- orbit_stabilizer |
|
- triv_restr_perm |
|
- Aut_in_isog |
|
- restr_perm_isom |
|
- perm_act1P |
|
- astabM |
|
- sub_astab1 |
|
- Cayley_isog |
|
- faithful_isom |
|
- orbit_in_trans |
|
- gacentC |
|
- ker_actperm |
|
- mactE |
|
- astab1Rs |
|
- rcoset_is_action |
|
- astab_sub |
|
- orbit_lcoset |
|
- morph_gacent |
|
- atransPin |
|
- orbitR |
|
- orbitJs |
|
- conjg_is_groupAction |
|
- atrans_acts_in |
|
- orbit_trans |
|
- setactJ |
|
- gacts_range |
|
- morph_astab |
|
- actMin |
|
- orbit_actr |
|
- afixU |
|
- subgacentE |
|
- ract_is_action |
|
- morph_gastab |
|
- orbit_refl |
|
- astabs_subact |
|
- orbit_eq_mem |
|
- afix_subact |
|
- amove_orbit |
|
- astab_act |
|
- actKin |
|
- orbit_lcoset_in |
|
- morphim_actm |
|
- gacentD1 |
|
- morph_gact_irr |
|
- afixMin |
|
- astab1_act_in |
|
- actsD |
|
- gacent_comp |
|
- astabs_quotient |
|
- astab1_act |
|
- Aut_restr_perm |
|
- index_cent1 |
|
- astabsQ |
|
- modact_faithful |
|
- astabs1 |
|
- acts_act |
|
- orbit_rcoset |
|
- qact_is_groupAction |
|
- gacentQ |
|
- card_orbit |
|
- atransP |
|
- group_set_astab |
|
- atransP2in |
|
- injm_Aut_full |
|
- orbit_in_transl |
|
- gacentJ |
|
- card_conjugates |
|
- afixJG |
|
- gacent_cycle |
|
- actsU |
|
- faithfulR |
|
- perm_mact |
|
- astabs_actby |
|
- gactR |
|
- subgroup_transitivePin |
|
- mact_is_action |
|
- atrans_dvd |
|
- astabCin |
|
- modactE |
|
- gacent_gen |
|
- atrans_orbit |
|
- astabsIdom |
|
- afix_mod |
|
- astab1P |
|
- astabC |
|
- val_subact |
|
- acts_char |
|
- orbit_rcoset_in |
|
- sub_act_proof |
|
- astabRs_rcosets |
|
- isom_restr_perm |
|
- astabs_dom |
|
- modact_is_action |
|
- acts_irr_mod |
|
- afix1P |
|
- qactEcond |
|
- astab_mod |
|
- setact_orbit |
|
- restr_perm_commute |
|
- setact_is_action |
|
- group_set_astabs |
|
- gacentU |
|
- gacts_char |
|
- astabIdom |
|
- classes_partition |
|
- restr_perm_on |
|
- card_classes_abelian |
|
- reindex_astabs |
|
- class_formula |
|
- astabsI |
|
- astab_trans_gcore |
|
- sub_astabQR |
|
- Frobenius_Cauchy |
|
- orbitRs |
|
- gactV |
|
- orbitP |
|
- group_set_gacent |
|
- porbitE |
|
- astabQR |
|
- orbit_eqP |
|
- astab_actby |
|
- gacent_mod |
|
- astab_ract |
|
- amove_act |
|
- actmE |
|
- actM |
|
- atransP2 |
|
- acts_qact_dom |
|
- comp_actE |
|
- restr_perm_Aut |
|
- morph_afix |
|
- astab_setact |
|
- ractE |
|
- orbit_morphim_actperm |
|
- acts_orbit |
|
- gact1 |
|
- faithfulP |
|
- afixD1 |
|
- orbit_act_in |
|
- card_orbit_in |
|
- astabs_set1 |
|
- gacentS |
|
- actKV |
|
- actCJ |
|
- orbit_actr_in |
|
- ker_restr_perm |
|
- actmEfun |
|
- astab_range |
|
- astabsD1 |
|
- injm_actm |
|
- astab1J |
|
- autact_is_groupAction |
|
- orbit1P |
|
- acts_irr_mod_astab |
|
- orbit_act |
|
- actby_is_action |
|
- modact_is_groupAction |
|
- astabsC |
|
- ractpermE |
|
- acts_fix_norm |
|
- orbit_transversalP |
|
- astabJ |
|
- modgactE |
|
- astab1 |
|
- injm_Aut_sub |
|
- astab_dom |
|
- actsRs_rcosets |
|
- actsQ |
|
- Aut_sub_fullP |
|
- actpermE |
|
- afix_gen |
|
- acts_dom |
|
- astabS |
|
- gact_out |
|
- afix1 |
|
- SymE |
|
- actmM |
|
- transRs_rcosets |
|
- morph_gastabs |
|
- gacentIim |
|
- acts_subnorm_gacent |
|
- subact_is_action |
|
- im_actperm_Aut |
|
- qact_subdomE |
|
- path: mathcomp/algebra/qpoly.v |
|
theorems: |
|
- in_qpoly_small |
|
- size_lagrange_ |
|
- qpolyCN |
|
- qpolyC0 |
|
- qpoly_mulz1 |
|
- npolypK |
|
- qpolyC_proof |
|
- lagrange_gen |
|
- qpolyCM |
|
- qpolyC_is_multiplicative |
|
- npoly_is_a_poly_of_size |
|
- lagrange_free |
|
- in_qpolyZ |
|
- rVnpolyK |
|
- qpolyCD |
|
- lagrange_sample |
|
- qpoly_intro_unit |
|
- lagrangeE |
|
- mk_monic_neq0 |
|
- mk_monic_X |
|
- card_monic_qpoly |
|
- monic_mk_monic |
|
- mem_npoly_enum |
|
- qpoly_mulA |
|
- poly_of_qpolyZ |
|
- size_mk_monic_gt0 |
|
- nth_npolyX |
|
- qpolyXE |
|
- in_qpoly0 |
|
- npoly_vect_axiom |
|
- poly_of_qpolyD |
|
- npolyP |
|
- in_qpolyM |
|
- coefn_sum |
|
- npoly_rV_K |
|
- npolyp_key |
|
- in_qpoly_multiplicative |
|
- coef_npolyp |
|
- qpoly_scaleDr |
|
- npolyX_gen |
|
- mk_monic_Xn |
|
- qpoly_nontrivial |
|
- qpoly_scaleAl |
|
- card_npoly |
|
- qpoly_scaleAr |
|
- qpolyC_natr |
|
- npoly_enum_uniq |
|
- npoly_submod_closed |
|
- qpoly_inv_out |
|
- size_mk_monic |
|
- card_qpoly |
|
- lagrange_def_sample |
|
- size_npoly0 |
|
- qpolyC_is_additive |
|
- poly_of_qpoly_sum |
|
- lagrange_full |
|
- nth_lagrange |
|
- irreducible_poly_coprime |
|
- size_npoly |
|
- poly_of_qpolyX |
|
- in_qpoly1 |
|
- polyn_is_linear |
|
- npolyX_coords |
|
- npolyX_full |
|
- poly_of_qpolyM |
|
- char_qpoly |
|
- qpoly_scaleA |
|
- npolyX_free |
|
- qpoly_mul_addl |
|
- qpoly_mul_addr |
|
- size_lagrange_def |
|
- size_lagrange |
|
- qpoly_mul1z |
|
- in_qpoly_is_linear |
|
- in_qpolyD |
|
- dim_polyn |
|
- qpoly_mulC |
|
- qpolyCE |
|
- lagrange_coords |
|
- lagrange_key |
|
- qpoly_mulzV |
|
- path: mathcomp/character/inertia.v |
|
theorems: |
|
- norm_inertia |
|
- cfConjg1 |
|
- cfConjg_eqE |
|
- inertia_dprod |
|
- inertia_morph_im |
|
- cfRes_Ind_invariant |
|
- inertia_opp |
|
- cfclass_transr |
|
- Inertia1 |
|
- inertia_mod_quo |
|
- inertia_valJ |
|
- cfConjgDprodr |
|
- cfConjgMorph |
|
- conj_cfConjg |
|
- cfConjgInd_norm |
|
- cfConjgInd |
|
- sub_inertia |
|
- cfConjgRes |
|
- cfRes_prime_irr_cases |
|
- constt_Ind_ext |
|
- Inertia_sub |
|
- conjg_IirrKV |
|
- cfConjg_is_linear |
|
- cfclassInorm |
|
- card_cfclass_Iirr |
|
- inertia_dprodr |
|
- cfclass_inertia |
|
- cfResInd |
|
- cfConjg_char |
|
- inertia_bigdprod_irr |
|
- cfConjgIsom |
|
- dvdn_constt_Res1_irr1 |
|
- cfConjgMnorm |
|
- cfConjgE |
|
- conjg_Iirr_inj |
|
- inertia_bigdprodi |
|
- inertia_injective |
|
- cfAutConjg |
|
- cfConjgMod |
|
- inertia_add |
|
- normal_inertia |
|
- inertia_id |
|
- irr_induced_Frobenius_ker |
|
- sub_Inertia |
|
- sub_inertia_Res |
|
- cfConjgRes_norm |
|
- cfConjg_iso |
|
- cfclass_sym |
|
- extend_to_cfdet |
|
- cfclass1 |
|
- extend_linear_char_from_Sylow |
|
- extend_solvable_coprime_irr |
|
- cfclass_Ind |
|
- cfConjgK |
|
- inertia_sum |
|
- sNG |
|
- cfclass_IirrE |
|
- inertia_irr0 |
|
- reindex_cfclass |
|
- cfConjg_is_multiplicative |
|
- cfConjgQuo_norm |
|
- cfdot_irr_conjg |
|
- cfConjg_eq1 |
|
- inertia_prod |
|
- cfDetConjg |
|
- Clifford_Res_sum_cfclass |
|
- inertia_irr_prime |
|
- extendible_irr_invariant |
|
- inertia0 |
|
- cent_sub_inertia |
|
- conjg_Iirr_eq0 |
|
- eq_cfclass_IirrE |
|
- cfConjgEJ |
|
- invariant_chief_irr_cases |
|
- cfConjgKV |
|
- sub_inertia_Ind |
|
- cfConjgQuo |
|
- inertia_Frobenius_ker |
|
- cfConjg_subproof |
|
- cfConjg_lin_char |
|
- cfConjgBigdprodi |
|
- cfConjg_id |
|
- inertia_scale_nz |
|
- cfConjg_cfuniJ |
|
- conjg_IirrK |
|
- cfclass_uniq |
|
- cfConjgDprodl |
|
- cfConjgEin |
|
- normal_Inertia |
|
- cfclassP |
|
- cent_sub_Inertia |
|
- conjg_IirrE |
|
- cfker_conjg |
|
- inertia_mul |
|
- inertia_dprodl |
|
- cfclass_invariant |
|
- center_sub_Inertia |
|
- inertia_sdprod |
|
- norm_Inertia |
|
- cfConjg_cfun1 |
|
- inertia_dprod_irr |
|
- cfclass_refl |
|
- inertia_scale |
|
- inertiaJ |
|
- cfConjgEout |
|
- conjg_inertia |
|
- constt_Ind_mul_ext |
|
- cfConjgM |
|
- inertia_morph_pre |
|
- group_set_inertia |
|
- inertia1 |
|
- extend_coprime_linear_char |
|
- cfConjgJ1 |
|
- size_cfclass |
|
- constt0_Res_cfker |
|
- cfConjg_cfuni |
|
- cfConjgSdprod |
|
- cfConjgDprod |
|
- cfdot_Res_conjg |
|
- Frobenius_Ind_irrP |
|
- cfConjgBigdprod |
|
- solvable_irr_extendible_from_det |
|
- conjg_Iirr0 |
|
- path: mathcomp/field/galois.v |
|
theorems: |
|
- comp_kHom_img |
|
- fixedPoly_gal |
|
- inAEndK |
|
- gal_oneP |
|
- aut_mem_eqP |
|
- gal_generated |
|
- galNormV |
|
- galM |
|
- kHom_to_gal |
|
- galTrace_fixedField |
|
- gal_kAut |
|
- kHom_extends |
|
- normalFieldS |
|
- galTrace_is_additive |
|
- galNormX |
|
- gal_matrix |
|
- kHom_lrmorphism |
|
- normalField_kAut |
|
- galNorm_gal |
|
- galois_connection_subset |
|
- gal_kHom |
|
- kAut1E |
|
- galK |
|
- galNorm_fixedField |
|
- mem_fixedFieldP |
|
- fixedFieldS |
|
- gal_eqP |
|
- normalField_galois |
|
- limg_gal |
|
- kHomExtend_scalable_subproof |
|
- normalField_cast_eq |
|
- kHomS |
|
- Hilbert's_theorem_90 |
|
- kHom_eq |
|
- gal_reprK |
|
- memv_gal |
|
- kHom_poly_id |
|
- gal_cap |
|
- galoisS |
|
- normalField_isog |
|
- normalField_normal |
|
- kAEnd_norm |
|
- splittingFieldForS |
|
- galois_connection |
|
- normalField_isom |
|
- kHom_root |
|
- kAut_eq |
|
- normalField_root_minPoly |
|
- gal_independent |
|
- galois_fixedField |
|
- mem_galNorm |
|
- kHomExtend_poly |
|
- kHomExtend_id |
|
- gal_AEnd |
|
- fixedField_bound |
|
- k1HomE |
|
- kHom_to_AEnd |
|
- comp_AEndK |
|
- kHom_horner |
|
- gal_mulP |
|
- galS |
|
- splittingPoly |
|
- kAutS |
|
- gal_sgvalK |
|
- kHomExtendP |
|
- comp_AEnd1l |
|
- kAEnd_group_set |
|
- mem_kAut_coset |
|
- inv_is_ahom |
|
- galois_dim |
|
- galV |
|
- gal_is_morphism |
|
- normalField_img |
|
- gal_repr_inj |
|
- normalField_castM |
|
- kHomSr |
|
- fixedFieldP |
|
- gal_id |
|
- root_minPoly_gal |
|
- normalField_ker |
|
- galNorm_prod |
|
- kHom_kAut_sub |
|
- gal_invP |
|
- kHomSl |
|
- gal_independent_contra |
|
- kHom_is_additive |
|
- enum_AEnd |
|
- galois_factors |
|
- fixed_gal |
|
- fixedField_is_aspace |
|
- kHomExtend_val |
|
- galNorm_eq0 |
|
- mem_galTrace |
|
- splitting_galoisField |
|
- kAutf_lker0 |
|
- k1AHom |
|
- eq_galP |
|
- galois_connection_subv |
|
- kHom_is_multiplicative |
|
- galTrace_gal |
|
- splittingFieldP |
|
- galNorm1 |
|
- kHom_dim |
|
- fieldOver_splitting |
|
- normalField_factors |
|
- kHom_root_id |
|
- kHomExtendE |
|
- kAutE |
|
- splitting_field_normal |
|
- gal_conjg |
|
- dim_fixedField |
|
- inv_kHomf |
|
- galNorm0 |
|
- normal_fixedField_galois |
|
- path: mathcomp/field/qfpoly.v |
|
theorems: |
|
- card_primitive_qpoly |
|
- qlogp0 |
|
- plogp0 |
|
- map_fpoly_div_inj |
|
- qX_expK |
|
- qpoly_mulVp |
|
- coprimep_unit |
|
- sh_gt1 |
|
- card_qfpoly |
|
- qpoly_inv0 |
|
- qX_exp_neq0 |
|
- qX_neq0 |
|
- map_poly_div_inj |
|
- qX_in_unit |
|
- powX_eq_mod |
|
- qlogp_eq0 |
|
- qlogp_qX |
|
- primitive_poly_in_qpoly_eq0 |
|
- card_qfpoly_gt1 |
|
- gX_order |
|
- in_qpoly_comp_horner |
|
- qX_order_dvd |
|
- plogp1 |
|
- pred_card_qT_gt0 |
|
- qlogpD |
|
- plogp_div_eq0 |
|
- mk_monicE |
|
- primitive_polyP |
|
- qlogp1 |
|
- qX_exp_inj |
|
- gX_all |
|
- qX_order_card |
|
- plogp_lt |
|
- primitive_mi |
|
- plogp_X |
|
- dvdp_order |
|
- path: mathcomp/solvable/finmodule.v |
|
theorems: |
|
- fmodV |
|
- actsgHG |
|
- fmodX |
|
- act0r |
|
- actr_is_groupAction |
|
- sgG |
|
- transfer_cycle_expansion |
|
- fmod_addrA |
|
- injHGg |
|
- fmod_addNr |
|
- congr_fmod |
|
- actZr |
|
- sum_index_rcosets_cycle |
|
- injHg |
|
- fmodK |
|
- fmval0 |
|
- rcosets_cycle_transversal |
|
- actNr |
|
- injm_fmod |
|
- fmodP |
|
- coprime_abel_cent_TI |
|
- fmodKcond |
|
- actrKV |
|
- actrM |
|
- rcosets_cycle_partition |
|
- Gaschutz_transitive |
|
- transferM |
|
- fmvalN |
|
- actr1 |
|
- fmod_add0r |
|
- fmvalJ |
|
- fmodJ |
|
- actr_is_action |
|
- transfer_indep |
|
- defHGg |
|
- fmod1 |
|
- transfer_morph_subproof |
|
- actrK |
|
- fmvalA |
|
- fmvalJcond |
|
- fmod_inj |
|
- actAr |
|
- fmvalZ |
|
- sXG |
|
- Gaschutz_split |
|
- path: mathcomp/algebra/intdiv.v |
|
theorems: |
|
- dvdzz |
|
- gcd0z |
|
- Gauss_dvdzr |
|
- zprimitive_irr |
|
- modzMl |
|
- dvdpP_rat_int |
|
- gcdz1 |
|
- mulz_modl |
|
- ltz_divRL |
|
- zchinese_mod |
|
- gcdz_idPl |
|
- divz_small |
|
- divzMpl |
|
- modz_ge0 |
|
- divz_abs |
|
- eisenstein |
|
- zchinese_remainder |
|
- dvdz_Pexp2l |
|
- sgz_contents |
|
- size_zprimitive |
|
- zpolyEprim |
|
- gcdzCA |
|
- map_poly_divzK |
|
- modNz_nat |
|
- modz1 |
|
- coprimeNz |
|
- dvdz_lcm |
|
- dvdz_charf |
|
- dvdp_rat_int |
|
- egcdzP |
|
- zprimitiveZ |
|
- modz_absm |
|
- dvdz_exp2r |
|
- expz_min |
|
- Gauss_dvdz |
|
- divz0 |
|
- dvdz_lcmr |
|
- modzDm |
|
- dvdz_mull |
|
- zcontentsZ |
|
- modzDr |
|
- divzMr |
|
- modz_small |
|
- Gauss_dvdzl |
|
- gcdzN |
|
- dvd1z |
|
- divzMl |
|
- lcmz_neq0 |
|
- ltz_ceil |
|
- modzNm |
|
- gcdzDr |
|
- zprimitive_id |
|
- zcontents_primitive |
|
- dvdz_eq |
|
- coprimez_pexpl |
|
- divz_ge0 |
|
- coprimezE |
|
- gcdz_eq0 |
|
- Qint_dvdz |
|
- sgz_lead_primitive |
|
- dvdz_mul2r |
|
- divNz_nat |
|
- gcdzDl |
|
- Gauss_gcdzl |
|
- dvdz0 |
|
- zprimitive0 |
|
- Qnat_dvd |
|
- modzDmr |
|
- zcontentsM |
|
- dvdz_mul2l |
|
- lez_pdiv2r |
|
- size_rat_int_poly |
|
- divzMA |
|
- modz_abs |
|
- gcdz_idPr |
|
- gcdz_modl |
|
- mulzK |
|
- modzMmr |
|
- lez_divRL |
|
- dvdzE |
|
- dvdz_mulr |
|
- divz_eq |
|
- dvdz_gcd |
|
- eqz_modDr |
|
- coprimezP |
|
- dec_Qint_span |
|
- mulKz |
|
- lcm0z |
|
- lez_divLR |
|
- zcontents_monic |
|
- ltz_pmod |
|
- modzDml |
|
- divzMDl |
|
- divzz |
|
- mod0z |
|
- expzB |
|
- divzK |
|
- gcdzMDl |
|
- zchinese_modl |
|
- coprimezMr |
|
- modz_nat |
|
- dvdz_trans |
|
- dvdz_pexp2r |
|
- mulz_modr |
|
- lcmzC |
|
- coprimez_dvdl |
|
- div0z |
|
- dvdzP |
|
- lcmz_ge0 |
|
- divzDr |
|
- gcdzC |
|
- eqz_mod_dvd |
|
- divzMA_ge0 |
|
- modzMm |
|
- eqz_mul |
|
- dvdz1 |
|
- coprimez_sym |
|
- zprimitive_monic |
|
- dvdz_exp |
|
- gcdNz |
|
- mulz_gcdr |
|
- ltz_divLR |
|
- gcdzMr |
|
- gcdzA |
|
- int_Smith_normal_form |
|
- modzDl |
|
- dvd0z |
|
- dvdz_mod0P |
|
- rat_poly_scale |
|
- dvdz_gcdl |
|
- divz_mulAC |
|
- mulz_divA |
|
- polyOver_dvdzP |
|
- modzMml |
|
- gcdzACA |
|
- gcdzAC |
|
- Bezoutz |
|
- dvdz_gcdr |
|
- modzMDl |
|
- lez_div |
|
- mulz_divCA |
|
- dvdz_mul |
|
- zprimitiveM |
|
- Gauss_gcdzr |
|
- divzA |
|
- divzAC |
|
- dvdpP_int |
|
- modzXm |
|
- zcontents0 |
|
- coprimezXr |
|
- modz_mod |
|
- zchinese_modr |
|
- lez_floor |
|
- divzMpr |
|
- modzN |
|
- mulz_gcdl |
|
- zprimitive_min |
|
- gcdz_modr |
|
- divzDl |
|
- divz1 |
|
- zcontents_eq0 |
|
- divz_nat |
|
- coprimezN |
|
- path: mathcomp/algebra/ssralg.v |
|
theorems: |
|
- rmorph_sign |
|
- oppr_eq0 |
|
- pair_mulA |
|
- valZ |
|
- pair_mulC |
|
- rmorph_alg |
|
- lastr_eq0 |
|
- charf'_nat |
|
- mull_fun_is_semi_additive |
|
- raddfZnat |
|
- unitrV |
|
- mulrDr |
|
- exprB |
|
- natrXE |
|
- charf0P |
|
- Frobenius_autMn |
|
- natrDE |
|
- cat_dnfP |
|
- scale_is_scalable |
|
- divalg_closedZ |
|
- prodfV |
|
- ffun_mul_addl |
|
- linearN |
|
- lregM |
|
- sqrrD |
|
- natr_mod_char |
|
- divalg_closedBdiv |
|
- scalarP |
|
- natn |
|
- semiring_closedM |
|
- exprDn_char |
|
- rpred_nat |
|
- subr_sqrDB |
|
- iter_addr |
|
- expr_sum |
|
- fmorph_eq |
|
- scale0r |
|
- unitrX_pos |
|
- dnf_to_rform |
|
- unitrN1 |
|
- unitrX |
|
- mulr1 |
|
- dnf_to_form_qf |
|
- mulr_signM |
|
- rpred_div |
|
- exprBn_comm |
|
- lregMl |
|
- commr_sym |
|
- sum_ffun |
|
- mulr2n |
|
- mulKr |
|
- foldExistsP |
|
- iter_addr_0 |
|
- mulr_natl |
|
- scalerA' |
|
- rregP |
|
- rpredMNn |
|
- mulrDl |
|
- semiringClosedP |
|
- scaler0 |
|
- solP |
|
- natrD |
|
- unitrPr |
|
- eq_sol |
|
- char_lalg |
|
- fmorphV |
|
- mulrI_eq0 |
|
- pair_mulVl |
|
- ffun_addC |
|
- divrr |
|
- mulr1_eq |
|
- scalerBl |
|
- mul0r |
|
- addrNK |
|
- rpredMsign |
|
- submod_closedB |
|
- val1 |
|
- idfun_is_scalable |
|
- rmorphMn |
|
- unitr0 |
|
- eval_Pick |
|
- rmorphD |
|
- scalerAl |
|
- proj_satP |
|
- exprDn |
|
- commrN |
|
- sub0r |
|
- exprNn_char |
|
- size_sol |
|
- scalarAr |
|
- Frobenius_autE |
|
- rpred_sign |
|
- algMixin |
|
- ffun_scale_addl |
|
- mulr_fun_is_semi_additive |
|
- exprZn |
|
- scalable_linear |
|
- addrCA |
|
- pair_addC |
|
- rmorphN |
|
- rpred_prod |
|
- scalerCA |
|
- scaler_prodr |
|
- rmorph_unit |
|
- lalgMixin |
|
- compN1op |
|
- idfun_is_semi_additive |
|
- addr0 |
|
- raddf0 |
|
- scaler_suml |
|
- natr1E |
|
- addNr |
|
- mulrAC |
|
- telescope_prodf |
|
- sumrMnr |
|
- fmorph_eq1 |
|
- lreg1 |
|
- sqrf_eq1 |
|
- expf_eq0 |
|
- prodrMl |
|
- divr1_eq |
|
- exprNn |
|
- natf_neq0 |
|
- mulrnDl |
|
- subr_sqr |
|
- in_algE |
|
- rpred_sum |
|
- mulrI0_lreg |
|
- pair_mulDl |
|
- addNKr |
|
- ffun_mulA |
|
- divr1 |
|
- exprVn |
|
- ffun_scaleA |
|
- addrACA |
|
- charf_prime |
|
- signr_odd |
|
- mulIf |
|
- addrAC |
|
- mul0rn |
|
- addKr |
|
- Frobenius_autX |
|
- bool_fieldP |
|
- can2_linear |
|
- valB |
|
- addrI |
|
- rpredDr |
|
- prodrM_comm |
|
- scaler_unit |
|
- scalerDl |
|
- signrN |
|
- scalarZ |
|
- pair_add0 |
|
- unitrMr |
|
- eq_sat |
|
- mulKf |
|
- invr_out |
|
- prodrN |
|
- rpred_divl |
|
- lregX |
|
- expr0 |
|
- ffun_mul_0l |
|
- sdivr_closedM |
|
- rmorphV |
|
- rpredV |
|
- rmorph1 |
|
- signrZK |
|
- scaler_prod |
|
- subrX1 |
|
- raddfD |
|
- raddf_sum |
|
- rmorph_eq1 |
|
- mulrnDr |
|
- sumr_const_nat |
|
- mulf_eq0 |
|
- scaler_eq0 |
|
- linearMn |
|
- invr_inj |
|
- imaginary_exists |
|
- addrr_char2 |
|
- pairMnE |
|
- raddfZsign |
|
- rreg_neq0 |
|
- rpredMl |
|
- natrB |
|
- exprBn |
|
- submodClosedP |
|
- scalerKV |
|
- subring_closed_semi |
|
- sub_fun_is_additive |
|
- pair_mulVr |
|
- unitrN |
|
- oner_eq0 |
|
- raddfMn |
|
- pair_unitP |
|
- prodf_neq0 |
|
- eqr_oppLR |
|
- sqrrB |
|
- mulr1n |
|
- rpredN1 |
|
- mulVr |
|
- commrN1 |
|
- quantifier_elim_rformP |
|
- add0U |
|
- val0 |
|
- rpred1M |
|
- commrD |
|
- prodrMn_const |
|
- divrr |
|
- can2_semi_additive |
|
- valD |
|
- fpred_divr |
|
- expr1n |
|
- idfun_is_multiplicative |
|
- sqrf_eq0 |
|
- valD |
|
- subr0 |
|
- unitrM_comm |
|
- lregN |
|
- prodr_const |
|
- linearB |
|
- Frobenius_autB_comm |
|
- expr_mod |
|
- pair_mulr0 |
|
- raddf_eq0 |
|
- natrME |
|
- signr_addb |
|
- rev_unitrP |
|
- rpredBl |
|
- mulrn_char |
|
- prodr_undup_exp_count |
|
- invb_out |
|
- Frobenius_autD_comm |
|
- pair_mul1l |
|
- mulrACA |
|
- mulrN1 |
|
- scalerMnr |
|
- additive_linear |
|
- invr_sign |
|
- pair_invr_out |
|
- signr_eq0 |
|
- addIr |
|
- ffun_mul_0r |
|
- prodrMr_comm |
|
- eqr_div |
|
- linearPZ |
|
- rreg1 |
|
- addUA |
|
- pair_scaleAr |
|
- comRingMixin |
|
- qf_evalP |
|
- comp_is_multiplicative |
|
- mulrC |
|
- invr_out |
|
- null_fun_is_semi_additive |
|
- div1r |
|
- mulrnAC |
|
- sumrN |
|
- expfB |
|
- signrE |
|
- addrN |
|
- natr0E |
|
- mulfVK |
|
- telescope_sumr_eq |
|
- divKr |
|
- sqrr_sign |
|
- divIr |
|
- pair_addA |
|
- expr2 |
|
- mulf_neq0 |
|
- mull_fun_is_scalable |
|
- lreg_neq0 |
|
- subr_sqr_1 |
|
- pair_mulDr |
|
- invr1 |
|
- ffun_mulC |
|
- exprD |
|
- opp_is_additive |
|
- mulrS |
|
- commrM |
|
- add_fun_is_semi_additive |
|
- to_rform_rformula |
|
- mulrSr |
|
- mulVb |
|
- eq_eval |
|
- linearZ |
|
- iter_mulr |
|
- mulr_fun_is_scalable |
|
- raddfB |
|
- expr_dvd |
|
- raddfMnat |
|
- addrK_char2 |
|
- rpred0 |
|
- divKf |
|
- mulNr |
|
- unitrE |
|
- mulrnBr |
|
- rmorph_nat |
|
- mulrBl |
|
- unitfE |
|
- linearZZ |
|
- linearD |
|
- prodrMn |
|
- mulrN |
|
- mulrC |
|
- opprD |
|
- lreg_sign |
|
- rpredZeq |
|
- subIr |
|
- mulrNN |
|
- prodf_seq_neq0 |
|
- null_fun_is_scalable |
|
- mul0r |
|
- mulrVK |
|
- subr_eq0 |
|
- charf_eq |
|
- exprMn_n |
|
- mulfI |
|
- unitr1 |
|
- divrI |
|
- mulr_suml |
|
- commr1 |
|
- prodrXr |
|
- ffunMnE |
|
- raddfMNn |
|
- to_rterm_id |
|
- rregX |
|
- linearZ_LR |
|
- eqr_sum_div |
|
- rpredZsign |
|
- ffun_addN |
|
- divr_closedM |
|
- fmorph_char |
|
- Frobenius_autM_comm |
|
- pair_scaleDl |
|
- If_form_rf |
|
- smulr_closedM |
|
- pair_scaleDr |
|
- can2_scalable |
|
- scaler_sign |
|
- prodrMr |
|
- valD |
|
- addf_div |
|
- foldForallP |
|
- rregM |
|
- IdomainMixin |
|
- unitrMl |
|
- mulVKf |
|
- mulrCA |
|
- divring_closedBM |
|
- rpredX |
|
- mulr_sign |
|
- invr_eq1 |
|
- subr_eq |
|
- scaleN1r |
|
- fst_is_scalable |
|
- rpredZnat |
|
- oppr0 |
|
- submod_closedZ |
|
- fpred_divl |
|
- lregP |
|
- id |
|
- rpredDl |
|
- commr_refl |
|
- Frobenius_aut0 |
|
- inv_out |
|
- sub_fun_is_scalable |
|
- subr0_eq |
|
- fpredMl |
|
- exprD1n |
|
- Frobenius_autN |
|
- raddf_inj |
|
- opp_is_scalable |
|
- linearP |
|
- invrN1 |
|
- sol_subproof |
|
- If_form_qf |
|
- addrK |
|
- same_env_sym |
|
- divff |
|
- valM |
|
- raddfN |
|
- scaler_sumr |
|
- raddf0 |
|
- ffun_mul_1l |
|
- rmorphXn |
|
- subring_closedB |
|
- scale_fun_is_scalable |
|
- invrN |
|
- commrB |
|
- valN |
|
- mulrnAl |
|
- subKr |
|
- ffun_scale_addr |
|
- pair_mul1r |
|
- raddfMsign |
|
- mulrA |
|
- mulrK |
|
- pair_scaleAl |
|
- qf_to_dnf_rterm |
|
- add_fun_is_scalable |
|
- eqf_sqr |
|
- scaler_prodl |
|
- subring_closedM |
|
- subrXX |
|
- pair_addN |
|
- commr_nat |
|
- ffun_scale1 |
|
- intro_unit |
|
- divr_closedV |
|
- mulNrn |
|
- sum_ffunE |
|
- semiring_closedD |
|
- sumr_const |
|
- commrX |
|
- invfM |
|
- revrX |
|
- sumrMnl |
|
- Frobenius_aut_is_additive |
|
- telescope_prodr |
|
- scaler_injl |
|
- expr1 |
|
- pair_one_neq0 |
|
- invr_signM |
|
- expr0n |
|
- rmorphismMP |
|
- oner_neq0 |
|
- mulr_natr |
|
- exprS |
|
- sqrrN |
|
- fmorph_eq0 |
|
- scalerBr |
|
- mulr_algl |
|
- exprMn |
|
- addrKA |
|
- sqrrD1 |
|
- natr1 |
|
- mulr_algr |
|
- scalerMnl |
|
- mulVr |
|
- subalgClosedP |
|
- rmorphB |
|
- unitrM |
|
- divr_signM |
|
- signrMK |
|
- invrM |
|
- to_rformP |
|
- subr_char2 |
|
- rmorph_prod |
|
- invr_eq0 |
|
- smulr_closedN |
|
- invrK |
|
- sqrrB1 |
|
- ffun_addA |
|
- prodrMl_comm |
|
- rmorph_comm |
|
- nat1r |
|
- opprB |
|
- rpred_divr |
|
- scalerI |
|
- mulfK |
|
- commr_sum |
|
- rpredD |
|
- unitrP |
|
- subalg_closedBM |
|
- rmorph_eq_nat |
|
- rmorph_char |
|
- linearMNn |
|
- divrNN |
|
- commr0 |
|
- ffun1_nonzero |
|
- mulrnAr |
|
- comm_alg |
|
- divringClosedP |
|
- expr_div_n |
|
- unitr_sdivr_closed |
|
- oppr_char2 |
|
- zmodClosedP |
|
- rpredMn |
|
- telescope_sumr |
|
- sumrB |
|
- rmorph0 |
|
- rregMr |
|
- fmorph_unit |
|
- opprK |
|
- mul1r |
|
- fst_is_semi_additive |
|
- linear_sum |
|
- bin_lt_charf_0 |
|
- raddfD |
|
- in_alg_is_additive |
|
- Pick_form_qf |
|
- subrXX_comm |
|
- commr_prod |
|
- scaler_nat |
|
- mulr0 |
|
- valB |
|
- Frobenius_aut_nat |
|
- fmorph_div |
|
- linear_closedB |
|
- fmorph_inj |
|
- natrM |
|
- zmod_closedD |
|
- val0 |
|
- rpredXN |
|
- linear0 |
|
- mulIr0_rreg |
|
- telescope_prodr_eq |
|
- scalerAr |
|
- divrN |
|
- comp_is_scalable |
|
- comp_is_semi_additive |
|
- expf_neq0 |
|
- mulr0 |
|
- pair_scale1 |
|
- rmorph_div |
|
- N1op |
|
- rpredB |
|
- addKr_char2 |
|
- addr_eq0 |
|
- snd_is_multiplicative |
|
- mulr0 |
|
- snd_is_scalable |
|
- sdivr_closed_div |
|
- subalg_closedZ |
|
- scaleNr |
|
- rpredMr |
|
- rpredBC |
|
- rregN |
|
- qf_to_dnfP |
|
- can2_additive |
|
- ffun_add0 |
|
- ffun_mul_1r |
|
- mulC_mulrV |
|
- commr_sign |
|
- scale1r |
|
- mulrnA |
|
- zmod_closedN |
|
- oppr_inj |
|
- mulN1r |
|
- mulr0n |
|
- rmorphM |
|
- invf_div |
|
- mulrnBl |
|
- snd_is_semi_additive |
|
- subringClosedP |
|
- natr_prod |
|
- charf0 |
|
- quantifier_elim_wf |
|
- mulIr_eq0 |
|
- char0_natf_div |
|
- exprMn_comm |
|
- prodf_eq0 |
|
- commrMn |
|
- valM1 |
|
- eval_tsubst |
|
- expfS_eq1 |
|
- natf0_char |
|
- dvdn_charf |
|
- eq_holds |
|
- addr0_eq |
|
- mulrI |
|
- divring_closed_div |
|
- path: mathcomp/fingroup/gproduct.v |
|
theorems: |
|
- sdprod_isog |
|
- dprodEsd |
|
- sdprodWY |
|
- divgrM |
|
- pprodP |
|
- isog_set1X |
|
- cprodJ |
|
- sdpair1_morphM |
|
- cprod_normal2 |
|
- ker_pprodm |
|
- setX_prod |
|
- dprodYP |
|
- remgr_id |
|
- dprodWY |
|
- injm_pair1g |
|
- dprodWcp |
|
- cprodWC |
|
- cprodE |
|
- bigcprodEY |
|
- sdpairE |
|
- pairg1_morphM |
|
- morphim_sdprodml |
|
- sdpair_act |
|
- pprodWY |
|
- remgrM |
|
- dprodP |
|
- sdprod_mul_proof |
|
- xsdprodm_act |
|
- morphim_pprodmr |
|
- morphim_coprime_dprod |
|
- quotient_pprod |
|
- sdprod_recr |
|
- dprodE |
|
- sdprodm_sub |
|
- sdprod_normal_complP |
|
- morphim_sdprodm |
|
- dprodWsdC |
|
- morphim_dprodmr |
|
- cprodmEl |
|
- actsEsd |
|
- cprodEY |
|
- divgr_eq |
|
- dprod_normal2 |
|
- gacentEsd |
|
- sdprod_context |
|
- dprodmEl |
|
- setX_gen |
|
- im_xsdprodm |
|
- cprod0g |
|
- injm_bigdprod |
|
- mem_dprod |
|
- dprodm_eqf |
|
- subcent_TImulg |
|
- cprod_modr |
|
- cprod_modl |
|
- ker_sdprodm |
|
- im_cprodm |
|
- im_sdprodm |
|
- bigdprodYP |
|
- trivg0 |
|
- setX_dprod |
|
- sdprodm_norm |
|
- sdpair2_morphM |
|
- sdprodWC |
|
- pprodWC |
|
- mem_sdprod |
|
- injm_sdpair1 |
|
- morphim_cprodm |
|
- im_sdpair |
|
- bigcprodWY |
|
- morphim_pairg1 |
|
- morphim_pprodm |
|
- complgC |
|
- dprod_modl |
|
- sdprod_compl |
|
- cprodW |
|
- sdprodmE |
|
- triv_cprod |
|
- quotient_coprime_dprod |
|
- dprodA |
|
- splitsP |
|
- remgrP |
|
- mul0g |
|
- snd_morphM |
|
- sdprod_recl |
|
- injm_sdpair2 |
|
- group_not0 |
|
- isog_setX1 |
|
- cprodC |
|
- morphim_sdprodmr |
|
- isog_dprod |
|
- sdpair_setact |
|
- divgrMl |
|
- bigdprod_card |
|
- sdprod_mul1g |
|
- dprodg1 |
|
- sdprod_mulVg |
|
- sdprodE |
|
- morphim_cprodml |
|
- quotient_sdprodr_isom |
|
- dprodm_cprod |
|
- sdprod_modl |
|
- pprodmM |
|
- quotient_sdprodr_isog |
|
- quotient_coprime_sdprod |
|
- injm_sdprodm |
|
- index_sdprod |
|
- dprodEY |
|
- dprod_modr |
|
- pair1g_morphM |
|
- sdprodJ |
|
- dprod_card |
|
- cprodg1 |
|
- sdprodm_eqf |
|
- dprod1g |
|
- sdprod_modr |
|
- bigdprodWY |
|
- pprodE |
|
- morphim_cprodmr |
|
- bigdprodW |
|
- cprodm_sub |
|
- remgrMid |
|
- sdprodWpp |
|
- sdprod_inv_proof |
|
- index_sdprodr |
|
- ker_dprodm |
|
- reindex_bigcprod |
|
- imset_mulgm |
|
- extprod_mulVg |
|
- injm_dprod |
|
- cprod_ntriv |
|
- morphim_pprod |
|
- sdprodEY |
|
- morphim_cprod |
|
- bigdprodWcp |
|
- pprodmEr |
|
- sdprodP |
|
- sdprod_mulgA |
|
- group0 |
|
- remgrMl |
|
- pprodg1 |
|
- sdprod_sdpair |
|
- mem_divgr |
|
- xsdprodm_dom2 |
|
- injm_xsdprodm |
|
- dprodmEr |
|
- cprodWY |
|
- morphim_pair1g |
|
- morphim_fstX |
|
- bigcprod_coprime_dprod |
|
- sdprodW |
|
- mulgmP |
|
- cprodA |
|
- cprodmEr |
|
- astabEsd |
|
- mem_bigdprod |
|
- pprodW |
|
- extprod_mulgA |
|
- sdprod_card |
|
- dprodWsd |
|
- pprodmE |
|
- im_sdpair_TI |
|
- remgr1 |
|
- cprodmE |
|
- group_setX |
|
- morphim_dprodm |
|
- morphim_coprime_bigdprod |
|
- pprodEY |
|
- mulg0 |
|
- morphim_sndX |
|
- quotient_cprod |
|
- im_sdprodm2 |
|
- cprodm_actf |
|
- dprodmE |
|
- sdprod_isom |
|
- subcent_sdprod |
|
- pprodJ |
|
- cprod1g |
|
- morphim_pprodml |
|
- dprodC |
|
- im_dprodm |
|
- injm_sdprod |
|
- im_sdpair_norm |
|
- mem_remgr |
|
- cprodm_norm |
|
- fst_morphM |
|
- dprodEcp |
|
- sdprodmEl |
|
- injm_pprodm |
|
- sdprod1g |
|
- morphim_dprodml |
|
- ker_cprodm |
|
- path: mathcomp/character/mxrepresentation.v |
|
theorems: |
|
- linear_mxsimple |
|
- eqg_mx_abs_irr |
|
- Clifford_astab1 |
|
- hom_mxmodule |
|
- mxsimpleP |
|
- mx_rsim_abs_irr |
|
- hom_component_mx |
|
- rstabs_submod |
|
- row_gen_sum_mxval |
|
- Wedderburn_min_ideal |
|
- gen_mul1r |
|
- rfix_mx_rstabC |
|
- mxval_is_multiplicative |
|
- mxval_gen1 |
|
- map_group_ring |
|
- map_section_repr |
|
- rkerP |
|
- Clifford_is_action |
|
- val_submodP |
|
- gring_indexK |
|
- rstabs_act |
|
- rstabs_in_gen |
|
- rker_gen |
|
- gen_addA |
|
- morphim_mx_irr |
|
- mx_iso_refl |
|
- rker_map |
|
- submod_mx_repr |
|
- quo_mx_quotient |
|
- mxvalM |
|
- mxmodule_eqg |
|
- rcent_eqg |
|
- mx_faithful_irr_center_cyclic |
|
- hom_mxsemisimple_iso |
|
- mx_reducibleS |
|
- annihilator_mxP |
|
- mxsemisimple_module |
|
- gring_mxA |
|
- rsim_regular_factmod |
|
- rsim_rcons |
|
- norm_sub_rstabs_rfix_mx |
|
- gring_free |
|
- gring_mxJ |
|
- rstab_norm |
|
- rstab_act |
|
- factmod_mx_faithful |
|
- mx_JordanHolder_max |
|
- envelop_mx1 |
|
- gring_opM |
|
- mx_Schur_onto |
|
- rfix_gen |
|
- val_submod_inj |
|
- primitive_root_splitting_abelian |
|
- rfix_factmod |
|
- classg_base_center |
|
- mxsimple_morphim |
|
- rker_factmod |
|
- in_factmod_eq0 |
|
- rfix_morphpre |
|
- Wedderburn_mulmx0 |
|
- mxval_grootXn |
|
- irr_degree_abelian |
|
- kquo_mxE |
|
- rstabs_quo |
|
- val_submodS |
|
- in_submod_module |
|
- irr1_mode |
|
- mxvalV |
|
- val_gen_row |
|
- gen_addC |
|
- mxsimple_eqg |
|
- gen_dim_ex_proof |
|
- quo_repr_coset |
|
- gring_mxK |
|
- map_mxminpoly_groot |
|
- val_genD |
|
- in_genZ |
|
- gen_is_additive |
|
- gring_projE |
|
- rfix_submod |
|
- irr_mode_unit |
|
- reducible_Socle1 |
|
- quo_mx_coset |
|
- Wedderburn_annihilate |
|
- conj_mx_irr |
|
- Clifford_atrans |
|
- rcent_quo |
|
- mxvalN |
|
- val_factmod_inj |
|
- mxsemisimple0 |
|
- mxrank_in_submod |
|
- regular_op_inj |
|
- sG_f'fG |
|
- classg_base_free |
|
- add_sub_fact_mod |
|
- cyclic_mx_module |
|
- map_regular_subseries |
|
- rowval_gen_stable |
|
- val_factmodE |
|
- mx_butterfly |
|
- mx_irr_abelian_linear |
|
- in_genK |
|
- irr_center_scalar |
|
- mem_sub_gring |
|
- mx_JordanHolder |
|
- center_kquo_cyclic |
|
- mxsimple_module |
|
- subg_mx_abs_irr |
|
- gen_addNr |
|
- rsim_regular_series |
|
- rker_subg |
|
- mxmodule_envelop |
|
- mxsimple_semisimple |
|
- rstabs_morphpre |
|
- component_socle |
|
- gring_op_id |
|
- Socle_module |
|
- mxmodule_conj |
|
- Wedderburn_sum |
|
- Clifford_rank_components |
|
- in_gen_row |
|
- mx_faithful_irr_abelian_cyclic |
|
- repr_mxMr |
|
- rstabs_subg |
|
- rank_irr1 |
|
- Wedderburn_sum_id |
|
- rfix_mx_id |
|
- Clifford_component_basis |
|
- Socle_direct |
|
- rker_morphpre |
|
- component_mx_key |
|
- rsim_last |
|
- subg_mx_repr |
|
- addsmx_module |
|
- ker_irr_comp_op |
|
- factmod_mx_repr |
|
- rstab_eqg |
|
- irr_degree_gt0 |
|
- mem_gring_mx |
|
- rstab_morphim |
|
- gring_op1 |
|
- rker_quo |
|
- rcent_map |
|
- gen_mx_irr |
|
- val_submodE |
|
- rker_morphim |
|
- in_submodK |
|
- map_enveloping_algebra_mx |
|
- mx_iso_module |
|
- socle_mem |
|
- quo_mx_irr |
|
- sumsmx_module |
|
- sums_R |
|
- coset_splitting_field |
|
- rstab_group_set |
|
- component_mx_isoP |
|
- repr_mx1 |
|
- rstabs_conj |
|
- eqmx_rstabs |
|
- mx_series_rcons |
|
- subSocle_direct |
|
- repr_mxX |
|
- mxval_inj |
|
- submod_mx_irr |
|
- rcenter_group_set |
|
- mx_rsim_def |
|
- socle_exists |
|
- mxsimple_exists |
|
- eqmx_module |
|
- in_factmod_module |
|
- Wedderburn_closed |
|
- mx_Maschke |
|
- kquo_mx_faithful |
|
- gring_rowK |
|
- irr1_rfix |
|
- socle_simple |
|
- mxval1 |
|
- mxmoduleP |
|
- map_regular_mx |
|
- Wedderburn_subring_center |
|
- irr_repr'_op0 |
|
- morphpre_mx_abs_irr |
|
- val_factmod_eq0 |
|
- mxsimple_abelian_linear |
|
- extend_group_splitting_field |
|
- val_gen0 |
|
- mxsimple_cyclic |
|
- cent_mx_scalar_abs_irr |
|
- Wedderburn_id_mem |
|
- mx_rsim_scalar |
|
- quotient_splitting_field |
|
- not_rsim_op0 |
|
- capmx_subSocle |
|
- mxtrace_dadd_mod |
|
- component_mx_id |
|
- kermx_centg_module |
|
- rstabs_factmod |
|
- val_genK |
|
- rstab_in_gen |
|
- sG_f'fG |
|
- mxval_groot |
|
- mx_rsim_sym |
|
- map_rfix_mx |
|
- mx_faithful_inj |
|
- val_gen_rV |
|
- rstab_sub |
|
- mx_irrP |
|
- mxsimple_subg |
|
- irr_modeM |
|
- splitting_cyclic_primitive_root |
|
- socleP |
|
- gen_mulC |
|
- val_Clifford_act |
|
- val_factmodP |
|
- rfix_eqg |
|
- mx_iso_trans |
|
- rstabs_rowval_gen |
|
- Wedderburn_direct |
|
- mx_irr_map |
|
- reducible_Socle |
|
- max_size_mx_series |
|
- map_mx_faithful |
|
- degree_irr1 |
|
- sum_mxsimple_direct_sub |
|
- op_Wedderburn_id |
|
- Wedderburn_is_id |
|
- genmx_component |
|
- val_submod1 |
|
- rstabs_morphim |
|
- base_free |
|
- eqmx_semisimple |
|
- regular_mx_repr |
|
- in_factmodJ |
|
- map_gring_op |
|
- Clifford_componentJ |
|
- principal_comp_subproof |
|
- nth_map_rVval |
|
- irr_comp_rsim |
|
- Clifford_basis |
|
- socle_can_subproof |
|
- in_genD |
|
- rker_mx_rsim |
|
- Clifford_rstabs_simple |
|
- eqg_repr_proof |
|
- section_eqmx |
|
- map_mx_repr |
|
- in_factmodE |
|
- irr_reprE |
|
- mx_abs_irrP |
|
- cyclic_mxP |
|
- abelian_abs_irr |
|
- mx_Schreier |
|
- mxnonsimpleP |
|
- regular_module_ideal |
|
- nz_row_mxsimple |
|
- group_splitting_field_exists |
|
- Wedderburn_disjoint |
|
- irr_mx_mult |
|
- mx_Schur_inj |
|
- component_mx_semisimple |
|
- rstab_conj |
|
- irr_comp_envelop |
|
- val_factmodS |
|
- rowval_genK |
|
- socle_irr |
|
- capmx_module |
|
- gring_opG |
|
- eqg_mx_faithful |
|
- hom_mxP |
|
- rcent_subg |
|
- submx_in_gen |
|
- rker_normal |
|
- mxmodule_morphpre |
|
- mxtrace_Socle |
|
- repr_mxK |
|
- max_submod_eqmx |
|
- mx_rsim_faithful |
|
- mxtrace_submod1 |
|
- proj_mx_hom |
|
- gen_dim_gt0 |
|
- sat_gen_form |
|
- eval_mulT |
|
- rstab_submod |
|
- card_gen |
|
- cycle_repr_structure |
|
- mx_rsim_iso |
|
- map_reprE |
|
- hom_envelop_mxC |
|
- cyclic_mx_sub |
|
- kermx_hom_module |
|
- Clifford_hom |
|
- map_gring_proj |
|
- DecSocleType |
|
- mx_iso_component |
|
- mxsimple_map |
|
- eval_gen_term |
|
- mxmodule_rowval_gen |
|
- gring_valK |
|
- cyclic_mx_id |
|
- eqmx_rstab |
|
- gring_row_mul |
|
- Socle_iso |
|
- in_genN |
|
- cyclic_mx_eq0 |
|
- in_genJ |
|
- hom_mxsemisimple |
|
- envelop_mxP |
|
- normal_rfix_mx_module |
|
- subSocle_module |
|
- mxval0 |
|
- der1_sub_rker |
|
- mxmodule_form_qf |
|
- mxsemisimple_reducible |
|
- subg_mx_faithful |
|
- Wedderburn_is_ring |
|
- rker_norm |
|
- mx_Schur_inj_iso |
|
- scalar_mx_hom |
|
- mxrank_iso |
|
- rconj_mx_repr |
|
- mxrank_rsim |
|
- mx_series_repr_irr |
|
- rfix_mx_conjsg |
|
- in_factmodsK |
|
- dec_mx_reducible_semisimple |
|
- map_regular_repr |
|
- rfix_subg |
|
- mx_Schur_iso |
|
- submx_in_gen_eq |
|
- gen_mx_repr |
|
- rfix_mxS |
|
- rstabs_sub |
|
- group_closure_closed_field |
|
- Socle_semisimple |
|
- rstab_factmod |
|
- envelop_mx_ring |
|
- mxval_centg |
|
- mx_series_lt |
|
- irr_comp'_op0 |
|
- max_submodP |
|
- mx_rsim_factmod |
|
- gen_ntriv |
|
- mxval_genM |
|
- memmx_cent_envelop |
|
- last_mod |
|
- val_genJ |
|
- morphim_mx_repr |
|
- irr_degreeE |
|
- centgmxP |
|
- irr_mode1 |
|
- nz_socle |
|
- eqmx_iso |
|
- mxvalD |
|
- base_full |
|
- component_mx_def |
|
- rstab_morphpre |
|
- morphim_mx_abs_irr |
|
- in_submodE |
|
- irr_modeX |
|
- PackSocleK |
|
- rank_irr_comp |
|
- rfix_conj |
|
- map_gring_mx |
|
- eval_mxmodule |
|
- mxmodule_map |
|
- linear_irr_comp |
|
- mx_Schur |
|
- mx_JordanHolder_exists |
|
- eval_mxT |
|
- rstab_normal |
|
- val_submod_module |
|
- mxtrace_rsim |
|
- envelop_mxM |
|
- Clifford_astab |
|
- component_mx_disjoint |
|
- mxval_genV |
|
- rconj_mxJ |
|
- hom_component_mx_iso |
|
- rsim_submod1 |
|
- Clifford_iso |
|
- mxtrace_component |
|
- rstabs_eqg |
|
- gen_invr0 |
|
- linear_mx_abs_irr |
|
- mx_reducible_semisimple |
|
- rker_submod |
|
- mx_rsim_trans |
|
- rfix_regular |
|
- gen_dim_ub_proof |
|
- proj_factmodS |
|
- mx_rsim_map |
|
- gen_dim_factor |
|
- repr_mx_unitr |
|
- row_full_dom_hom |
|
- dec_mxsimple_exists |
|
- conj_mx_faithful |
|
- intro_mxsemisimple |
|
- mxsimple_iso_simple |
|
- rstabS |
|
- mxtrace_dsum_mod |
|
- repr_mx_unit |
|
- mxmodule_morphim |
|
- gring_op_mx |
|
- mx_iso_sym |
|
- genK |
|
- mxmodule_subg |
|
- group_closure_field_exists |
|
- rfix_mx_module |
|
- val_submodK |
|
- section_eqmx_add |
|
- repr_mx_free |
|
- map_mx_abs_irr |
|
- in_factmodK |
|
- in_submodJ |
|
- val_genZ |
|
- rstabs_map |
|
- subg_mx_irr |
|
- rstab_subg |
|
- morphim_mxE |
|
- repr_mxV |
|
- rker_eqg |
|
- mx_subseries_module |
|
- rcent_conj |
|
- mxmodule0 |
|
- rker_conj |
|
- quo_mx_repr |
|
- component_mx_iso |
|
- non_linear_gen_reducible |
|
- Clifford_iso2 |
|
- regular_mx_faithful |
|
- gring_opE |
|
- submx_rowval_gen |
|
- rank_Wedderburn_subring |
|
- morphpre_mx_repr |
|
- repr_mxVr |
|
- rsim_regular_submod |
|
- val_submodJ |
|
- mx_abs_irrW |
|
- gring_mxP |
|
- Wedderburn_center |
|
- envelop_mx_id |
|
- valWact |
|
- val_genN |
|
- gen_add0r |
|
- row_hom_mxP |
|
- groupCl |
|
- rsim_irr_comp |
|
- subSocle_iso |
|
- dom_hom_mx_module |
|
- Clifford_Socle1 |
|
- mx_subseries_module' |
|
- gen_mulVr |
|
- semisimple_Socle |
|
- irr_mode_neq0 |
|
- centgmx_map |
|
- val_factmodK |
|
- mxtrace_regular |
|
- rstab_quo |
|
- irr_comp_id |
|
- sum_irr_degree |
|
- centgmx_hom |
|
- addsmx_semisimple |
|
- irr1_repr |
|
- repr_mxKV |
|
- rcent_group_set |
|
- mxrank_in_factmod |
|
- set_nth_map_rVval |
|
- rfix_quo |
|
- sumsmx_semisimple |
|
- mxmodule_trans |
|
- mx_factmod_sub |
|
- mx_rsim_irr |
|
- path: mathcomp/algebra/polydiv.v |
|
theorems: |
|
- dvdp_eq_mul |
|
- ltn_divpr |
|
- divp_eq |
|
- divpK |
|
- size2_dvdp_gdco |
|
- divpD |
|
- dvdp_Pexp2l |
|
- eqp_mull |
|
- coprimep_dvdr |
|
- rmodpZ |
|
- divp_small |
|
- Gauss_dvdp |
|
- modp_eq0 |
|
- rdivp_mull |
|
- divpZr |
|
- size_gcdp1 |
|
- edivp_def |
|
- coprimep_XsubC2 |
|
- divp_eq |
|
- gcdp_mull |
|
- rgdcop0 |
|
- dvdpP |
|
- coprimep_modr |
|
- gcdp_scaler |
|
- eqp_rgdco_gdco |
|
- eqp_trans |
|
- divpp |
|
- egcdp_recP |
|
- coprimepMl |
|
- irredp_neq0 |
|
- rmodp_addl_mul_small |
|
- redivp_key |
|
- mulKp |
|
- dvdp1 |
|
- rdivpDl |
|
- dvd1p |
|
- divpP |
|
- polyXsubCP |
|
- modp_mull |
|
- modpZl |
|
- leq_modp |
|
- Bezout_eq1_coprimepP |
|
- Nrdvdp_small |
|
- dvdp_eq_mul |
|
- eqp_div |
|
- leq_gcdpr |
|
- modNp |
|
- uniq_roots_rdvdp |
|
- modpZr |
|
- take_poly_rmodp |
|
- rdvdp_XsubCl |
|
- eqp_coprimepr |
|
- eqp0 |
|
- eqp_mul2l |
|
- eqp_exp |
|
- modp1 |
|
- dvdp_eq_div |
|
- rdvdpP |
|
- dvdpZl |
|
- map_divp |
|
- divp_modpP |
|
- leq_divp |
|
- egcdpE |
|
- divpKC |
|
- gcdp_eq0 |
|
- rdivp_eq |
|
- dvdp_mul |
|
- gcdpE |
|
- map_modp |
|
- dvdp_exp2l |
|
- mulpK |
|
- divpKC |
|
- divpE |
|
- modp0 |
|
- eqp_modpl |
|
- coprimep_def |
|
- dvdp_subr |
|
- coprimep_comp_poly |
|
- modpP |
|
- mulKp |
|
- eqp_map |
|
- irredp_XaddC |
|
- eq_dvdp |
|
- dvdp_mod |
|
- mupMr |
|
- dvdpE |
|
- mup_XsubCX |
|
- gdcopP |
|
- root_dvdp |
|
- modp_mul |
|
- dvdp_eq |
|
- rdvdp_eqP |
|
- root_bigmul |
|
- divp_mulCA |
|
- eqp_rgcd_gcd |
|
- divpp |
|
- dvdp_mul2r |
|
- divpAC |
|
- dvdp_exp2r |
|
- eqpxx |
|
- dvdp_comp_poly |
|
- mu_prod_XsubC |
|
- eqp_divl |
|
- divpK |
|
- divpE |
|
- divp_dvd |
|
- egcdp0 |
|
- XsubC_dvd |
|
- coprimep_expl |
|
- mup_ltn |
|
- divp_addl_mul |
|
- gcdp_scalel |
|
- dvdp_addr |
|
- edivp_def |
|
- divp_addl_mul_small |
|
- modp_coprime |
|
- dvdp_leq |
|
- dvdp_div_eq0 |
|
- dvdp_eq_div |
|
- rmod0p |
|
- dvdp_prod_XsubC |
|
- dvdp_add_eq |
|
- rdvdp_leq |
|
- polyXsubC_eqp1 |
|
- dvdp_eq |
|
- rgcd0p |
|
- gcdpp |
|
- mup_leq |
|
- eqp_divr |
|
- rdvdpN0 |
|
- rdvdp_mull |
|
- rmodpp |
|
- leq_rmodp |
|
- gdcop0 |
|
- rdvdpp |
|
- eqp_size |
|
- dvdp_exp_XsubCP |
|
- modpP |
|
- polyC_eqp1 |
|
- rdivpDr |
|
- modpZl |
|
- scalp0 |
|
- mulKp |
|
- divp_mulA |
|
- rdivpK |
|
- edivp_redivp |
|
- rmodpN |
|
- coprimep_map |
|
- dvdp_gcd_idl |
|
- coprimep_pexpl |
|
- rdvdp0 |
|
- gdcop_map |
|
- ltn_rmodpN0 |
|
- divpN |
|
- dvdp_gdcor |
|
- eqp_eq |
|
- egcdpP |
|
- mulKp |
|
- modpD |
|
- rmodp1 |
|
- dvdp_eq |
|
- divp_pmul2l |
|
- dvdp_addl |
|
- eqp_gcd |
|
- Gauss_gcdpl |
|
- eqp_mod |
|
- eqp_monic |
|
- rmodp_mull |
|
- ltn_divpl |
|
- ulc_eqpP |
|
- divpD |
|
- dvdpP |
|
- rdiv0p |
|
- gcdp_mul2r |
|
- gcdp_exp |
|
- rmodp_mulml |
|
- root_biggcd |
|
- mulpK |
|
- redivp_eq |
|
- redivp_map |
|
- rdvdp1 |
|
- gcdp0 |
|
- edivp_map |
|
- divpE |
|
- rdvdp_eq |
|
- rgcdp0 |
|
- divp_mulAC |
|
- eqp_gcdr |
|
- divp_mulA |
|
- dvdp_pexp2r |
|
- divpK |
|
- edivp_eq |
|
- rdvd0pP |
|
- coprime1p |
|
- prod_XsubC_eq |
|
- edivpP |
|
- root_gdco |
|
- eq_rdvdp |
|
- dvdp_mulIl |
|
- gcdp_comp_poly |
|
- drop_poly_divp |
|
- drop_poly_rdivp |
|
- Bezout_coprimepP |
|
- coprimepZl |
|
- gcdp_eqp1 |
|
- divp_addl_mul |
|
- coprimep_sym |
|
- dvdp_add |
|
- coprimep_addl_mul |
|
- irredp_XsubC |
|
- modpC |
|
- coprimep_pexpr |
|
- divp0 |
|
- divp_divl |
|
- dvdpZr |
|
- comm_redivpP |
|
- dvdp_map |
|
- divp_eq |
|
- irredp_XsubCP |
|
- mupM |
|
- divpP |
|
- rdivp_eq |
|
- coprimepPn |
|
- mupMl |
|
- div0p |
|
- modp_addl_mul_small |
|
- expp_sub |
|
- dvdp_trans |
|
- dvdp_gcdr |
|
- gcdp_modl |
|
- rmodp_mulmr |
|
- coprimep_XsubC |
|
- redivp_def |
|
- eqp_modpl |
|
- rmodp_small |
|
- coprimep_size_gcd |
|
- modpN |
|
- coprimep0 |
|
- modp_id |
|
- coprimep_root |
|
- eqp_coprimepl |
|
- edivp_key |
|
- dvdp_gcdl |
|
- rmodpp |
|
- divp1 |
|
- rdivp_small |
|
- root_factor_theorem |
|
- scalp_map |
|
- eqp_div_XsubC |
|
- dvdp_gcdlr |
|
- eqpf_eq |
|
- eqpP |
|
- rmodpp |
|
- divp_pmul2l |
|
- leq_divpr |
|
- eqp_gdcol |
|
- coprimepMr |
|
- coprimep_gdco |
|
- take_poly_modp |
|
- gcdp_def |
|
- gcdp_addl |
|
- rdivp_addl_mul_small |
|
- rgcdpE |
|
- coprimepP |
|
- divpKC |
|
- scalpE |
|
- modp_small |
|
- rdvd1p |
|
- gcdp_mul2l |
|
- divpZr |
|
- dvdp_gcd |
|
- mupNroot |
|
- divp_mulCA |
|
- Gauss_dvdpr |
|
- dvdUp |
|
- divp_pmul2r |
|
- coprimepX |
|
- rdivpp |
|
- eqp_divl |
|
- eqp_rmod_mod |
|
- rscalp_small |
|
- eqp01 |
|
- eqp_dvdr |
|
- leq_rdivp |
|
- modpE |
|
- leq_trunc_divp |
|
- gtNdvdp |
|
- rmodp_mull |
|
- root_factor_theorem |
|
- rmodpB |
|
- eqp_mul2r |
|
- rmodp_eq0 |
|
- divpN |
|
- coprimep_dvdl |
|
- divpN0 |
|
- dvdp_mulIr |
|
- divp_divl |
|
- leq_divpl |
|
- gcdp_addr |
|
- dvdp_exp_sub |
|
- dvdp_eqp1 |
|
- Bezout_coprimepPn |
|
- Gauss_gcdpr |
|
- dvdp_eq |
|
- scalpE |
|
- expp_sub |
|
- dvdp_gcd_idr |
|
- eqp_modpr |
|
- root_coprimep |
|
- gcdpC |
|
- mulp_gcdl |
|
- eqpfP |
|
- modp_XsubC |
|
- dvdpP |
|
- eqp_mulr |
|
- rdivp_addl_mul |
|
- modpE |
|
- dvd0p |
|
- redivp_eq |
|
- modpZr |
|
- ltn_modpN0 |
|
- root_gcd |
|
- mod0p |
|
- rdivpp |
|
- eqp_gdcor |
|
- size_divp |
|
- dvdp_subl |
|
- horner_mod |
|
- rdivp_eq |
|
- eqp_dvdl |
|
- divp_mulAC |
|
- dvdpE |
|
- modpp |
|
- rmodpC |
|
- Bezoutp |
|
- rdivp0 |
|
- modpE |
|
- eqp_rdiv_div |
|
- mulpK |
|
- mulp_gcdr |
|
- rcoprimep_coprimep |
|
- rmodp_compr |
|
- divp_pmul2r |
|
- edivpP |
|
- coprimep1 |
|
- modpD |
|
- modp_addl_mul_small |
|
- egcdp_map |
|
- redivpP |
|
- dvdp_size_eqp |
|
- Gauss_dvdpl |
|
- rmodp0 |
|
- uniq_roots_dvdp |
|
- coprime0p |
|
- divpp |
|
- divp_eq |
|
- divpZl |
|
- leq_gcdpl |
|
- dvdp_mul_XsubC |
|
- rdivp1 |
|
- mulpK |
|
- size_poly_eq1 |
|
- rdvdp_mull |
|
- modp_mulr |
|
- coprimep_modl |
|
- dvdpP |
|
- gcdp1 |
|
- dvdp_mul2l |
|
- dvd_eqp_divl |
|
- dvdp_mulr |
|
- eqp_ltrans |
|
- eqp_gcdl |
|
- rdivpK |
|
- divpZl |
|
- dvdpNl |
|
- rmodpD |
|
- scalpE |
|
- ltn_modp |
|
- modpN |
|
- dvdp_sub |
|
- modp_mul |
|
- ucl_eqp_eq |
|
- coprimep_div_gcd |
|
- dvdp0 |
|
- divpAC |
|
- path: mathcomp/solvable/frobenius.v |
|
theorems: |
|
- FrobeniusJ |
|
- partition_class_support |
|
- Frobenius_subl |
|
- Frobenius_reg_compl |
|
- Frobenius_partition |
|
- semiprimeJ |
|
- normedTI_memJ_P |
|
- Frobenius_Ldiv |
|
- regular_norm_coprime |
|
- semiregularS |
|
- Frobenius_ker_dvd_ker1 |
|
- Frobenius_ker_coprime |
|
- Frobenius_index_coprime |
|
- semiregular_prime |
|
- normedTI_S |
|
- partition_normedTI |
|
- FrobeniusJcompl |
|
- Frobenius_context |
|
- semiregular1r |
|
- semiregularJ |
|
- normedTI_J |
|
- semiprimeS |
|
- Frobenius_action_kernel_def |
|
- normedTI_P |
|
- injm_Frobenius_compl |
|
- Frobenius_coprime |
|
- Frobenius_ker_Hall |
|
- Frobenius_subr |
|
- Frobenius_trivg_cent |
|
- FrobeniusJker |
|
- FrobeniusWker |
|
- injm_Frobenius_ker |
|
- Frobenius_kerP |
|
- cent_semiprime |
|
- Frobenius_actionP |
|
- semiregular_sym |
|
- semiregular1l |
|
- regular_norm_dvd_pred |
|
- set_Frobenius_compl |
|
- Frobenius_index_dvd_ker1 |
|
- ltn_odd_Frobenius_ker |
|
- semiprime_regular |
|
- Frobenius_dvd_ker1 |
|
- cent1_normedTI |
|
- FrobeniusWcompl |
|
- injm_Frobenius_group |
|
- Frobenius_reg_ker |
|
- FrobeniusW |
|
- cent_semiregular |
|
- Frobenius_compl_Hall |
|
- path: mathcomp/algebra/archimedean.v |
|
theorems: |
|
- natr_mul_eq1 |
|
- floor1 |
|
- floorX |
|
- conj_natr |
|
- intrKfloor |
|
- sum_truncK |
|
- floorK |
|
- natr_sum_eq1 |
|
- intrEfloor |
|
- trunc0Pn |
|
- floor_itv |
|
- trunc0 |
|
- floorP |
|
- ceilX |
|
- raddfZ_nat |
|
- gt_pred_ceil |
|
- rpredZ_nat |
|
- floor_le |
|
- ceil_itv |
|
- floorD |
|
- truncX |
|
- sqr_intr_ge1 |
|
- floorpK |
|
- norm_intr_ge1 |
|
- truncM |
|
- Rreal_int |
|
- ceil_le |
|
- floor_def |
|
- int_num_subring |
|
- rpred_nat_num |
|
- floor_subproof |
|
- raddfZ_int |
|
- ceil_le_int |
|
- intr_aut |
|
- truncK |
|
- intr_ler_sqr |
|
- intr_nat |
|
- le_ceil |
|
- ceilM |
|
- natr_normK |
|
- intrP |
|
- conj_intr |
|
- ceil0 |
|
- rpredZ_int |
|
- natr_ge0 |
|
- intrEsign |
|
- intrKceil |
|
- natr_exp_even |
|
- truncD |
|
- aut_intr |
|
- trunc_gt0 |
|
- floor0 |
|
- ceilD |
|
- intr_int |
|
- floorpP |
|
- intrEge0 |
|
- rpred_int_num |
|
- ceilN |
|
- Rreal_nat |
|
- ceilK |
|
- ceil1 |
|
- intrEceil |
|
- natr_prod_eq1 |
|
- floorM |
|
- trunc_floor |
|
- natr_aut |
|
- ge_floor |
|
- natr_gt0 |
|
- natrEint |
|
- intr_normK |
|
- path: mathcomp/fingroup/perm.v |
|
theorems: |
|
- perm_onM |
|
- porbitPmin |
|
- permKV |
|
- porbitV |
|
- lift_perm_id |
|
- odd_permV |
|
- odd_mul_tperm |
|
- perm1 |
|
- cast_perm_id |
|
- permS0 |
|
- cast_perm_comp |
|
- perm_onto |
|
- prod_tpermP |
|
- perm_on_id |
|
- tpermV |
|
- odd_perm_prod |
|
- card_porbit_neq0 |
|
- cast_ord_permE |
|
- cast_permE |
|
- porbit_sym |
|
- lift_permV |
|
- perm_oneP |
|
- lift_permM |
|
- tpermC |
|
- porbit_traject |
|
- cast_permK |
|
- perm_on1 |
|
- tpermL |
|
- perm_proof |
|
- tpermK |
|
- perm_onV |
|
- Sym_group_set |
|
- odd_permJ |
|
- tpermR |
|
- tuple_permP |
|
- perm_invP |
|
- im_perm_on |
|
- permX |
|
- card_Sn |
|
- permX_fix |
|
- tpermD |
|
- isom_cast_perm |
|
- eq_porbit_mem |
|
- card_Sym |
|
- tperm_on |
|
- apermE |
|
- iter_porbit |
|
- imset_perm1 |
|
- uniq_traject_porbit |
|
- odd_perm1 |
|
- porbits_mul_tperm |
|
- cast_perm_sym |
|
- tperm2 |
|
- porbitsV |
|
- lift_perm1 |
|
- tpermP |
|
- tperm1 |
|
- tpermJ |
|
- permK |
|
- perm_closed |
|
- cast_permKV |
|
- odd_lift_perm |
|
- im_permV |
|
- permJ |
|
- lift_perm_lift |
|
- cast_perm_morphM |
|
- pvalE |
|
- lift_permK |
|
- card_perm |
|
- odd_permM |
|
- perm_inj |
|
- perm_invK |
|
- permP |
|
- permS01 |
|
- tperm_proof |
|
- permS1 |
|
- mem_porbit |
|
- permM |
|
- permE |
|
- perm_onC |
|
- path: mathcomp/fingroup/morphism.v |
|
theorems: |
|
- morphpreP |
|
- morphpreV |
|
- im_sgval |
|
- injm_morphim_inj |
|
- morphim_ker |
|
- injm_sgval |
|
- morphim_setIpre |
|
- invm_subker |
|
- injm_subcent1 |
|
- morphimGK |
|
- morphimU |
|
- card_im_injm |
|
- mkerr |
|
- morphim_subnorm |
|
- injm_cent1 |
|
- kerP |
|
- morphpreI |
|
- morphim_cent1 |
|
- morphJ |
|
- morphV |
|
- domP |
|
- injm_norms |
|
- morphim_cents |
|
- ker_norm |
|
- mem_morphpre |
|
- morphim_restrm |
|
- ker_injm |
|
- injm_normal |
|
- card_isog |
|
- isog_transr |
|
- eq_in_morphim |
|
- isog_trans |
|
- injm_cent |
|
- invmK |
|
- injm_comp |
|
- isom_isog |
|
- morphpreIim |
|
- sgval_sub |
|
- injm_invm |
|
- morphmE |
|
- morph_injm_eq1 |
|
- dom_ker |
|
- morphimSGK |
|
- morphim_invm |
|
- morphim_trivm |
|
- morphpre_set1 |
|
- morphR |
|
- morphim_eq0 |
|
- isog_subg |
|
- morphimIG |
|
- morphim_abelian |
|
- morphpreSK |
|
- rcoset_kerP |
|
- isogEhom |
|
- injm_subnorm |
|
- morphpre_cent |
|
- idm_isom |
|
- injm_restrm |
|
- morphpreS |
|
- nclasses_isog |
|
- morphpre0 |
|
- invmE |
|
- morphpre_cent1 |
|
- morphim_subcent |
|
- trivm_morphM |
|
- restrmP |
|
- sub_isom |
|
- im_restrm |
|
- morph_dom_groupset |
|
- ker_rcoset |
|
- morphim_class |
|
- injm_abelian |
|
- morphpreD |
|
- morphim_cent |
|
- morphimE |
|
- morphpre_subcent1 |
|
- morphim_invmE |
|
- isog_isom |
|
- morphpreMr |
|
- morphpre_idm |
|
- ker_sgval |
|
- morph1 |
|
- morphim_factm |
|
- classes_morphim |
|
- morphimD1 |
|
- injmP |
|
- eq_morphim |
|
- ker_sub_pre |
|
- ker_ifactm |
|
- morphim_inj |
|
- misomP |
|
- order_injm |
|
- morphim1 |
|
- isom_sub_im |
|
- injm_subg |
|
- morphimDG |
|
- mkerl |
|
- restr_isom_to |
|
- homgP |
|
- morphpre_cent1s |
|
- morphim_norms |
|
- leq_morphim |
|
- morphim_injG |
|
- morphim_set1 |
|
- homg_trans |
|
- morphim_cycle |
|
- morphpre_ifactm |
|
- isog_eq1 |
|
- morphim_isom |
|
- morphim_injm_eq1 |
|
- comp_morphM |
|
- subgmK |
|
- im_invm |
|
- morphpre_normal |
|
- morphimSK |
|
- morphimIim |
|
- restr_isom |
|
- sub_morphpre_injm |
|
- injm_eq |
|
- ker_subg |
|
- injm_factm |
|
- morphimI |
|
- morphpre_inj |
|
- morphimMl |
|
- morphim_cent1s |
|
- injm_cents |
|
- morphpre_subnorm |
|
- morphim_subcent1 |
|
- morphpreMl |
|
- injmD1 |
|
- isogP |
|
- ker_factm_loc |
|
- injm_idm |
|
- morph_prod |
|
- morphimT |
|
- morphpre_factm |
|
- isom_subg |
|
- morphM |
|
- morphimD |
|
- morphim_sub |
|
- im_subg |
|
- ker_restrm |
|
- injmK |
|
- morphpre_restrm |
|
- morphim_idm |
|
- ker_comp |
|
- morphimIdom |
|
- morphimJ |
|
- morphpre_proper |
|
- morphimV |
|
- isomP |
|
- isog_transl |
|
- morphpreIdom |
|
- isom_card |
|
- morphimY |
|
- idm_morphM |
|
- im_idm |
|
- morphim_norm |
|
- morphX |
|
- ker_idm |
|
- morphimP |
|
- isog_abelian |
|
- isom_im |
|
- morphim_subnormG |
|
- injm_proper |
|
- injm_norm |
|
- morphpre_groupset |
|
- homg_refl |
|
- injmI |
|
- morphpre_invm |
|
- injm1 |
|
- morphpre_cents |
|
- sub_isog |
|
- morphim_normG |
|
- restrmEsub |
|
- mem_morphim |
|
- morphpre_norm |
|
- card_injm |
|
- isog_hom |
|
- isog_refl |
|
- eq_homgr |
|
- isom_inj |
|
- injm_factmP |
|
- mker |
|
- ifactmE |
|
- morphim_homg |
|
- im_ifactm |
|
- ker_normal_pre |
|
- morphpreU |
|
- isom_sym |
|
- morphim_gen |
|
- morphim_ifactm |
|
- morphimR |
|
- leq_homg |
|
- morphimS |
|
- morphpreJ |
|
- morphimEsub |
|
- ker_invm |
|
- injm_subcent |
|
- morphimMr |
|
- ker_factm |
|
- sub_morphim_pre |
|
- isom_sgval |
|
- morphim_groupset |
|
- morphpre_norms |
|
- morphpreE |
|
- morphpre_comp |
|
- nclasses_injm |
|
- morphim_comp |
|
- factm_morphM |
|
- injmSK |
|
- ltn_morphim |
|
- ker_normal |
|
- path: mathcomp/fingroup/quotient.v |
|
theorems: |
|
- coset_idr |
|
- quotient_norm |
|
- morphpre_qisom |
|
- card_homg |
|
- injm_qisom |
|
- sub_cosetpre_quo |
|
- homg_quotientS |
|
- quotient_class |
|
- index_injm |
|
- cosetpre_cent1 |
|
- weak_second_isog |
|
- im_qisom_proof |
|
- quotient_cents |
|
- quotient0 |
|
- quotientGI |
|
- quotient_inj |
|
- quotientE |
|
- dvdn_morphim |
|
- quotientMidr |
|
- kercoset_rcoset |
|
- norm_quotient_pre |
|
- im_qisom |
|
- coset_default |
|
- morphim_qisom_inj |
|
- quotient_abelian |
|
- quotientS |
|
- coprime_morph |
|
- ltn_quotient |
|
- qisom_inj |
|
- quotientMr |
|
- card_quotient_subnorm |
|
- second_isog |
|
- inv_quotientN |
|
- index_quotient_eq |
|
- cosetpre_cent |
|
- cosetpreK |
|
- coset_kerl |
|
- divg_normal |
|
- quotient_proper |
|
- third_isog |
|
- quotient1_isom |
|
- quotientMl |
|
- quotientU |
|
- quotient_gen |
|
- coset_norm |
|
- sub_quotient_pre |
|
- third_isom |
|
- val_coset |
|
- quotientJ |
|
- qisom_isog |
|
- coprime_morphl |
|
- index_morphim |
|
- qisom_isom |
|
- cosetpre_proper |
|
- cosetpre_cent1s |
|
- coset_mem |
|
- quotient1 |
|
- qisom_ker_proof |
|
- cosetpre_set1 |
|
- logn_morphim |
|
- quotient_subcent |
|
- cosetP |
|
- im_coset |
|
- trivg_quotient |
|
- quotient_isog |
|
- quotientSK |
|
- cosetpre_subcent |
|
- quotient_norms |
|
- coset_mulP |
|
- card_cosetpre |
|
- quotmE |
|
- coset_one_proof |
|
- mem_repr_coset |
|
- quotient_sub1 |
|
- quotientS1 |
|
- qisomE |
|
- coset1 |
|
- first_isom |
|
- coset_range_mul |
|
- coset_reprK |
|
- quotientD1 |
|
- quotient_subnormG |
|
- first_isog |
|
- quotient_subnorm |
|
- cosetpre_normal |
|
- quotientGK |
|
- first_isog_loc |
|
- imset_coset |
|
- quotient_cent1s |
|
- cosetpre_set1_coset |
|
- qisom_restr_proof |
|
- morphim_qisom |
|
- quotientR |
|
- sub_im_coset |
|
- quotientV |
|
- cosetpreM |
|
- quotientInorm |
|
- coset1_injm |
|
- coset_kerr |
|
- val_coset_prim |
|
- quotm_dom_proof |
|
- quotientSGK |
|
- quotientY |
|
- normal_cosetpre |
|
- ker_coset |
|
- inv_quotientS |
|
- card_morphpre |
|
- coset_invP |
|
- quotientIG |
|
- cosetpre_subcent1 |
|
- dvdn_quotient |
|
- coset_oneP |
|
- coset_morphM |
|
- index_morphpre |
|
- ker_quotm |
|
- repr_coset_norm |
|
- coset_id |
|
- coprime_morphr |
|
- quotient_isom |
|
- quotientD |
|
- coset_range_inv |
|
- index_quotient_ker |
|
- quotientK |
|
- restrm_quotientE |
|
- quotient_homg |
|
- morphim_quotm |
|
- im_quotient |
|
- card_quotient |
|
- quotientT |
|
- val_quotient |
|
- index_cosetpre |
|
- repr_coset1 |
|
- cosetpreSK |
|
- quotientYidr |
|
- index_quotient |
|
- mem_quotient |
|
- card_morphim |
|
- quotient_injG |
|
- quotient_cent1 |
|
- quotient_set1 |
|
- leq_quotient |
|
- first_isom_loc |
|
- injm_quotm |
|
- sub_cosetpre |
|
- cosetpre_gen |
|
- quotientI |
|
- quotm_ker_proof |
|
- quotient_setIpre |
|
- quotient_subcent1 |
|
- quotientDG |
|
- quotient1_isog |
|
- quotientYidl |
|
- quotient_cent |
|
- classes_quotient |
|
- cosetpre_cents |
|
- ker_coset_prim |
|
- quotient_normG |
|
- val_qisom |
|
- char_from_quotient |
|
- quotientYK |
|
- quotientMidl |
|
- quotient_neq1 |
|
- second_isom |
|
- path: mathcomp/ssreflect/fintype.v |
|
theorems: |
|
- existsb |
|
- negb_exists_in |
|
- proper_card |
|
- enumP |
|
- ordS_subproof |
|
- predX_prod_enum |
|
- exists_inPn |
|
- mem_sub_enum |
|
- exists_eq_inP |
|
- eq_rlshift |
|
- eq_card_trans |
|
- lift_max |
|
- bij_on_image |
|
- disjointU |
|
- card2 |
|
- proper_subn |
|
- subxx_hint |
|
- eqfun_inP |
|
- flatten_imageP |
|
- cardC |
|
- f_iinv |
|
- ord_pred_bij |
|
- card_sig |
|
- bumpS |
|
- tag_enumP |
|
- in_iinv_f |
|
- eq_lrshift |
|
- ltn_ord |
|
- subxx |
|
- enum_val_nth |
|
- subset_leq_card |
|
- rev_ord_proof |
|
- subset_cons |
|
- card0 |
|
- ord_pred_subproof |
|
- unit_enumP |
|
- size_enum_ord |
|
- fin_all_exists2 |
|
- image_injP |
|
- enum_default |
|
- card_option |
|
- sub_enum_uniq |
|
- mem_ord_enum |
|
- eq_disjoint |
|
- negb_forall |
|
- exists_inP |
|
- card_gt0P |
|
- forallPP |
|
- disjoint_cat |
|
- card_prod |
|
- inordK |
|
- dinjectiveP |
|
- seq_sub_axiom |
|
- unlift_subproof |
|
- enum_rankK_in |
|
- enum_rank_ord |
|
- leq_ord |
|
- eq_existsb |
|
- cast_ord_inj |
|
- enum_uniq |
|
- f_invF |
|
- void_enumP |
|
- codomP |
|
- eq_disjoint_r |
|
- card_image |
|
- splitK |
|
- invF_f |
|
- subset_catl |
|
- card_uniqP |
|
- codom_val |
|
- eq_disjoint1 |
|
- disjoint0 |
|
- disjoint_has |
|
- eq_card |
|
- sum_enum_uniq |
|
- bumpK |
|
- size_codom |
|
- eq_card |
|
- lift_subproof |
|
- max_card |
|
- card_ord |
|
- card_seq_sub |
|
- enum_ordSr |
|
- leq_bump |
|
- codom_f |
|
- rshift_subproof |
|
- subset_pred1 |
|
- card_gt2P |
|
- pred0P |
|
- subset_all |
|
- eq_lshift |
|
- card_void |
|
- card1 |
|
- cardX |
|
- eq_forallb_in |
|
- ord_predK |
|
- fin_all_exists |
|
- size_image |
|
- seq_subE |
|
- subset_cons2 |
|
- image_f |
|
- ord_enum_uniq |
|
- enum_val_bij |
|
- iinv_f |
|
- canF_invF |
|
- bij_on_codom |
|
- image_iinv |
|
- canF_RL |
|
- subset_eqP |
|
- cast_ord_proof |
|
- card_size |
|
- injectivePn |
|
- cardD1 |
|
- cardT |
|
- pred0Pn |
|
- proper_trans |
|
- preim_iinv |
|
- eq_card0 |
|
- enum_val_bij_in |
|
- extremumP |
|
- uniq_enumP |
|
- count_enumP |
|
- rshift_inj |
|
- lift_eqF |
|
- eq_invF |
|
- subsetP |
|
- lift0 |
|
- mem_image |
|
- mem_iinv |
|
- ordSK |
|
- eq_pick |
|
- imageP |
|
- forallPn |
|
- lshift_inj |
|
- pcan_enumP |
|
- disjointU1 |
|
- filter_subset |
|
- leq_card_in |
|
- forallP |
|
- enum1 |
|
- pre_image |
|
- prod_enumP |
|
- eq_disjoint0 |
|
- disjointWr |
|
- leq_image_card |
|
- seq_sub_pickleK |
|
- nth_codom |
|
- enum_ord0 |
|
- eq_subset_r |
|
- val_ord_enum |
|
- arg_minnP |
|
- fin_pickleK |
|
- eq_enum_rank_in |
|
- eq_rshift |
|
- nth_enum_rank_in |
|
- bumpDl |
|
- existsP |
|
- exists_inb |
|
- lift_inj |
|
- unlift_some |
|
- eq_card1 |
|
- cardU1 |
|
- nth_ord_enum |
|
- sub_ordK |
|
- mem_seq_sub_enum |
|
- option_enumP |
|
- splitP |
|
- disjointW |
|
- subset_leqif_card |
|
- disjoint_sym |
|
- cast_ordK |
|
- properE |
|
- unbumpS |
|
- card_le1P |
|
- fintype1P |
|
- nth_enum_rank |
|
- fintype0 |
|
- sub_ord_proof |
|
- enum_val_inj |
|
- eq_codom |
|
- mask_enum_ord |
|
- card_sum |
|
- card_le1_eqP |
|
- unlift_none |
|
- enum_ordSl |
|
- val_sub_enum |
|
- unbumpDl |
|
- card_sub |
|
- ord_pred_inj |
|
- enum0 |
|
- widen_ord_proof |
|
- map_preim |
|
- rev_ordK |
|
- enum_rank_subproof |
|
- unbumpKcond |
|
- liftK |
|
- enum_valK_in |
|
- inord_val |
|
- seq_sub_default |
|
- mem_sum_enum |
|
- ord_inj |
|
- ordS_bij |
|
- sub_proper_trans |
|
- canF_LR |
|
- rev_ord_inj |
|
- card_gt1P |
|
- card_codom |
|
- subset_trans |
|
- eq_existsb_in |
|
- inj_leq |
|
- card_preim |
|
- enum_rank_bij |
|
- subsetE |
|
- bij_eq_card |
|
- nth_image |
|
- index_enum_ord |
|
- subset_cardP |
|
- inj_card_bij |
|
- codomE |
|
- properP |
|
- enum_rankK |
|
- inj_card_onto |
|
- card1P |
|
- properxx |
|
- image_codom |
|
- eq_card_sub |
|
- card_tagged |
|
- eq_enum |
|
- existsPP |
|
- enumT |
|
- enum_rank_inj |
|
- card0_eq |
|
- image_pred0 |
|
- disjointFl |
|
- eq_card_prod |
|
- canF_sym |
|
- dinjectivePn |
|
- leq_card |
|
- eq_subset |
|
- card_in_image |
|
- eq_cardT |
|
- forall_inPP |
|
- disjoint_cons |
|
- subset_predT |
|
- eq_image |
|
- eqfunP |
|
- unliftP |
|
- card_unit |
|
- mem_enum |
|
- proper_sub_trans |
|
- disjoint_subset |
|
- subset_disjoint |
|
- eq_subxx |
|
- injF_bij |
|
- cardE |
|
- negb_forall_in |
|
- subsetPn |
|
- cast_ord_id |
|
- split_ordP |
|
- cast_ordKV |
|
- neq_bump |
|
- bool_enumP |
|
- mem_card1 |
|
- existsPn |
|
- val_enum_ord |
|
- cardC1 |
|
- unbumpK |
|
- injectiveP |
|
- subset_filter |
|
- iinv_proof |
|
- disjointFr |
|
- map_subset |
|
- leq_bump2 |
|
- ord1 |
|
- subset_cat2 |
|
- enum_valK |
|
- enum_val_ord |
|
- enum_valP |
|
- disjoint1 |
|
- path: mathcomp/ssreflect/bigop.v |
|
theorems: |
|
- sub_le_big_seq_cond |
|
- pair_big_idem |
|
- big_enum_val_cond |
|
- leq_bigmax_seq |
|
- big_ord_narrow_cond |
|
- big_distrl |
|
- big_enum_cond |
|
- big_split_ord |
|
- big_has |
|
- big_ord1_cond |
|
- some_big_AC_mk_monoid |
|
- sum1_count |
|
- big_geq_mkord |
|
- big_ord_narrow |
|
- big_mkcondl_idem |
|
- addmC |
|
- exchange_big_dep |
|
- big_allpairs_idem |
|
- big_nat_rev |
|
- exchange_big_dep_nat |
|
- sum_nat_seq_eq1 |
|
- big_mkcondr |
|
- big_allpairs_dep |
|
- mulmAC |
|
- big_nat_widenl |
|
- oopC_subdef |
|
- le_big_nat_cond |
|
- deprecated_filter_index_enum |
|
- big_ord_recr |
|
- big_cat_idem |
|
- big_nat1_cond_eq |
|
- big_nat_mul |
|
- mulmCA |
|
- partition_big |
|
- bigmax_eq_arg |
|
- sum1_card |
|
- exchange_big_nat_idem |
|
- big_ltn |
|
- mulm1 |
|
- idem_sub_le_big_cond |
|
- mem_index_iota |
|
- big_image_cond |
|
- sum_nat_eq0 |
|
- big_ord_narrow_leq |
|
- prodn_gt0 |
|
- bigA_distr_big_dep |
|
- big_mask_tuple |
|
- big_add1 |
|
- big_mkord |
|
- eq_big_op |
|
- oop1x_subdef |
|
- big_rmcond_in_idem |
|
- big_enum_rank |
|
- eq_big_idx_seq |
|
- mulmACA |
|
- mem_index_enum |
|
- prod_nat_const_nat |
|
- big_rem_AC |
|
- big_rmcond_idem |
|
- eq_bigmax_cond |
|
- bigID_idem |
|
- le_big_nat |
|
- prod_nat_seq_eq1 |
|
- big_map |
|
- foldl_idx |
|
- oopA_subdef |
|
- perm_big_supp_cond |
|
- big_rcons_op |
|
- eq_big_nat |
|
- big_geq |
|
- bigD1 |
|
- bigmax_sup |
|
- sub_le_big |
|
- big_bool |
|
- uniq_sub_le_big |
|
- oACE |
|
- big_condT |
|
- big_rec |
|
- oopx1_subdef |
|
- idem_sub_le_big |
|
- big_nat_cond |
|
- big_allpairs |
|
- big_andE |
|
- uniq_sub_le_big_cond |
|
- leq_sum |
|
- eq_big_idx |
|
- card_bseq |
|
- sig_big_dep |
|
- big_id_idem_AC |
|
- congr_big_nat |
|
- big_seq_cond |
|
- big_nth |
|
- big_split |
|
- mul1m |
|
- big_change_idx |
|
- iteropE |
|
- telescope_sumn_in |
|
- bigmax_leqP |
|
- mulC_dist |
|
- big_undup |
|
- big_mkcond |
|
- big_mask |
|
- big1_idem |
|
- big_rec3 |
|
- pair_bigA_idem |
|
- perm_big |
|
- big_andbC |
|
- big_distr_big_dep |
|
- big1 |
|
- big_AC_mk_monoid |
|
- subset_le_big |
|
- prodn_cond_gt0 |
|
- index_enum_uniq |
|
- leq_prod |
|
- big_cat_nested |
|
- big_image |
|
- opCA |
|
- big_load |
|
- sub_in_le_big |
|
- prod_nat_const |
|
- big_allpairs_dep_idem |
|
- reindex |
|
- mul0m |
|
- big_ind3 |
|
- big_pred0_eq |
|
- big_rmcond |
|
- big_enumP |
|
- expn_sum |
|
- pair_big_dep |
|
- big_pred1_eq_id |
|
- big_cat_nat_idem |
|
- big_enum_val |
|
- exchange_big_idem |
|
- telescope_big |
|
- sum_nat_eq1 |
|
- exchange_big_nat |
|
- pair_big |
|
- big_undup_iterop_count |
|
- sum_nat_const |
|
- exchange_big |
|
- big_flatten |
|
- big_const_nat |
|
- big_cat_nat |
|
- biglcmn_sup |
|
- big_distr_big |
|
- big_pred1_id |
|
- big_ind2 |
|
- big_hasC |
|
- big_map_id |
|
- big_catl |
|
- biggcdn_inf |
|
- reindex_onto |
|
- foldrE |
|
- bigU |
|
- big_distrlr |
|
- mulC_zero |
|
- sum1_size |
|
- mulmDr |
|
- big_const_idem |
|
- big_ind |
|
- prod_nat_seq_neq1 |
|
- sub_le_big_seq |
|
- big_has_cond |
|
- big_filter |
|
- big_ord0 |
|
- prod_nat_seq_eq0 |
|
- eq_big_seq |
|
- big_rev_mkord |
|
- bigmax_leqP_seq |
|
- mulmDl |
|
- big_endo |
|
- big_const_ord |
|
- big_nat1 |
|
- congr_big |
|
- big1_eq |
|
- dvdn_biglcmP |
|
- bigD1_seq |
|
- big_const |
|
- exchange_big_dep_idem |
|
- mulC_id |
|
- mulmA |
|
- sumnE |
|
- big_catr |
|
- sum_nat_seq_eq0 |
|
- big_rmcond_in |
|
- big_id_idem |
|
- leqif_sum |
|
- pair_big_dep_idem |
|
- big_enum |
|
- perm_big_supp |
|
- leq_bigmax_cond |
|
- big_cons |
|
- bigA_distr_big |
|
- big_ord_recl |
|
- foldlE |
|
- reindex_inj |
|
- big_seq1 |
|
- leq_bigmax |
|
- big_mkcondl |
|
- big1_seq |
|
- big_mkcondr_idem |
|
- big_filter_cond |
|
- mulm0 |
|
- prod_nat_seq_neq0 |
|
- sum_nat_const_nat |
|
- eq_bigl_supp |
|
- sum_nat_seq_neq0 |
|
- bigID |
|
- big_rem |
|
- sumnB |
|
- big_ord_widen_cond |
|
- big_ord1 |
|
- big_seq |
|
- addmAC |
|
- big_nat_recr |
|
- big_pred1 |
|
- big_addn |
|
- big_morph |
|
- big_index_uniq |
|
- big_pred0 |
|
- big_ltn_cond |
|
- bigU_idem |
|
- telescope_sumn |
|
- big_ord_widen_leq |
|
- big_pmap |
|
- big_pred1_eq |
|
- big_if |
|
- index_enum_key |
|
- bigmax_sup_seq |
|
- big_only1 |
|
- mulmC |
|
- big_nil |
|
- addmCA |
|
- big_nat_widen |
|
- eq_bigr |
|
- add0m |
|
- pair_bigA |
|
- big_nat1_id |
|
- big_seq1_id |
|
- big_split_idem |
|
- big_nseq |
|
- le_big_ord |
|
- big_all |
|
- big_const_seq |
|
- big_mkcond_idem |
|
- partition_big_idem |
|
- bigD1_ord |
|
- big_ord_widen |
|
- cardD1x |
|
- exchange_big_dep_nat_idem |
|
- path: mathcomp/algebra/rat.v |
|
theorems: |
|
- normr_num_div |
|
- rat_linear |
|
- denq_mulr_sign |
|
- Qint_def |
|
- mulVq |
|
- le_rat0 |
|
- fracq_eq |
|
- sgr_denq |
|
- frac0q |
|
- oppq_frac |
|
- fracq_opt_subdefE |
|
- lerq0 |
|
- invq_frac |
|
- mulqC |
|
- mulq_def |
|
- ler_rat |
|
- ler0q |
|
- coprimeq_den |
|
- mulqA |
|
- divqP |
|
- sgr_scalq |
|
- sgr_numq_div |
|
- norm_ratN |
|
- numqN |
|
- ratzE |
|
- coprime_num_den |
|
- rat0 |
|
- rat_eq |
|
- sgr_numq |
|
- minr_rat |
|
- le_rat0M |
|
- rat_vm_compute |
|
- addq_subdefC |
|
- mulq_addl |
|
- fracqE |
|
- denq_gt0 |
|
- ratzM |
|
- gt_rat0 |
|
- absz_denq |
|
- add0q |
|
- rat_eqE |
|
- is_natE |
|
- lt_ratE |
|
- addq_def |
|
- invq0 |
|
- numq_sign_mul |
|
- Qnat_def |
|
- addq_frac |
|
- truncP |
|
- numqK |
|
- valq_frac |
|
- numq_lt0 |
|
- ratr_is_additive |
|
- ratr_norm |
|
- rpred_rat |
|
- signr_scalq |
|
- mulq_subdefE |
|
- fracq_eq0 |
|
- denqVz |
|
- nonzero1q |
|
- ratzN |
|
- intq_eq0 |
|
- divq_num_den |
|
- rat1 |
|
- ratz_frac |
|
- floor_rat |
|
- fmorph_eq_rat |
|
- numq_div_lt0 |
|
- RatK |
|
- le_ratE |
|
- QnatP |
|
- ltr_rat |
|
- fracq_subproof |
|
- fracqMM |
|
- ltr0q |
|
- denqN |
|
- invq_def |
|
- den_fracq |
|
- numq_int |
|
- numq_ge0 |
|
- valqK |
|
- fracqP |
|
- ge_rat0_norm |
|
- coprimeq_num |
|
- denq_norm |
|
- ratr_int |
|
- le_rat0_anti |
|
- scalq_def |
|
- normr_denq |
|
- denq_lt0 |
|
- is_intE |
|
- addNq |
|
- addqA |
|
- le_rat_total |
|
- denq_eq0 |
|
- numq_eq0 |
|
- ratr_sg |
|
- maxr_rat |
|
- ratr_nat |
|
- subq_ge0 |
|
- mulq_frac |
|
- oppq_def |
|
- ratzD |
|
- addq_subdefA |
|
- mulq_subdefC |
|
- ratr_is_multiplicative |
|
- addq_subdefE |
|
- scalq_eq0 |
|
- ge_rat0 |
|
- lt_rat_def |
|
- numq_gt0 |
|
- fmorph_rat |
|
- val_fracq |
|
- rat_ring_theory |
|
- denq_int |
|
- num_fracq |
|
- fracq_opt_subdef_id |
|
- le_rat0D |
|
- denq_neq0 |
|
- lt_rat0 |
|
- ratP |
|
- ceil_rat |
|
- numqE |
|
- denqP |
|
- path: mathcomp/solvable/alt.v |
|
theorems: |
|
- Alt_index |
|
- rfd_odd |
|
- trivial_Alt_2 |
|
- rgdP |
|
- not_simple_Alt_4 |
|
- Alt_subset |
|
- simple_Alt5_base |
|
- Sym_trans |
|
- Alt_trans |
|
- Alt_normal |
|
- Alt_norm |
|
- Alt_even |
|
- rfd_funP |
|
- rfd_iso |
|
- card_Sym |
|
- aperm_faithful |
|
- rfdP |
|
- path: mathcomp/solvable/cyclic.v |
|
theorems: |
|
- morph_generator |
|
- orderXpnat |
|
- has_prim_root_subproof |
|
- quotient_cyclic |
|
- cyclicY |
|
- morphim_cyclic |
|
- order_inj_cyclic |
|
- Zp_unit_isom |
|
- cyclicP |
|
- expg_cardG |
|
- order_inf |
|
- cyclic_dprod |
|
- field_mul_group_cyclic |
|
- Aut_prime_cyclic |
|
- im_cyclem |
|
- cyclic1 |
|
- Zp_unitmM |
|
- eltmM |
|
- card_Aut_cycle |
|
- totient_gen |
|
- cycle_generator |
|
- order_dvdG |
|
- isog_cyclic |
|
- orderXexp |
|
- eltmE |
|
- cycleMsub |
|
- div_ring_mul_group_cyclic |
|
- sub_cyclic_char |
|
- eq_subG_cyclic |
|
- morph_order |
|
- Aut_cyclic_abelian |
|
- im_Zp_unitm |
|
- cardSg_cyclic |
|
- cyclemM |
|
- Zp_unit_isog |
|
- injm_generator |
|
- im_Zpm |
|
- cycle_cyclic |
|
- cyclicJ |
|
- ZpmM |
|
- metacyclicP |
|
- Euler_exp_totient |
|
- generator_cycle |
|
- Aut_prime_cycle_cyclic |
|
- generator_coprime |
|
- cyclic_abelian |
|
- expgK |
|
- Aut_cycle_abelian |
|
- isog_cyclic_card |
|
- metacyclic1 |
|
- Zp_isom |
|
- injm_cyclem |
|
- cycleM |
|
- orderXgcd |
|
- cyclicS |
|
- nt_prime_order |
|
- sum_totient_dvd |
|
- cyclic_metacyclic |
|
- Zp_isog |
|
- field_unit_group_cyclic |
|
- quotient_cycle |
|
- expg_znat |
|
- orderXdvd |
|
- cyclic_small |
|
- expg_zneg |
|
- im_eltm |
|
- cycle_sub_group |
|
- orderXpfactor |
|
- nt_gen_prime |
|
- eltm_id |
|
- has_prim_root |
|
- orderM |
|
- injm_Zpm |
|
- eq_expg_mod_order |
|
- cyclicM |
|
- units_Zp_cyclic |
|
- injm_eltm |
|
- order_dvdn |
|
- dvdn_prime_cyclic |
|
- metacyclicS |
|
- card_Aut_cyclic |
|
- generator_order |
|
- orderXprime |
|
- injm_cyclic |
|
- cycle_subgroup_char |
|
- sum_ncycle_totient |
|
- path: mathcomp/field/algC.v |
|
theorems: |
|
- Cint_Cnat |
|
- conjL_nt |
|
- Cnat_sum_eq1 |
|
- minCpoly_subproof |
|
- Crat_divring_closed |
|
- eqCmod_refl |
|
- mulA |
|
- sqrtK |
|
- floorCK |
|
- conj_is_semi_additive |
|
- natCK |
|
- floorC0 |
|
- norm_Cint_ge1 |
|
- norm_eq0 |
|
- minCpoly_eq0 |
|
- truncCX |
|
- CratP |
|
- dvdC_zmod |
|
- Creal1 |
|
- algC_invautK |
|
- getCratK |
|
- eqCmod_nat |
|
- Cint_int |
|
- minCpoly_aut |
|
- addA |
|
- LtoC_K |
|
- dvdC0 |
|
- sposD |
|
- algCreal_Im |
|
- eqCmodDr |
|
- dvdC_trans |
|
- truncCK |
|
- eqCmod0_nat |
|
- rpred_Crat |
|
- Creal_Crat |
|
- conjK |
|
- Crat1 |
|
- nz2 |
|
- truncC_def |
|
- Cnat_gt0 |
|
- posJ |
|
- Cnat_norm_Cint |
|
- floorCM |
|
- conj_Cnat |
|
- floorCD |
|
- truncC1 |
|
- dvdCP_nat |
|
- eq_root_is_equiv |
|
- aut_Cnat |
|
- truncCD |
|
- dvdC_mul2l |
|
- mulC |
|
- Creal0 |
|
- rpredZ_Cint |
|
- raddfZ_Cint |
|
- eqCmod_transl |
|
- add0 |
|
- normM |
|
- sposDl |
|
- eqCmod_transr |
|
- truncC0Pn |
|
- zCdivE |
|
- dvdC_mulr |
|
- CnatEint |
|
- Crat_aut |
|
- eqCmodN |
|
- Creal_Cnat |
|
- posE |
|
- Cnat_nat |
|
- minCpoly_monic |
|
- addN |
|
- algC_autK |
|
- Cint_rat |
|
- eqCmodMl0 |
|
- leB |
|
- intCK |
|
- eqCmodDl |
|
- truncC_gt0 |
|
- CintP |
|
- normD |
|
- mul2I |
|
- algCi_subproof |
|
- conj_is_additive |
|
- Cnat_aut |
|
- dvdC_mul2r |
|
- eqCmod0 |
|
- algCrect |
|
- floorCX |
|
- pos_linear |
|
- Cnat0 |
|
- eqCmodm0 |
|
- iJ |
|
- algCreal_Re |
|
- CtoL_inj |
|
- CnatP |
|
- CtoL_K |
|
- eqCmodMr0 |
|
- Cnat_mul_eq1 |
|
- Cint_normK |
|
- conj_is_multiplicative |
|
- size_minCpoly |
|
- conj_Crat |
|
- dvdCP |
|
- Cint0 |
|
- Crat_rat |
|
- CintE |
|
- ratCK |
|
- conj_Cint |
|
- dvdC_refl |
|
- normN |
|
- addC |
|
- Cint_aut |
|
- Cint_ler_sqr |
|
- eqCmodM |
|
- algC_invaut_subproof |
|
- archimedean |
|
- nz2 |
|
- getCrat_subproof |
|
- rpredZ_Cnat |
|
- dvd0C |
|
- mulD |
|
- raddfZ_Cnat |
|
- dvdC_mull |
|
- Cnat_exp_even |
|
- norm_Cnat |
|
- dvdC_int |
|
- rpred_Cnat |
|
- sqrMi |
|
- algC_invaut_is_additive |
|
- minCpolyP |
|
- algebraic |
|
- normE |
|
- conj_subproof |
|
- root_minCpoly |
|
- eqCmod_sym |
|
- nCdivE |
|
- CintEsign |
|
- normK |
|
- CtoL_P |
|
- truncC_itv |
|
- one_nz |
|
- floorC_def |
|
- floorCN |
|
- LtoC_subproof |
|
- sqr_Cint_ge1 |
|
- inv0 |
|
- CtoL_is_additive |
|
- closedFieldAxiom |
|
- Cnat1 |
|
- Cnat_ge0 |
|
- dvdC_nat |
|
- floorC1 |
|
- Creal_Cint |
|
- floorCpP |
|
- conj_nt |
|
- sqrtE |
|
- Crat0 |
|
- path: mathcomp/ssreflect/generic_quotient.v |
|
theorems: |
|
- left_trans |
|
- encModRelP |
|
- pi_DC |
|
- pi_morph1 |
|
- pi_mono2 |
|
- equal_toE |
|
- mpiE |
|
- reprP |
|
- quotW |
|
- encoded_equivP |
|
- eqquotE |
|
- equiv_refl |
|
- sortPx |
|
- reprK |
|
- pi_morph11 |
|
- eq_op_trans |
|
- eqmodP |
|
- equiv_sym |
|
- ereprK |
|
- eqmodP |
|
- eq_lock |
|
- equivQTP |
|
- equiv_rtrans |
|
- encModEquivP |
|
- equiv_ltrans |
|
- canon_id |
|
- piP |
|
- repr_ofK |
|
- pi_CD |
|
- encoded_equivE |
|
- quotP |
|
- encModRelE |
|
- sort_Sub |
|
- eqmodE |
|
- equiv_trans |
|
- encoded_equiv_is_equiv |
|
- eqmodE |
|
- eqquotP |
|
- qreprK |
|
- path: mathcomp/solvable/extraspecial.v |
|
theorems: |
|
- gtype_key |
|
- exponent_pX1p2n |
|
- card_pX1p2n |
|
- DnQ_extraspecial |
|
- isog_pX1p2 |
|
- isog_2extraspecial |
|
- rank_DnQ |
|
- exponent_pX1p2 |
|
- card_pX1p2 |
|
- pX1p2S |
|
- card_DnQ |
|
- DnQ_pgroup |
|
- isog_pX1p2n |
|
- rank_Dn |
|
- DnQ_P |
|
- Q8_extraspecial |
|
- gactP |
|
- Grp_pX1p2 |
|
- pX1p2n_extraspecial |
|
- actP |
|
- isog_2X1p2 |
|
- not_isog_Dn_DnQ |
|
- pX1p2_extraspecial |
|
- Ohm1_extraspecial_odd |
|
- pX1p2id |
|
- pX1p2n_pgroup |
|
- path: mathcomp/algebra/ssrnum.v |
|
theorems: |
|
- gtr_pMr |
|
- ler_nat |
|
- ger_pMl |
|
- lteifNl |
|
- lteifNr0 |
|
- lerDl |
|
- deg_le2_poly_ge0 |
|
- minr_nMr |
|
- rootC_gt0 |
|
- normC_sum_eq1 |
|
- lerN10 |
|
- ltr_wpMn2r |
|
- ler_ndivrMr |
|
- nmulr_llt0 |
|
- trunc_itv |
|
- degpN |
|
- nmulr_lge0 |
|
- deg2_poly_minE |
|
- lteifN2 |
|
- real_lerNnormlW |
|
- sqa2 |
|
- oppr_min |
|
- ler_distlBl |
|
- real_normrEsign |
|
- normr0 |
|
- ler_prod |
|
- natf_div |
|
- normrV |
|
- ler0_norm |
|
- lteif_nM2l |
|
- invCi |
|
- ImMr |
|
- le00 |
|
- mulr_sign_norm |
|
- rootC_ge0 |
|
- ltr0_ge_norm |
|
- invf_nlt |
|
- gtr0_sg |
|
- nat_num1 |
|
- mulrn_wge0 |
|
- rootCK |
|
- oppr_lt0 |
|
- pnatr_eq1 |
|
- ltr_nat |
|
- ImM |
|
- ler_distlDr |
|
- ltrDl |
|
- le0_add |
|
- ltr_pMn2r |
|
- natrK |
|
- conj_Creal |
|
- eqrXn2 |
|
- exprn_odd_le0 |
|
- agt0 |
|
- deg2_poly_factor |
|
- deltam |
|
- lteif_pM2l |
|
- normC2_rect |
|
- sqrtC0 |
|
- real_arg_minP |
|
- r1N |
|
- ler_normr |
|
- ltr_prod |
|
- deg2_poly_noroot |
|
- lerD2r |
|
- maxr_pMl |
|
- normrMsign |
|
- deg2_poly_ge0 |
|
- real_ler_distlCDr |
|
- ler_iXn2l |
|
- normr_real |
|
- ltrD2l |
|
- normr_unit |
|
- real_exprn_even_lt0 |
|
- ltr_pDr |
|
- subr_ge0 |
|
- conjC_ge0 |
|
- nneg_divr_closed |
|
- ler_wpMn2l |
|
- ler_pM2r |
|
- ler0_ge_norm |
|
- deg2_poly_root1 |
|
- deg_le2_poly_delta_le0 |
|
- posrE |
|
- leif_mean_square_scaled |
|
- trunc_subproof |
|
- Im_div |
|
- sqrtrV |
|
- deg2_poly_gt0l |
|
- ltr_distlCDr |
|
- big_real |
|
- subr_gt0 |
|
- real_mono |
|
- ltr1n |
|
- normrN1 |
|
- real_nmono |
|
- ger0_real |
|
- ler10 |
|
- poly_ivt |
|
- eqr_pMn2r |
|
- lef_nV2 |
|
- ger1_real |
|
- mul_conjC_ge0 |
|
- Nreal_ltF |
|
- subr_lteifr0 |
|
- eqr_norm2 |
|
- lerD |
|
- real_ler_distlCBl |
|
- subC_rect |
|
- ler_wnMn2l |
|
- ImE |
|
- exprn_even_gt0 |
|
- real_ler_normlW |
|
- leif_Re_Creal |
|
- ltr0Sn |
|
- invr_gt1 |
|
- ltr0_sqrtr |
|
- lteif_ndivlMr |
|
- real_ltgtP |
|
- imaginaryCE |
|
- ltr_distl |
|
- eqr_nat |
|
- mulr_ege1 |
|
- pmulr_lgt0 |
|
- real_maxNr |
|
- real_nmono_in |
|
- ler0_sqrtr |
|
- lerBlDl |
|
- pmulrn_rgt0 |
|
- leif_AGM_scaled |
|
- real_leif_norm |
|
- conjC_rect |
|
- lteif_norml |
|
- ltr01 |
|
- deg2_poly_le0 |
|
- le0N |
|
- subr_lt0 |
|
- geC0_conj |
|
- ler1n |
|
- sgr_gt0 |
|
- sqrtC_inj |
|
- lerMn2r |
|
- rootC_subproof |
|
- aa4gt0 |
|
- normrEsg |
|
- a4gt0 |
|
- normr_le0 |
|
- pmulrn_lle0 |
|
- real_oppr_max |
|
- deg2_poly_lt0m |
|
- rootC_gt1 |
|
- intrE |
|
- ImV |
|
- sqrtC1 |
|
- conjC1 |
|
- ler_rootC |
|
- leifBRL |
|
- ltr_nnorml |
|
- aneq0 |
|
- le_total |
|
- ler_normlP |
|
- eqC_semipolar |
|
- ler_leVge |
|
- ler_wnM2l |
|
- exprn_even_lt0 |
|
- ltf_nV2 |
|
- ltr0n |
|
- ler_pMn2r |
|
- prod_real |
|
- ltr_nDl |
|
- mulr_gt0 |
|
- real0 |
|
- ltr_eXnr |
|
- nat_num0 |
|
- deg2_poly_lt0r |
|
- gtr_nMr |
|
- aneq0 |
|
- deg2_poly_le0r |
|
- poly_itv_bound |
|
- invf_ngt |
|
- lteif_ndivrMl |
|
- lerD2l |
|
- real_mono_in |
|
- minr_to_max |
|
- real_lteif_norml |
|
- normM |
|
- normr1 |
|
- rootCMr |
|
- real_ltr_distlDr |
|
- sqrtr_gt0 |
|
- conjCN1 |
|
- Creal_Im |
|
- gtrBl |
|
- gtr0_le_norm |
|
- pmulr_rlt0 |
|
- oppr_ge0 |
|
- normM |
|
- nz2 |
|
- lt0_cp |
|
- sqrtC_eq0 |
|
- realNEsign |
|
- nposrE |
|
- deg2_poly_max |
|
- a4gt0 |
|
- lerNnormlW |
|
- nmulr_rge0 |
|
- ler_sqr |
|
- b2a |
|
- pexpIrn |
|
- ler_pMl |
|
- deg2_poly_root1 |
|
- ler_ltB |
|
- ler_nMr |
|
- minrN |
|
- real_ltgt0P |
|
- ltr_prod_nat |
|
- lteif_pdivrMr |
|
- le_total |
|
- ltrN10 |
|
- ler_pMr |
|
- ler_peMr |
|
- int_num1 |
|
- exprn_gt0 |
|
- ltrBrDl |
|
- leif_sum |
|
- sqr_sqrtr |
|
- sgr_norm |
|
- lerBrDl |
|
- normr_nneg |
|
- deltaN |
|
- mulrIn |
|
- sgr0 |
|
- normr0P |
|
- mulr_Nsign_norm |
|
- realN |
|
- ler_wnDl |
|
- deg2_poly_ge0r |
|
- deg2_poly_gt0r |
|
- lteif01 |
|
- mulr_sg_eqN1 |
|
- conjC0 |
|
- pmulr_rle0 |
|
- exprn_even_ge0 |
|
- invf_gt1 |
|
- real_leP |
|
- eq0_norm |
|
- maxNr |
|
- ImMl |
|
- rootC0 |
|
- gt_ge |
|
- normr_prod |
|
- minr_nMl |
|
- real_leif_mean_square |
|
- natrG_neq0 |
|
- ltrB |
|
- Crect |
|
- prodr_gt0 |
|
- invf_le1 |
|
- lteifBrDr |
|
- deltam |
|
- sgrP |
|
- addr_max_min |
|
- degpN |
|
- eqr_normN |
|
- rootC_lt0 |
|
- deg2_poly_root2 |
|
- ler_neMr |
|
- lt_le |
|
- ler_nMn2l |
|
- sgrV |
|
- ler_nV2 |
|
- root1C |
|
- nz2 |
|
- neq0Ci |
|
- mulrn_wlt0 |
|
- leif_0_sum |
|
- signr_le0 |
|
- mulr_le0 |
|
- eqr_norm_id |
|
- nmulrn_rgt0 |
|
- invr_lt0 |
|
- eqr_sqrtC |
|
- deg2_poly_factor |
|
- ler_wpDr |
|
- ltr0_sg |
|
- expr_ge1 |
|
- ltr0_real |
|
- Re_lock |
|
- leN_total |
|
- ltr_iXnr |
|
- leif_pM |
|
- real_addr_minl |
|
- ler_ltD |
|
- sqrtC_ge0 |
|
- ltr_normr |
|
- sqrtCM |
|
- invf_plt |
|
- nnegrE |
|
- real_leif_AGM2 |
|
- invr_gt0 |
|
- lteifD2l |
|
- r2N |
|
- exprn_egt1 |
|
- argCleP |
|
- real_addr_closed |
|
- lteifD2r |
|
- mulrn_wgt0 |
|
- normr_nat |
|
- lerB_dist |
|
- sqrtC_gt0 |
|
- deg2_poly_le0l |
|
- lef_pV2 |
|
- splitr |
|
- deg2_poly_minE |
|
- deg2_poly_lt0 |
|
- nmulr_rgt0 |
|
- ler_wpM2r |
|
- gtr_pMl |
|
- posrE |
|
- ltr_distlDr |
|
- gerBl |
|
- addC_rect |
|
- ler_distD |
|
- sgr_id |
|
- gtr_nMl |
|
- ltr_pM2l |
|
- lern0 |
|
- expr_lt1 |
|
- realB |
|
- leif_normC_Re_Creal |
|
- le00 |
|
- ImMil |
|
- normCBeq |
|
- rootC1 |
|
- int_num_subring |
|
- CrealE |
|
- num_real |
|
- deg2_poly_gt0l |
|
- real_exprn_odd_lt0 |
|
- ltr_nMl |
|
- natf_indexg |
|
- leif_rootC_AGM |
|
- pmulrn_rge0 |
|
- sqrp_eq1 |
|
- leif_nM |
|
- real1 |
|
- addr_ge0 |
|
- neqr0_sign |
|
- invr_ge1 |
|
- real_ler_norm |
|
- lerDr |
|
- ltr_pMr |
|
- ltr_wnDl |
|
- oppr_gt0 |
|
- char_num |
|
- mulr_ge0_le0 |
|
- deg2_poly_gt0r |
|
- invr_ge0 |
|
- leif_pprod |
|
- ltr_normlP |
|
- ler_pdivlMl |
|
- invf_ple |
|
- signr_lt0 |
|
- real_addr_maxr |
|
- real_ler_distl |
|
- normCDeq |
|
- lerNr |
|
- poly_disk_bound |
|
- truncP |
|
- lt0r_neq0 |
|
- pos_divr_closed |
|
- real_ltr_distlCBl |
|
- Creal_ImP |
|
- numNEsign |
|
- ger0_norm |
|
- ltrgt0P |
|
- lteif_normr |
|
- addr_ss_eq0 |
|
- le01 |
|
- ltr_nwDl |
|
- realE |
|
- bigmin_real |
|
- mulr_egt1 |
|
- ler_iXnr |
|
- normCKC |
|
- nz2 |
|
- trunc_def |
|
- natrP |
|
- lerN2 |
|
- ger_pMr |
|
- ltr01 |
|
- naddr_eq0 |
|
- ieexprn_weq1 |
|
- ltr_wnDr |
|
- ler_norm |
|
- sqrtr_ge0 |
|
- deg2_poly_lt0m |
|
- sqrtrM |
|
- ltr_leD |
|
- ler_nnorml |
|
- ltrXn2r |
|
- ltr_ndivrMl |
|
- Nreal_gtF |
|
- deg2_poly_ge0 |
|
- lt0_add |
|
- ReMir |
|
- real_minr_nMr |
|
- gt0_cp |
|
- ler_eXnr |
|
- sgr_def |
|
- ltrr |
|
- rootC_eq1 |
|
- ltr0N1 |
|
- normC_sum_upper |
|
- le0r |
|
- addr_ge0 |
|
- paddr_eq0 |
|
- lerr |
|
- conj_normC |
|
- mulr_ge0 |
|
- pmulrnI |
|
- natrE |
|
- ltrBrDr |
|
- eqNr |
|
- real_addr_maxl |
|
- pmulr_rge0 |
|
- eqC |
|
- ltrn0 |
|
- lteif_pdivrMl |
|
- realn |
|
- lerB_real |
|
- min_real |
|
- pneq0 |
|
- minNr |
|
- numEsign |
|
- le0r |
|
- ltr_wpXn2r |
|
- leif_nat_r |
|
- invr_sg |
|
- boundP |
|
- leif_AGM2_scaled |
|
- real_leNgt |
|
- sqrtC_lt0 |
|
- sgrN |
|
- deg2_poly_ge0l |
|
- gtr0_real |
|
- ReMl |
|
- truncP |
|
- ler_wMn2r |
|
- real_comparable |
|
- rootC_le0 |
|
- ler_niMl |
|
- realEsqr |
|
- lteifBlDl |
|
- ltr_pM2r |
|
- maxr_nMl |
|
- max_real |
|
- leif_AGM2 |
|
- ler_normlW |
|
- normrEsign |
|
- Re_is_additive |
|
- rootC_Re_max |
|
- leifBLR |
|
- rootC_le1 |
|
- rootC_lt1 |
|
- real_ltr_normr |
|
- invC_Crect |
|
- lteifNr |
|
- real_ltP |
|
- ltr_nDr |
|
- deg2_poly_ge0r |
|
- exprn_odd_gt0 |
|
- mulr_ge0_gt0 |
|
- nnegrE |
|
- deg2_poly_lt0l |
|
- realn_mono_in |
|
- ler_pM |
|
- real_minrN |
|
- ler_norml |
|
- ler_distlCDr |
|
- deg2_poly_le0m |
|
- signr_gt0 |
|
- nmulr_lgt0 |
|
- sqr_ge0 |
|
- deg2_poly_factor |
|
- pmulr_rgt0 |
|
- ger_nMr |
|
- ltrD |
|
- norm_conjC |
|
- realn_nmono |
|
- real_ltr_distlCDr |
|
- rectC_mulr |
|
- ltr_distlBl |
|
- ltr_pdivlMr |
|
- ltrMn2r |
|
- realn_nmono_in |
|
- ger0P |
|
- invf_nge |
|
- realV |
|
- ger0_def |
|
- ler_pdivrMl |
|
- midf_lt |
|
- sgr1 |
|
- deg2_poly_root2 |
|
- real_ler_normr |
|
- sqrtr0 |
|
- normr_id |
|
- ler_pV2 |
|
- nmulrn_rge0 |
|
- neg_unity_root |
|
- ltrNr |
|
- ler_weXn2l |
|
- pexpr_eq1 |
|
- real_leif_AGM2_scaled |
|
- real_exprn_odd_ge0 |
|
- deg2_poly_root2 |
|
- ltr_nM2l |
|
- mulrn_eq0 |
|
- sqrCK |
|
- sgr_nat |
|
- sgr_le0 |
|
- le0_cp |
|
- le0_mul |
|
- ltrN2 |
|
- pmulrn_lgt0 |
|
- ltr_normlW |
|
- exprn_ile1 |
|
- ltrNnormlW |
|
- eqr_norml |
|
- ler_eXn2l |
|
- real_maxrN |
|
- real_minr_nMl |
|
- midf_le |
|
- conjCi |
|
- Re_conj |
|
- subr_comparable0 |
|
- eqr_rootC |
|
- ler_pM2l |
|
- deg2_poly_gt0m |
|
- deg2_poly_maxE |
|
- lteif_nM2r |
|
- nmulr_lle0 |
|
- real_ltr_normlP |
|
- invf_pgt |
|
- lteif_pdivlMl |
|
- nonRealCi |
|
- mul_conjC_gt0 |
|
- le_trans |
|
- ler_ndivrMl |
|
- ltr_pV2 |
|
- nmulrn_rle0 |
|
- lerBrDr |
|
- normC_rect |
|
- real_ler_distlDr |
|
- le_def |
|
- invf_ge1 |
|
- Creal_Re |
|
- sum_real |
|
- ltrBlDr |
|
- ltrgtP |
|
- deg2_poly_gt0 |
|
- CrealP |
|
- normr_gt0 |
|
- normC2_Re_Im |
|
- ler_sqrtC |
|
- deg2_poly_factor |
|
- realD |
|
- prodr_ge0 |
|
- real_wlog_ltr |
|
- ltr_leB |
|
- realrM |
|
- ltr_nV2 |
|
- real_ge0P |
|
- ler1_real |
|
- Creal_ReP |
|
- ler_real |
|
- deg2_poly_min |
|
- ltr_pDl |
|
- ler0_def |
|
- deg2_poly_root1 |
|
- ler_distlC |
|
- sgrM |
|
- realEsg |
|
- Im_rect |
|
- real_mulr_sign_norm |
|
- eqrMn2r |
|
- rootCMl |
|
- real_ltr_norml |
|
- Im_is_additive |
|
- deg2_poly_ge0l |
|
- addr_min_max |
|
- mulr_lt0 |
|
- pmulr_lge0 |
|
- ler_peMl |
|
- ltr0_neq0 |
|
- maxrN |
|
- ltr_ndivlMl |
|
- le_normD |
|
- real_wlog_ler |
|
- invC_norm |
|
- pmulr_rgt0 |
|
- comparable0r |
|
- divC_rect |
|
- real_minNr |
|
- exprCK |
|
- pexprn_eq1 |
|
- ler_wpDl |
|
- eqr_sqrt |
|
- CrealJ |
|
- comparabler_trans |
|
- exprn_ege1 |
|
- real_exprn_odd_gt0 |
|
- ler_distlCBl |
|
- real_maxr_nMr |
|
- natr_nat |
|
- sqrtrP |
|
- ltf_pV2 |
|
- conjC_nat |
|
- ler_distl |
|
- ler_addgt0Pl |
|
- realEsign |
|
- ler_piMr |
|
- ger_nMl |
|
- Cauchy_root_bound |
|
- pmulr_llt0 |
|
- normCi |
|
- ltr_pwDr |
|
- ltr_wpDl |
|
- sgr_eq0 |
|
- a2 |
|
- lteif_nnormr |
|
- leifD |
|
- ltr_pM |
|
- exprn_ge0 |
|
- realX |
|
- subr_le0 |
|
- ler_addgt0Pr |
|
- expr_le1 |
|
- ler_wpM2l |
|
- ler0N1 |
|
- real_maxr_nMl |
|
- lteif_ndivlMl |
|
- normC_sum_eq |
|
- xb4 |
|
- real_exprn_even_ge0 |
|
- ler01 |
|
- sqrtCK |
|
- ltr_ndivrMr |
|
- lerP |
|
- lerB |
|
- deg_le2_poly_delta_ge0 |
|
- lteif_pdivlMr |
|
- ltr_pMl |
|
- exprn_ilt1 |
|
- ltr_rootC |
|
- ImMir |
|
- lteif_ndivrMr |
|
- ltrBlDl |
|
- addr_maxr |
|
- real_leVge |
|
- ler_nMl |
|
- rootC_inj |
|
- lteifBrDl |
|
- ltW |
|
- ltr_norml |
|
- ltr_pMn2l |
|
- mulr_sg_eq1 |
|
- normr_lt0 |
|
- addr_maxl |
|
- lerNl |
|
- ler_ndivlMl |
|
- ler_wsqrtr |
|
- conjC_eq0 |
|
- numEsg |
|
- natrG_gt0 |
|
- Im_conj |
|
- ler_normB |
|
- natr_indexg_neq0 |
|
- sgr_lt0 |
|
- nat_num_semiring |
|
- divr_ge0 |
|
- normr_sg |
|
- rootC_ge1 |
|
- distrC |
|
- ltr_wMn2r |
|
- ltr_iXn2l |
|
- sqrtr_subproof |
|
- real_divr_closed |
|
- pmulrn_lge0 |
|
- signr_inj |
|
- real_ler_distlBl |
|
- ler_nM2l |
|
- normrN |
|
- real_mulr_Nsign_norm |
|
- ReMr |
|
- upper_nthrootP |
|
- deg2_poly_noroot |
|
- archi_boundP |
|
- num_real |
|
- divr_gt0 |
|
- ler0_real |
|
- real_ler_norml |
|
- ler_psqrt |
|
- normr_idP |
|
- ltr_sqr |
|
- a4 |
|
- oppr_le0 |
|
- minr_pMr |
|
- expr_gt1 |
|
- mulrn_wle0 |
|
- maxr_to_min |
|
- real_exprn_even_le0 |
|
- normr_sign |
|
- invC_rect |
|
- real_oppr_min |
|
- sgrX |
|
- Nreal_geF |
|
- lteifBlDr |
|
- psumr_eq0P |
|
- real_addr_minr |
|
- ler0n |
|
- exprn_even_le0 |
|
- invf_lt1 |
|
- geC0_unit_exp |
|
- lteif_distl |
|
- ler_sqrt |
|
- realMr |
|
- ltr_nM2r |
|
- realrMn |
|
- unitf_lt0 |
|
- pmulrn_llt0 |
|
- ger0_le_norm |
|
- Re_rect |
|
- sgr_smul |
|
- ReV |
|
- sqrCK_P |
|
- ltr_wpDr |
|
- mulr_le0_ge0 |
|
- real_eqr_norml |
|
- gtrDl |
|
- signr_ge0 |
|
- lt_def |
|
- normC_def |
|
- ler_neMl |
|
- oppC_rect |
|
- nmulr_rlt0 |
|
- rootCX |
|
- norm_rootC |
|
- deg2_poly_le0m |
|
- ler_wnDr |
|
- Im_lock |
|
- invr_le1 |
|
- ger0_def |
|
- Re_i |
|
- ltr_rootCl |
|
- sqrn_eq1 |
|
- sgr_cp0 |
|
- ltr_sqrtC |
|
- ler_dist_normD |
|
- real_lteif_normr |
|
- ltr_eXn2l |
|
- sqrtC_le0 |
|
- ler_dist_dist |
|
- ler_pXn2r |
|
- ltr_pdivlMl |
|
- mulC_rect |
|
- gtrN |
|
- invr_le0 |
|
- rootCV |
|
- subr_lteif0r |
|
- maxr_pMr |
|
- realM |
|
- deg2_poly_ge0m |
|
- lerBlDr |
|
- real_le0P |
|
- rootCpX |
|
- real_leif_mean_square_scaled |
|
- normf_div |
|
- rectC_mull |
|
- ler_pdivlMr |
|
- sumr_ge0 |
|
- deltaN |
|
- mul_conjC_eq0 |
|
- pmulr_lle0 |
|
- deg2_poly_root1 |
|
- gerDr |
|
- le_normD |
|
- lt01 |
|
- a2gt0 |
|
- mulCii |
|
- invr_lt1 |
|
- sqr_sg |
|
- eqCP |
|
- neq0_mulr_lt0 |
|
- lteif_pM2r |
|
- real_ler_normlP |
|
- subr_gt0 |
|
- a1 |
|
- real_ltNge |
|
- addr_minl |
|
- ltr10 |
|
- invf_pge |
|
- ReE |
|
- gerDl |
|
- ler_niMr |
|
- ltr_pXn2r |
|
- ler_pdivrMr |
|
- maxr_nMr |
|
- ltrD2r |
|
- pmulrn_rlt0 |
|
- ler_piMl |
|
- ltr_nMr |
|
- sqrtr1 |
|
- ltr_ndivlMr |
|
- rootC_eq0 |
|
- lteif0Nr |
|
- real_exprn_even_gt0 |
|
- eq0_norm |
|
- Re_div |
|
- ler_sum |
|
- pneq0 |
|
- sgrMn |
|
- path: mathcomp/solvable/sylow.v |
|
theorems: |
|
- nilpotent_maxp_normal |
|
- card_Syl_dvd |
|
- Baer_Suzuki |
|
- Sylow_exists |
|
- nil_class3 |
|
- pgroup_nil |
|
- nil_Zgroup_cyclic |
|
- Hall_pJsub |
|
- card_p2group_abelian |
|
- trivg_center_pgroup |
|
- morphim_Zgroup |
|
- Hall_psubJ |
|
- sub_nilpotent_cent2 |
|
- pgroup_fix_mod |
|
- nil_class2 |
|
- Syl_trans |
|
- pcore_sub_astab_irr |
|
- nilpotent_Hall_pcore |
|
- Sylow_setI_normal |
|
- Sylow_trans |
|
- Hall_setI_normal |
|
- nontrivial_gacent_pgroup |
|
- pgroup_sol |
|
- nil_class_pgroup |
|
- pcore_faithful_irr_act |
|
- p2group_abelian |
|
- Sylow's_theorem |
|
- small_nil_class |
|
- Sylow_subJ |
|
- normal_pgroup |
|
- Frattini_arg |
|
- max_pgroup_Sylow |
|
- nilpotent_pcoreC |
|
- card_Syl |
|
- coprime_mulG_setI_norm |
|
- pi_center_nilpotent |
|
- Sylow_subnorm |
|
- normal_sylowP |
|
- Sylow_gen |
|
- Sylow_transversal_gen |
|
- path: mathcomp/field/fieldext.v |
|
theorems: |
|
- size_Fadjoin_poly |
|
- Fadjoin0 |
|
- mulfxC |
|
- prodvAC |
|
- base_aspaceOver |
|
- minPolyxx |
|
- field_subvMr |
|
- field_module_eq |
|
- monic_minPoly |
|
- base_moduleOver |
|
- root_minPoly |
|
- mem1v |
|
- p0z0 |
|
- Fadjoin_nil |
|
- field_module_semisimple |
|
- sub1v |
|
- irredp_FAdjoin |
|
- baseField_scaleDr |
|
- aspaceOver_suproof |
|
- nz_p0 |
|
- Fadjoin_polyX |
|
- nonzero1fx |
|
- field_mem_algid |
|
- adjoin0_deg |
|
- subfx_irreducibleP |
|
- subfield_closed |
|
- subfx_inj_is_additive |
|
- map_minPoly |
|
- vspaceOver_refBase |
|
- subfx_scalerDr |
|
- Fadjoin_poly_is_linear |
|
- field_dimS |
|
- Fadjoin_polyC |
|
- pi_subfx_inj |
|
- minPolyOver |
|
- AEnd_lker0 |
|
- fieldExt_hornerX |
|
- modp_polyOver |
|
- subfx_poly_invE |
|
- dim_sup_field |
|
- poly_rV_modp_K |
|
- vsval_invf |
|
- Fadjoin_eq_sum |
|
- aimg_is_aspace |
|
- pi_subfext_add |
|
- subfx_scaleAr |
|
- subfx_inj_eval |
|
- dim_Fadjoin |
|
- AHom_lker0 |
|
- subfx_fieldAxiom |
|
- fieldOver_scaleAl |
|
- subfx_scalerA |
|
- polyOver_subvs |
|
- subfx_inj_base |
|
- polyOverSv |
|
- subfx_scalerDl |
|
- fieldOver_scaleE |
|
- subfx_inj_root |
|
- mem_aspaceOver |
|
- sup_field_module |
|
- baseField_scale1 |
|
- addfxC |
|
- Fadjoin_idP |
|
- baseField_vectMixin |
|
- pi_subfext_inv |
|
- addfxA |
|
- dim_vspaceOver |
|
- nz_p |
|
- baseField_scaleDl |
|
- Fadjoin_polyP |
|
- iotaPz_repr |
|
- adjoin_deg_eq1 |
|
- z0Ciota |
|
- iotaPz_modp |
|
- sub_baseField |
|
- add0fx |
|
- aspaceOverP |
|
- sub_adjoin1v |
|
- subfx_eval_is_additive |
|
- p0_mon |
|
- dim_aspaceOver |
|
- subfxEroot |
|
- subvs_fieldMixin |
|
- mempx_Fadjoin |
|
- fieldOver_scaleDl |
|
- field_module_dimS |
|
- prodvCA |
|
- gcdp_polyOver |
|
- fieldOver_scaleDr |
|
- root_small_adjoin_poly |
|
- aspace_divr_closed |
|
- baseVspace_module |
|
- mul1fx |
|
- prodvC |
|
- fieldOver_scaleA |
|
- FadjoinP |
|
- minPoly_irr |
|
- addfxN |
|
- mulfxA |
|
- fieldExt_hornerC |
|
- baseField_scaleA |
|
- F0ZEZ |
|
- pi_subfext_opp |
|
- equiv_subfext_is_equiv |
|
- adjoin_degree_aimg |
|
- subfx_scaleAl |
|
- prodv_is_aspace |
|
- subfx_eval_is_multiplicative |
|
- fieldExt_hornerZ |
|
- pi_subfext_mul |
|
- min_subfx_vect |
|
- subfx_evalZ |
|
- field_subvMl |
|
- algid1 |
|
- mem_baseVspace |
|
- baseField_scaleE |
|
- dim_cosetv |
|
- alg_polyOver |
|
- dim_baseVspace |
|
- trivial_fieldOver |
|
- nz_x_i |
|
- mulfx_addl |
|
- dim_field_module |
|
- subfx_inv0 |
|
- fieldOver_vectMixin |
|
- subfxE |
|
- Fadjoin_poly_mod |
|
- baseField_scaleAr |
|
- fieldOver_scaleAr |
|
- size_minPoly |
|
- Fadjoin1_polyP |
|
- vspaceOverP |
|
- minPolyS |
|
- Fadjoin_poly_eq |
|
- baseField_scaleAl |
|
- baseAspace_suproof |
|
- Fadjoin_polyOver |
|
- module_baseAspace |
|
- adjoin_degreeE |
|
- minPoly_XsubC |
|
- Fadjoin_seqP |
|
- n_gt0 |
|
- Fadjoin_sum_direct |
|
- base_vspaceOver |
|
- fieldOver_scale1 |
|
- subfx_injZ |
|
- Fadjoin_poly_unique |
|
- path: mathcomp/character/character.v |
|
theorems: |
|
- cfBigdprodi_lin_char |
|
- cfker_constt |
|
- cfcenter_sub |
|
- lin_charV_conj |
|
- cfDprodr_lin_char |
|
- irr_inv |
|
- cfMorph_charE |
|
- subGcfker |
|
- cfAut_lin_char |
|
- cfDetRes |
|
- xcfunZr |
|
- cfDetMorph |
|
- cfQuo_irr |
|
- cfRepr_dsum |
|
- dsumx_mul |
|
- cap_cfker_normal |
|
- neq0_has_constt |
|
- cfConjC_irr1 |
|
- cfdot_sum_irr |
|
- irr_prime_injP |
|
- conjC_IirrK |
|
- trow_is_linear |
|
- cfAut_irr1 |
|
- Iirr_cast |
|
- add_mx_repr |
|
- cfker_reg_quo |
|
- cfdot_Res_ge_constt |
|
- irr_free |
|
- tprodE |
|
- cfRepr_inj |
|
- dprodr_IirrE |
|
- cfConjC_lin_char |
|
- sdprod_IirrE |
|
- TI_cfker_irr |
|
- irr_classP |
|
- card_afix_irr_classes |
|
- mxtrace_prod |
|
- irr_basis |
|
- cfcenter_repr |
|
- lin_char_unity_root |
|
- cfRegE |
|
- socle_of_Iirr_bij |
|
- irr_eq1 |
|
- cfReg_sum |
|
- cfRepr_standard |
|
- isom_IirrE |
|
- cfkerEirr |
|
- cap_cfcenter_irr |
|
- conjC_Iirr0 |
|
- cfaithful_reg |
|
- dprod_IirrEl |
|
- cfSdprod_irr |
|
- cfun1_irr |
|
- aut_IirrE |
|
- irr1_gt0 |
|
- Res_irr_neq0 |
|
- cfnorm_Res_leif |
|
- irrWnorm |
|
- Iirr1_neq0 |
|
- cfDet_order_dvdG |
|
- lin_char_prod |
|
- Res_sdprod_irr |
|
- cap_cfker_lin_irr |
|
- lin_char_group |
|
- char1_ge_constt |
|
- reindex_irr_class |
|
- Ind_irr_neq0 |
|
- cfnorm_irr |
|
- cfRepr_subproof |
|
- dprod_Iirr0r |
|
- eq_irr_mem_classP |
|
- conjC_IirrE |
|
- cfInd_eq0 |
|
- cfRepr_sub |
|
- lin_char_neq0 |
|
- eq_subZnat_irr |
|
- cfMorph_char |
|
- isom_Iirr0 |
|
- cfcenter_cyclic |
|
- cfRes_lin_char |
|
- char_sum_irr |
|
- lin_charX |
|
- dprodr_Iirr0 |
|
- prod_mx_repr |
|
- trowbE |
|
- cfMod_charE |
|
- cfBigdprodi_char |
|
- irr_of_socle_bij |
|
- mod_Iirr0 |
|
- irr_cfcenterE |
|
- cfRepr1 |
|
- cfExp_prime_transitive |
|
- socle_Iirr0 |
|
- cfDprodr_irr |
|
- cfker_irr0 |
|
- cfMod_irr |
|
- Wedderburn_id_expansion |
|
- cfMod_char |
|
- dprod_Iirr0l |
|
- lin_charM |
|
- cfcenter_normal |
|
- cfcenter_group_set |
|
- irr_faithful_center |
|
- max_cfRepr_mx1 |
|
- linear_char_divr |
|
- dprod_Iirr_onto |
|
- dprod_Iirr0 |
|
- cfRepr_char |
|
- irr1_bound |
|
- constt_Res_trans |
|
- quo_Iirr_eq0 |
|
- dprod_IirrEr |
|
- cfMorph_lin_char |
|
- cfRepr_rsimP |
|
- mod_IirrK |
|
- eq_addZ_irr |
|
- morph_Iirr_eq0 |
|
- cfBigdprod_irr |
|
- cfConjC_irr |
|
- cfBigdprodi_lin_charE |
|
- cfQuo_lin_charE |
|
- irrP |
|
- cforder_lin_char |
|
- constt_ortho_char |
|
- cfdot_aut_char |
|
- groupC |
|
- constt_cfInd_irr |
|
- cfkerE |
|
- cfRes_char |
|
- aut_Iirr_inj |
|
- cfBigdprod_Res_lin |
|
- cfBigdprod_lin_char |
|
- irr_orthonormal |
|
- sdprod_Iirr0 |
|
- cfBigdprod_char |
|
- cfIsom_char |
|
- cfRepr_morphim |
|
- xcfun_id |
|
- cfker_Res |
|
- sAG |
|
- dprod_IirrK |
|
- dprodl_Iirr0 |
|
- irr_char |
|
- cfIsom_irr |
|
- dprodr_IirrK |
|
- mul_conjC_lin_char |
|
- eq_scaled_irr |
|
- cfDetD |
|
- card_Iirr_abelian |
|
- dprod_IirrE |
|
- irr_cyclic_lin |
|
- cfDprodKl_abelian |
|
- cfun1_char |
|
- sdprod_Iirr_eq0 |
|
- morph_Iirr_inj |
|
- quo_IirrK |
|
- quo_IirrE |
|
- cfBigdprodi_charE |
|
- normC_lin_char |
|
- cfDet_order_lin |
|
- trow0 |
|
- cfIirrE |
|
- aut_Iirr0 |
|
- cfcenter_eq_center |
|
- isom_IirrKV |
|
- cfDet_lin_char |
|
- irr1_neq0 |
|
- cfun1_lin_char |
|
- second_orthogonality_relation |
|
- nKG |
|
- cfBigdprodKabelian |
|
- trowb_is_linear |
|
- cfun0_char |
|
- cfun_sum_cfdot |
|
- class_IirrK |
|
- character_table_unit |
|
- cfDprod_irr |
|
- congr_irr |
|
- conjC_irrAut |
|
- first_orthogonality_relation |
|
- dprod_Iirr_inj |
|
- isom_IirrK |
|
- trow_mul |
|
- cfcenter_fful_irr |
|
- cfdot_dprod_irr |
|
- cfMorph_irr |
|
- cfSdprod_char |
|
- detRepr_lin_char |
|
- cfIirr_key |
|
- mod_Iirr_eq0 |
|
- cfDprod_char |
|
- cfkerEchar |
|
- char_sum_irrP |
|
- cfIsom_lin_char |
|
- prod_repr_lin |
|
- cfRes_lin_lin |
|
- cfDetMn |
|
- cfConjC_char1 |
|
- NirrE |
|
- cfIirrPE |
|
- dprod_Iirr_eq0 |
|
- mul_lin_irr |
|
- Cnat_cfdot_char_irr |
|
- sdprod_Res_IirrE |
|
- cforder_irr_eq1 |
|
- lin_char_der1 |
|
- sdprod_IirrK |
|
- irr_sum_square |
|
- cfBigdprod_eq1 |
|
- xcfun_mul_id |
|
- cfRepr_dadd |
|
- eq_signed_irr |
|
- irr1_degree |
|
- isom_Iirr_eq0 |
|
- repr_rsim_diag |
|
- cfDet_id |
|
- cfDprodKr_abelian |
|
- char1_ge_norm |
|
- irr_reprP |
|
- irr1_abelian_bound |
|
- has_nonprincipal_irr |
|
- xcfun_is_additive |
|
- mx_rsim_socle |
|
- irr_prime_lin |
|
- mod_IirrE |
|
- repr_irr_classK |
|
- inv_dprod_Iirr0 |
|
- irr0 |
|
- morph_Iirr0 |
|
- cfRepr_sim |
|
- cforder_lin_char_gt0 |
|
- cfker_center_normal |
|
- isom_Iirr_inj |
|
- cfQuo_charE |
|
- lin_charW |
|
- cfdot_irr |
|
- cfAut_char1 |
|
- irr_neq0 |
|
- cfBigdprodi_irr |
|
- cfDprod_eq1 |
|
- cfdot_char_r |
|
- solvable_has_lin_char |
|
- cfInd_char |
|
- cfAut_irr |
|
- coord_cfdot |
|
- cfQuo_lin_char |
|
- mx_rsim_dsum |
|
- cfcenter_subset_center |
|
- Cnat_irr1 |
|
- irrK |
|
- cfDet0 |
|
- cfBigdprodKlin |
|
- cfSdprod_lin_char |
|
- card_subcent1_coset |
|
- cfker_Ind |
|
- xcfunG |
|
- mx_rsim_dadd |
|
- cfDprodl_char |
|
- conjC_Iirr_eq0 |
|
- lin_char_irr |
|
- lin_irr_der1 |
|
- dprodl_IirrE |
|
- card_Iirr_cyclic |
|
- invr_lin_char |
|
- Cnat_char1 |
|
- generalized_orthogonality_relation |
|
- cfRepr0 |
|
- mem_irr |
|
- dprodl_IirrK |
|
- char_reprP |
|
- morph_IirrE |
|
- mx_rsim_standard |
|
- cfDetIsom |
|
- Nxi |
|
- cfDprodl_lin_char |
|
- irrWchar |
|
- usumx_mul |
|
- char1_eq0 |
|
- cfMod_lin_charE |
|
- constt_irr |
|
- cfConjC_char |
|
- Res_Iirr0 |
|
- aut_Iirr_eq0 |
|
- quo_Iirr0 |
|
- fful_lin_char_inj |
|
- cfDet_mul_lin |
|
- XX'_1 |
|
- conjC_charAut |
|
- irrRepr |
|
- xiMV |
|
- socle_of_IirrK |
|
- irrEchar |
|
- xcfun_repr |
|
- cfDprodr_char |
|
- cfDetRepr |
|
- tprod_tr |
|
- cfReg_char |
|
- cfMorph_lin_charE |
|
- mul_char |
|
- cfQuo_char |
|
- char_abelianP |
|
- card_lin_irr |
|
- mx_repr0 |
|
- quo_IirrKeq |
|
- lin_char_unitr |
|
- eq_scale_irr |
|
- char_inv |
|
- cfun_sum_constt |
|
- cforder_lin_char_dvdG |
|
- char_cfcenterE |
|
- cfDprod_lin_char |
|
- char1_ge0 |
|
- dprodr_Iirr_eq0 |
|
- cfcenter_Res |
|
- det_is_repr |
|
- irr_aut_closed |
|
- irr_of_socleK |
|
- constt_cfRes_irr |
|
- lin_char1 |
|
- sdprod_Res_IirrK |
|
- cfker_nzcharE |
|
- cfReprReg |
|
- mod_Iirr_bij |
|
- add_char |
|
- path: mathcomp/field/algnum.v |
|
theorems: |
|
- Aint_aut |
|
- Crat_spanP |
|
- eqAmodMr0 |
|
- eqAmod_refl |
|
- eqAmod_addl_mul |
|
- restrict_aut_to_normal_num_field |
|
- eqAmod0_rat |
|
- Crat_span_zmod_closed |
|
- eqAmodMl0 |
|
- dec_Cint_span |
|
- eqAmodN |
|
- restrict_aut_to_num_field |
|
- fin_Csubring_Aint |
|
- Aint0 |
|
- eqAmodMl |
|
- Cint_span_zmod_closed |
|
- eqAmod0_nat |
|
- eqAmodD |
|
- dvdA_zmod_closed |
|
- num_field_exists |
|
- mem_Cint_span |
|
- Aint_prim_root |
|
- Aint1 |
|
- eqAmod0 |
|
- Aint_subring |
|
- eqAmod_rat |
|
- rmorphZ_num |
|
- eqAmodm0 |
|
- eqAmodMr |
|
- dvdn_orderC |
|
- Aint_Cint |
|
- eqAmod_transl |
|
- exp_orderC |
|
- eqAmod_sym |
|
- root_monic_Aint |
|
- Crat_spanM |
|
- Aint_unity_root |
|
- eqAmod_transr |
|
- alg_num_field |
|
- mem_Crat_span |
|
- Crat_spanZ |
|
- Aint_Cnat |
|
- map_Qnum_poly |
|
- eqAmod_trans |
|
- num_field_proj |
|
- eqAmod_nat |
|
- eqAmodM |
|
- Cint_spanP |
|
- Crat_span_subproof |
|
- fmorph_numZ |
|
- Aint_int |
|
- extend_algC_subfield_aut |
|
- eqAmodDl |
|
- eqAmodDr |
|
- algC_PET |
|
- Cint_rat_Aint |
|
- path: mathcomp/algebra/poly.v |
|
theorems: |
|
- drop_poly_is_linear |
|
- comm_poly_exp |
|
- multiplicity_XsubC |
|
- mul_0poly |
|
- coefXM |
|
- root_ZXsubC |
|
- polyOverZ |
|
- comp_poly0 |
|
- mul_poly_key |
|
- size_map_polyC |
|
- size_Poly |
|
- fmorph_unity_root |
|
- nderivnC |
|
- monicXnaddC |
|
- prim_root_dvd_eq0 |
|
- map_polyXaddC |
|
- nderivnMn |
|
- size_polyC_leq1 |
|
- odd_polyE |
|
- commr_polyXn |
|
- dvdn_prim_root |
|
- lead_coefM |
|
- aa4 |
|
- polySpred |
|
- polyOverNr |
|
- comm_polyX |
|
- rpred_horner |
|
- size_polyXn |
|
- size_exp_leq |
|
- prim_root_natf_neq0 |
|
- derivnC |
|
- derivnB |
|
- scale_poly_eq0 |
|
- rootE |
|
- comp_poly_eq0 |
|
- nderivnXn |
|
- lead_coefDr |
|
- size_poly_eq |
|
- mul_polyDr |
|
- derivMXaddC |
|
- poly2_root |
|
- comp_polyXaddC_K |
|
- horner_eval_is_linear |
|
- prim_order_dvd |
|
- scale_polyC |
|
- mul_poly0 |
|
- derivn1 |
|
- coefMXn |
|
- horner_coef_wide |
|
- lead_coefX |
|
- nderivn_def |
|
- polyOver0 |
|
- size_exp |
|
- polyseqXn |
|
- rreg_polyMC_eq0 |
|
- hornerN |
|
- prim_expr_order |
|
- lead_coef_monicM |
|
- root_exp_XsubC |
|
- scale_1poly |
|
- polyC0 |
|
- root_polyC |
|
- deg2_poly_root1 |
|
- size1_polyC |
|
- even_polyD |
|
- monic_neq0 |
|
- coefXn |
|
- coef_opp_poly |
|
- derivnXn |
|
- lead_coef_map_inj |
|
- closed_nonrootP |
|
- size_odd_poly |
|
- rmorph_root |
|
- lead_coefMX |
|
- polyOver_addr_closed |
|
- monic_lreg |
|
- polyX_key |
|
- map_polyZ |
|
- commr_horner |
|
- monic_exp |
|
- aneq0 |
|
- polyXsubC_eq0 |
|
- deg2_poly_canonical |
|
- lead_coef_exp |
|
- polyOverC |
|
- closed_rootP |
|
- rootN |
|
- coef0 |
|
- polyOverXaddC |
|
- map_poly_inj |
|
- mul_polyC |
|
- rmorph_unity_root |
|
- hornerXn |
|
- poly_inj |
|
- polyCM |
|
- mapf_root |
|
- coef0_prod_XsubC |
|
- polyOver_poly |
|
- factor_Xn_sub_1 |
|
- size_prod_seq |
|
- comp_poly_multiplicative |
|
- scale_poly_key |
|
- lead_coefXnsubC |
|
- factor_theorem |
|
- prim_root_charF |
|
- size_exp_XsubC |
|
- take_polyDMXn |
|
- odd_polyD |
|
- comm_polyM |
|
- unity_rootE |
|
- root0 |
|
- horner_prod |
|
- deg2_poly_root1 |
|
- polyOver_deriv |
|
- root_prod_XsubC |
|
- drop_polyDMXn |
|
- size_prod_seq_eq1 |
|
- size_prod_leq |
|
- coefB |
|
- derivnMNn |
|
- derivMNn |
|
- even_polyZ |
|
- lead_coef_map |
|
- rootPt |
|
- polyOverXnsubC |
|
- polyCV |
|
- comm_poly1 |
|
- polyCMn |
|
- derivMn |
|
- take_poly0l |
|
- coef_map_id0 |
|
- dec_factor_theorem |
|
- odd_polyZ |
|
- size_drop_poly |
|
- map_poly_is_multiplicative |
|
- prim_rootP |
|
- coef_drop_poly |
|
- sum_odd_poly |
|
- sum_even_poly |
|
- coef_comp_poly_Xn |
|
- poly_mulVp |
|
- polyseq_cons |
|
- hornerMX |
|
- rootPf |
|
- map_poly_com |
|
- prim_expr_mod |
|
- size_prod_eq1 |
|
- polyCK |
|
- derivXsubC |
|
- size_add |
|
- size_comp_poly2 |
|
- coefMn |
|
- polyOverXn |
|
- map_polyC |
|
- comp_poly_is_linear |
|
- nderivn0 |
|
- hornerD |
|
- size_opp |
|
- coefCM |
|
- nderivnMNn |
|
- comp_polyM |
|
- prim_root_eq0 |
|
- commr_polyX |
|
- map_prod_XsubC |
|
- prim_root_exp_coprime |
|
- roots_geq_poly_eq0 |
|
- lead_coefDl |
|
- poly_take_drop |
|
- unity_rootP |
|
- derivnMXaddC |
|
- hornerXsubC |
|
- mul_lead_coef |
|
- deg2_poly_root2 |
|
- map_polyE |
|
- map_comm_coef |
|
- deriv_exp |
|
- map_poly_comp_id0 |
|
- map_poly_is_additive |
|
- root_exp |
|
- horner_map |
|
- coefXnM |
|
- coefPn_prod_XsubC |
|
- poly_intro_unit |
|
- monic_map |
|
- size_polyC |
|
- poly_inv_out |
|
- even_polyE |
|
- eqp_take_drop |
|
- polyOverXsubC |
|
- size_poly |
|
- size_poly0 |
|
- size_Mmonic |
|
- size_polyX |
|
- lead_coefE |
|
- comp_polyX |
|
- rootZ |
|
- derivM |
|
- max_poly_roots |
|
- odd_polyMX |
|
- size_even_poly_eq |
|
- even_polyC |
|
- polyC_inj |
|
- polyseqXaddC |
|
- comp_polyZ |
|
- monic_mulr_closed |
|
- monic_prod_XsubC |
|
- polyseqMX |
|
- polyOver_mulr_2closed |
|
- polyC_eq0 |
|
- take_polyMXn_0 |
|
- horner_algX |
|
- nderiv_taylor_wide |
|
- polyX_eq0 |
|
- poly_even_odd |
|
- rreg_size |
|
- comp_poly_MXaddC |
|
- prim_root_pi_eq0 |
|
- polyseqC |
|
- coef_mul_poly |
|
- comp_polyB |
|
- lead_coef_Mmonic |
|
- comp_poly0r |
|
- derivXn |
|
- poly_idomainAxiom |
|
- horner0 |
|
- size_map_inj_poly |
|
- polyC1 |
|
- nderivn_map |
|
- mem_root |
|
- coef_odd_poly |
|
- map_comm_poly |
|
- polyP |
|
- deg2_poly_canonical |
|
- drop_polyZ |
|
- mul_polyA |
|
- size_XmulC |
|
- derivnZ |
|
- size_sum |
|
- root_XaddC |
|
- coef_cons |
|
- polyseqK |
|
- aut_unity_rootC |
|
- horner_coef0 |
|
- scale_polyAl |
|
- comp_polyXr |
|
- add_poly0 |
|
- sqa2neq0 |
|
- poly_mul_comm |
|
- max_unity_roots |
|
- hornerCM |
|
- coef0_prod |
|
- multiplicity_XsubC |
|
- monicXaddC |
|
- fmorph_root |
|
- lead_coef_eq0 |
|
- derivSn |
|
- nderiv_taylor |
|
- horner_comp |
|
- monic1 |
|
- size_poly_gt0 |
|
- coefMC |
|
- nderivnB |
|
- horner_is_linear |
|
- monicXn |
|
- poly_initial |
|
- size_map_poly |
|
- in_alg_comm |
|
- polyOver_derivn |
|
- hornerX |
|
- size_mulXn |
|
- deriv0 |
|
- rootM |
|
- comm_coef_poly |
|
- lead_coef_lreg |
|
- size_prod_XsubC |
|
- multiplicity_XsubC |
|
- polyseqMXn |
|
- polyseq0 |
|
- polyC_natr |
|
- lead_coef1 |
|
- derivn_is_linear |
|
- polyseqXsubC |
|
- horner_exp |
|
- polyCD |
|
- coef0M |
|
- prim_order_gt0 |
|
- coef_derivn |
|
- lead_coefN |
|
- aut_unity_rootP |
|
- nderivn_is_linear |
|
- coef_deriv |
|
- coefMr |
|
- eq_map_poly |
|
- rreg_lead |
|
- map_diff_roots |
|
- comm_polyD |
|
- opp_poly_key |
|
- drop_poly0r |
|
- size_MXaddC |
|
- coefX |
|
- map_Poly |
|
- comp_polyE |
|
- coefC |
|
- monicMl |
|
- size_mul |
|
- coef_nderivn |
|
- horner_morphX |
|
- coef_poly |
|
- cons_poly_def |
|
- deriv_mulC |
|
- lt_size_deriv |
|
- horner_is_multiplicative |
|
- polyseq_poly |
|
- derivnS |
|
- polyOverXnaddC |
|
- even_polyMX |
|
- deriv_comp |
|
- polyC_multiplicative |
|
- closed_rootP |
|
- map_polyXn |
|
- polyOver_comp |
|
- take_poly0r |
|
- derivn0 |
|
- aut_prim_rootP |
|
- comp_poly2_eq0 |
|
- prod_map_poly |
|
- a1 |
|
- polyOver_mul1_closed |
|
- poly0Vpos |
|
- size_Cmul |
|
- horner_algC |
|
- hornerC |
|
- size_prod |
|
- nderivnZ |
|
- deg2_poly_factor |
|
- map_inj_poly |
|
- monicP |
|
- size_scale_leq |
|
- hornerM_comm |
|
- map_poly_id |
|
- eq_poly |
|
- poly_key |
|
- size_proper_mul |
|
- polyseqX |
|
- map_polyK |
|
- size_cons_poly |
|
- drop_poly_sum |
|
- comp_polyD |
|
- derivn_map |
|
- max_ring_poly_roots |
|
- root_size_gt1 |
|
- eq_prim_root_expr |
|
- deriv_map |
|
- take_polyD |
|
- polyOverX |
|
- eq_in_map_poly_id0 |
|
- size_poly1 |
|
- eq_in_map_poly |
|
- lead_coefXsubC |
|
- size_even_poly |
|
- poly_morphX_comm |
|
- coefZ |
|
- monicE |
|
- coef_map |
|
- lead_coef0 |
|
- pneq0 |
|
- splitr |
|
- poly_invE |
|
- poly_unitE |
|
- coef_take_poly |
|
- rreg_div0 |
|
- derivC |
|
- monic_prod |
|
- map_uniq_roots |
|
- lead_coefZ |
|
- coefp0_multiplicative |
|
- monic_rreg |
|
- all_roots_prod_XsubC |
|
- polyOver_nderivn |
|
- a2neq0 |
|
- lreg_lead0 |
|
- coef_Poly |
|
- lreg_lead |
|
- pE |
|
- monicXnsubC |
|
- rootX |
|
- lead_coef_map_eq |
|
- horner_cons |
|
- derivnD |
|
- size_mul_eq1 |
|
- char_poly |
|
- coefD |
|
- drop_poly0l |
|
- poly_def |
|
- lead_coefXnaddC |
|
- coef_sum |
|
- rootP |
|
- horner_exp_comm |
|
- PolyK |
|
- coefMNn |
|
- map_poly0 |
|
- add_polyA |
|
- derivn_poly0 |
|
- gt_size_poly_neq0 |
|
- lead_coefC |
|
- size_take_poly |
|
- lead_coef_comp |
|
- derivB |
|
- nderivn_poly0 |
|
- size_map_poly_id0 |
|
- coef_even_poly |
|
- scale_polyA |
|
- lreg_polyZ_eq0 |
|
- size_poly1P |
|
- lead_coefXn |
|
- root_XsubC |
|
- drop_polyMXn |
|
- odd_poly_is_linear |
|
- lead_coef_prod_XsubC |
|
- derivnMn |
|
- lead_coef_poly |
|
- horner_morphC |
|
- nderivnMXaddC |
|
- exp_prim_root |
|
- size_monicM |
|
- map_poly_comp |
|
- alg_polyC |
|
- comp_Xn_poly |
|
- sum_drop_poly |
|
- map_polyX |
|
- take_poly_id |
|
- fmorph_primitive_root |
|
- size_comp_poly |
|
- comp_poly_Xn |
|
- horner_eval_is_multiplicative |
|
- mem_unity_roots |
|
- monicX |
|
- size_XnsubC |
|
- lead_coef_proper_mul |
|
- poly1_neq0 |
|
- hornerZ |
|
- map_polyC_eq0 |
|
- lead_coef_prod |
|
- coefK |
|
- derivD |
|
- nderivnN |
|
- coef_mul_poly_rev |
|
- add_polyN |
|
- monicXsubC |
|
- mul_poly1 |
|
- hornerMXaddC |
|
- size_XsubC |
|
- take_poly_sum |
|
- uniq_roots_prod_XsubC |
|
- horner_sum |
|
- uniq_rootsE |
|
- size_mul_leq |
|
- nderivnD |
|
- mul_1poly |
|
- coefM |
|
- nderivn1 |
|
- mul_polyDl |
|
- drop_polyMXn_id |
|
- nil_poly |
|
- horner_Poly |
|
- odd_polyC |
|
- polyCN |
|
- take_polyZ |
|
- comp_polyC |
|
- monic_comreg |
|
- horner_poly |
|
- even_poly_is_linear |
|
- hornerMn |
|
- polyOverS |
|
- scale_polyDr |
|
- root_comp |
|
- path: mathcomp/field/separable.v |
|
theorems: |
|
- extendDerivation_id |
|
- separable_generatorP |
|
- adjoin_separable_eq |
|
- separable_polyP |
|
- extendDerivation_horner |
|
- separable_deriv_eq0 |
|
- separable_refl |
|
- poly_square_freeP |
|
- strong_Primitive_Element_Theorem |
|
- make_separable |
|
- eqp_separable |
|
- separableS |
|
- Derivation_scalar |
|
- Derivation_separable |
|
- sub_inseparable |
|
- charf_n_separable |
|
- separableP |
|
- adjoin_separableP |
|
- Primitive_Element_Theorem |
|
- separable_Fadjoin_seq |
|
- cyclic_or_large |
|
- extendDerivation_scalable_subproof |
|
- extendDerivationP |
|
- separable_generator_mem |
|
- separable_poly_neq0 |
|
- charf0_separable |
|
- separable_map |
|
- separable_root |
|
- separableSl |
|
- purely_inseparableP |
|
- purely_inseparable_trans |
|
- separable_root_der |
|
- finite_PET |
|
- eq_adjoin_separable_generator |
|
- adjoin_separable |
|
- Derivation_exp |
|
- separablePn |
|
- separable_elementP |
|
- inseparable_sum |
|
- sub_adjoin_separable_generator |
|
- separable_sum |
|
- separable_inseparable_decomposition |
|
- inseparable_add |
|
- extendDerivation_additive_subproof |
|
- Derivation1 |
|
- separable_coprime |
|
- separable_mul |
|
- separable_elementS |
|
- separable_nz_der |
|
- charf_p_separable |
|
- Derivation_separableP |
|
- purely_inseparable_elementP |
|
- DerivationS |
|
- separableSr |
|
- Derivation_mul |
|
- Derivation_horner |
|
- separable_exponent |
|
- purely_inseparable_refl |
|
- large_field_PET |
|
- separable_nosquare |
|
- separable_trans |
|
- path: mathcomp/solvable/extremal.v |
|
theorems: |
|
- r_gt0 |
|
- cyclic_SCN |
|
- odd_pgroup_rank1_cyclic |
|
- Grp_2dihedral |
|
- defQ |
|
- dihedral2_structure |
|
- modular_group_classP |
|
- card_quaternion |
|
- def2qr |
|
- card_ext_dihedral |
|
- def_q |
|
- prime_Ohm1P |
|
- involutions_gen_dihedral |
|
- maximal_cycle_extremal |
|
- ltqm |
|
- card_2dihedral |
|
- modular_group_structure |
|
- Grp_ext_dihedral |
|
- generators_modular_group |
|
- cyclic_pgroup_Aut_structure |
|
- Grp_quaternion |
|
- r_gt0 |
|
- def_r |
|
- dihedral_classP |
|
- def_p |
|
- bound_extremal_groups |
|
- card_modular_group |
|
- card_semidihedral |
|
- card |
|
- generators_quaternion |
|
- generators_semidihedral |
|
- quaternion_structure |
|
- aut_dvdn |
|
- Grp'_dihedral |
|
- semidihedral_structure |
|
- card_dihedral |
|
- act_dom |
|
- extremal2_structure |
|
- eq_Mod8_D8 |
|
- ltrq |
|
- Grp_dihedral |
|
- Grp |
|
- Grp_modular_group |
|
- q_gt1 |
|
- q_gt0 |
|
- symplectic_type_group_structure |
|
- Grp_semidihedral |
|
- semidihedral_classP |
|
- quaternion_classP |
|
- cancel_index_extremal_groups |
|
- path: mathcomp/solvable/maximal.v |
|
theorems: |
|
- injm_Fitting |
|
- Fitting_group_set |
|
- SCN_P |
|
- der1_stab_Ohm1_SCN_series |
|
- Ohm1_stab_Ohm1_SCN_series |
|
- card_extraspecial |
|
- p_index_maximal |
|
- Phi_Mho |
|
- p3group_extraspecial |
|
- charsimple_dprod |
|
- isog_extraspecial |
|
- index_maxnormal_sol_prime |
|
- p_core_Fitting |
|
- Phi_quotient_abelem |
|
- trivg_Phi |
|
- Fitting_sub |
|
- pcore_Fitting |
|
- Phi_nongen |
|
- injm_special |
|
- sol_prime_factor_exists |
|
- Phi_joing |
|
- extraspecial_prime |
|
- solvable_norm_abelem |
|
- exponent_special |
|
- Phi_normal |
|
- Phi_sub |
|
- SCN_max |
|
- simple_sol_prime |
|
- charsimpleP |
|
- Phi_quotient_cyclic |
|
- maxnormal_charsimple |
|
- cprod_extraspecial |
|
- injm_extraspecial |
|
- center_special_abelem |
|
- Fitting_pcore |
|
- Fitting_normal |
|
- p_maximal_index |
|
- minnormal_solvable |
|
- Fitting_nil |
|
- Fitting_eq_pcore |
|
- FittingEgen |
|
- Fitting_char |
|
- split1_extraspecial |
|
- Phi_char |
|
- PhiJ |
|
- card_subcent_extraspecial |
|
- p_abelem_split1 |
|
- Frattini_continuous |
|
- abelem_split_dprod |
|
- Phi_sub_max |
|
- critical_extraspecial |
|
- cent1_extraspecial_maximal |
|
- Phi_min |
|
- quotient_Phi |
|
- Thompson_critical |
|
- Phi_cprod |
|
- Phi_mulg |
|
- critical_class2 |
|
- p_maximal_normal |
|
- injm_Phi |
|
- extraspecial_nonabelian |
|
- trivg_Fitting |
|
- morphim_Fitting |
|
- abelem_charsimple |
|
- charsimple_solvable |
|
- center_aut_extraspecial |
|
- pmaxElem_extraspecial |
|
- isog_Phi |
|
- PhiS |
|
- card_center_extraspecial |
|
- Ohm1_cent_max_normal_abelem |
|
- Phi_proper |
|
- max_SCN |
|
- isog_Fitting |
|
- exponent_Ohm1_class2 |
|
- morphim_Phi |
|
- abelian_charsimple_special |
|
- FittingS |
|
- minnormal_charsimple |
|
- exponent_2extraspecial |
|
- Phi_quotient_id |
|
- extraspecial_structure |
|
- SCN_abelian |
|
- critical_p_stab_Aut |
|
- path: mathcomp/field/falgebra.v |
|
theorems: |
|
- prodv_sub |
|
- agenvX |
|
- vsval_invr |
|
- memv_adjoin |
|
- id_is_ahom |
|
- prodvSr |
|
- memv_algid |
|
- expv_line |
|
- adim1P |
|
- adjoinSl |
|
- ker_sub_ahom_is_aspace |
|
- centraliser_is_aspace |
|
- prod1v |
|
- adjoin_seqSl |
|
- FalgType_proper |
|
- agenvS |
|
- agenvE |
|
- subvs_mulDr |
|
- skew_field_algid1 |
|
- agenvM |
|
- adjoin_seq1 |
|
- aimg_adjoin_seq |
|
- prodv1 |
|
- aimgM |
|
- lfun_mulE |
|
- adjoin_seqSr |
|
- prodvS |
|
- subvs_mul1 |
|
- adjoin_nil |
|
- dim_cosetv_unit |
|
- sub_agenv |
|
- unitrP |
|
- expv_id |
|
- mulVr |
|
- amull1 |
|
- aspacef_subproof |
|
- algid_eq1 |
|
- prodv0 |
|
- expv2 |
|
- Falgebra_FieldMixin |
|
- subvs_scaleAr |
|
- amulr_inj |
|
- prodvDl |
|
- skew_field_dimS |
|
- centv1 |
|
- aimgX |
|
- aspace1_subproof |
|
- cent1v1 |
|
- agenvEr |
|
- not_asubv0 |
|
- amulr_is_linear |
|
- regular_fullv |
|
- lfun_invr_out |
|
- memvM |
|
- limg_amulr |
|
- unitr_algid1 |
|
- prodv_line |
|
- prodvP |
|
- dim_algid |
|
- centraliser1_is_aspace |
|
- adim_gt0 |
|
- subvs_mu1l |
|
- algid_neq0 |
|
- memvV |
|
- amE |
|
- aimg_agen |
|
- asubv |
|
- aspace_cap_subproof |
|
- lker0_amulr |
|
- skew_field_module_semisimple |
|
- divrr |
|
- subv_adjoin |
|
- centv_algid |
|
- algidl |
|
- expv0n |
|
- expvD |
|
- amullM |
|
- has_algid1 |
|
- cent1v_id |
|
- agenv_modl |
|
- prodvSl |
|
- centvP |
|
- prod0v |
|
- expvS |
|
- subvs_mulA |
|
- prodv_id |
|
- lfun_compE |
|
- vbasis1 |
|
- subv_cent1 |
|
- linfun_is_ahom |
|
- amull_inj |
|
- cent1vC |
|
- algid_subproof |
|
- centvsP |
|
- polyOver1P |
|
- expvSr |
|
- subvs_scaleAl |
|
- adjoinC |
|
- aimg_adjoin |
|
- cent1vX |
|
- agenv_modr |
|
- skew_field_module_dimS |
|
- ahomWin |
|
- agenv_is_aspace |
|
- memv_mul |
|
- lfun_unitrP |
|
- prodvA |
|
- lker0_amull |
|
- agenv_id |
|
- amulr_is_multiplicative |
|
- algid_center |
|
- subvP_adjoin |
|
- lfun1_poly |
|
- vsval_unitr |
|
- ahomP |
|
- subvs_mulDl |
|
- comp_is_ahom |
|
- expvSl |
|
- invr_out |
|
- lfun_mulrV |
|
- agenv_sub_modr |
|
- adjoin_rcons |
|
- seqv_sub_adjoin |
|
- subv_adjoin_seq |
|
- has_algidP |
|
- centvC |
|
- dim_prodv |
|
- ahom_is_multiplicative |
|
- ahom_inP |
|
- vspace1_neq0 |
|
- dimv1 |
|
- centvX |
|
- agenvEl |
|
- agenv_add_id |
|
- expv1 |
|
- expvM |
|
- memv_cosetP |
|
- aimg1 |
|
- prodv_key |
|
- algid_decidable |
|
- lfun_mulVr |
|
- cent1vP |
|
- path: mathcomp/algebra/mxpoly.v |
|
theorems: |
|
- geigenspaceE |
|
- eigenpoly_map |
|
- codiagonalizable1 |
|
- sub_kermxpoly_conjmx |
|
- eigenvalue_conjmx |
|
- mxminpoly_linear_is_scalar |
|
- submx_form_qf |
|
- integral_root |
|
- kermxpolyX |
|
- integral_nat |
|
- degree_mxminpoly_proof |
|
- nth_row_env |
|
- mx_root_minpoly |
|
- resultant_eq0 |
|
- char_poly_monic |
|
- diagonalizablePeigen |
|
- horner_rVpolyK |
|
- conjmx_scalar |
|
- conjmxK |
|
- map_resultant |
|
- integral_add |
|
- size_mod_mxminpoly |
|
- rVpolyK |
|
- mxminpoly_conj |
|
- diagonalizableP |
|
- algebraic_sub |
|
- diagonalizable_for_sum |
|
- integral_sub |
|
- char_block_diag_mx |
|
- diagonalizable0 |
|
- conj1mx |
|
- stablemx_restrict |
|
- sub_eigenspace_conjmx |
|
- mxdirect_sum_geigenspace |
|
- eval_col_mx |
|
- kermxpolyM |
|
- companion_map_poly |
|
- coef_rVpoly_ord |
|
- horner_mx_C |
|
- conjuMumx |
|
- integral_rmorph |
|
- map_geigenspace |
|
- size_seq_of_rV |
|
- Exists_rowP |
|
- integral0 |
|
- mxminpoly_dvd_char |
|
- simmxP |
|
- minpoly_mx_free |
|
- eigenpolyP |
|
- mulmx_delta_companion |
|
- intR_XsubC |
|
- integral_horner_root |
|
- algebraic0 |
|
- diagonalizable_diag |
|
- eval_mulmx |
|
- diagonalizable_for_mxminpoly |
|
- conjmx_eigenvalue |
|
- row'_col'_char_poly_mx |
|
- diagonalizable_scalar |
|
- conjMmx |
|
- size_char_poly |
|
- map_kermxpoly |
|
- horner_mx_conj |
|
- algebraic_div |
|
- mxminpoly_min |
|
- poly_rV_K |
|
- eigenvalue_root_min |
|
- kermxpolyC |
|
- comm_horner_mx |
|
- companionmxK |
|
- integral_opp |
|
- horner_mx_mem |
|
- comm_mx_stable_kermxpoly |
|
- codiagonalizable_on |
|
- root_mxminpoly |
|
- integral_div |
|
- size_diagA |
|
- minpoly_mx_ring |
|
- mxminpoly_uconj |
|
- algebraic_opp |
|
- algebraic_id |
|
- codiagonalizablePfull |
|
- mx_poly_ring_isom |
|
- map_rVpoly |
|
- integral1 |
|
- size_mxminpoly |
|
- mxminpoly_map |
|
- horner_mx_stable |
|
- comm_mx_stable_geigenspace |
|
- integral_inv |
|
- map_powers_mx |
|
- integral_mul |
|
- integral_root_monic |
|
- eigenspace_sub_geigen |
|
- conjMumx |
|
- comm_mx_horner |
|
- rVpoly_delta |
|
- stablemx_comp |
|
- eval_row_var |
|
- minpoly_mx1 |
|
- char_poly_trig |
|
- eval_mxrank |
|
- eigenvalue_poly |
|
- char_poly_det |
|
- poly_rV_is_linear |
|
- algebraic_mul |
|
- diagonalizable_for_row_base |
|
- mxminpoly_monic |
|
- horner_mx_X |
|
- mxminpoly_minP |
|
- simmx_minpoly |
|
- conjuMmx |
|
- integral_poly |
|
- map_mx_inv_horner |
|
- Cayley_Hamilton |
|
- integral_id |
|
- diagonalizable_forPp |
|
- eigenpoly_conjmx |
|
- degree_mxminpoly_map |
|
- mxminpoly_nonconstant |
|
- eval_vec_mx |
|
- conjVmx |
|
- Sylvester_mxE |
|
- kermxpoly_prod |
|
- mxdirect_kermxpoly |
|
- mxminpoly_diag |
|
- simmxLR |
|
- eval_submx |
|
- conjmx0 |
|
- kermxpoly_min |
|
- minpoly_mxM |
|
- integral_algebraic |
|
- nth_seq_of_rV |
|
- eigenvalue_root_char |
|
- mx_inv_hornerK |
|
- mxdirect_sum_kermx |
|
- map_poly_rV |
|
- horner_mx_uconj |
|
- eigenspace_poly |
|
- simmxPp |
|
- eval_mx_term |
|
- codiagonalizableP |
|
- horner_rVpoly |
|
- simmxRL |
|
- diagonalizable_forP |
|
- dvd_mxminpoly |
|
- diagonalizable_conj_diag |
|
- kermxpoly1 |
|
- XsubC0 |
|
- resultant_in_ideal |
|
- algebraic1 |
|
- diagonalizable_forLR |
|
- mxrank_form_qf |
|
- horner_mxZ |
|
- horner_mxK |
|
- conjmxVK |
|
- path: mathcomp/field/closed_field.v |
|
theorems: |
|
- qf_cps_if |
|
- eval_amulXnT |
|
- rgdcop_recT_qf |
|
- holds_ex_elim |
|
- redivp_rec_loopP |
|
- rgcdp_loopT_qf |
|
- redivpTP |
|
- rgcdpTP |
|
- rgdcopTP |
|
- abstrX1 |
|
- rgcdpTsP |
|
- rgcdpT_qf |
|
- rseq_poly_map |
|
- isnull_qf |
|
- rpoly_map_mul |
|
- rgdcop_recTP |
|
- redivp_rec_loopT_qf |
|
- sizeTP |
|
- abstrXP |
|
- holds_conjn |
|
- rsumpT |
|
- eval_poly_mulM |
|
- lead_coefTP |
|
- countable_algebraic_closure |
|
- rgdcopT_qf |
|
- redivp_rec_loopTP |
|
- eval_lift |
|
- ex_elim_seqP |
|
- ex_elim_seq_qf |
|
- eval_poly1 |
|
- wf_ex_elim |
|
- redivpT_qf |
|
- eval_opppT |
|
- holds_conj |
|
- qf_simpl |
|
- eval_mulpT |
|
- isnullP |
|
- countable_field_extension |
|
- ramulXnT |
|
- rabstrX |
|
- lead_coefT_qf |
|
- rgcdpTs_qf |
|
- qf_cps_ret |
|
- abstrX_mulM |
|
- qf_cps_bind |
|
- eval_sumpT |
|
- rgcdp_loopP |
|
- sizeT_qf |
|
- eval_natmulpT |
|
- path: mathcomp/fingroup/automorphism.v |
|
theorems: |
|
- Aut_conj_aut |
|
- Aut_morphic |
|
- Aut_isomM |
|
- char_norm_trans |
|
- conj_isom |
|
- char_normal |
|
- Aut_aut |
|
- eq_Aut |
|
- im_Aut_isom |
|
- injm_char |
|
- im_autm |
|
- conj_autE |
|
- perm_in_inj |
|
- perm_inE |
|
- Aut_Aut_isom |
|
- Aut_isomP |
|
- char_injm |
|
- conj_aut_morphM |
|
- charI |
|
- morphim_conj |
|
- Aut_closed |
|
- autmE |
|
- imset_autE |
|
- perm_in_on |
|
- lone_subgroup_char |
|
- char_refl |
|
- char_norm |
|
- conjgmE |
|
- charP |
|
- Aut_isom_subproof |
|
- char_sub |
|
- injm_Aut_isom |
|
- morphim_fixP |
|
- char_norms |
|
- Aut1 |
|
- preim_autE |
|
- ker_conj_aut |
|
- char_trans |
|
- injm_autm |
|
- charM |
|
- Aut_isomE |
|
- norm_conjg_im |
|
- out_Aut |
|
- norm_conj_isom |
|
- norm_conj_autE |
|
- char_normal_trans |
|
- aut_closed |
|
- conj_isog |
|
- path: mathcomp/ssreflect/fingraph.v |
|
theorems: |
|
- same_connect |
|
- order_gt0 |
|
- finv_inv |
|
- fconnect_invariant |
|
- iter_findex |
|
- eq_n_comp_r |
|
- connect_closed |
|
- eq_fcard |
|
- predC_closed |
|
- eq_order_cycle |
|
- injectivePcycle |
|
- fconnect_cycle |
|
- fconnect1 |
|
- fpath_finv_cycle |
|
- fpath_finv_in |
|
- size_orbit |
|
- finv_in |
|
- connect_cycle |
|
- connect_sub |
|
- fcycle_consEflatten |
|
- fcycle_consE |
|
- orbit_uniq |
|
- subset_dfs |
|
- same_fconnect_finv |
|
- fcard_id |
|
- connect_trans |
|
- rgraphK |
|
- eq_roots |
|
- fclosed1 |
|
- order_finv |
|
- image_orbit |
|
- fconnect_finv |
|
- same_fconnect1 |
|
- eq_n_comp |
|
- iter_finv_in |
|
- eq_root |
|
- orbit_id |
|
- closure_closed |
|
- fconnect_id |
|
- f_finv_in |
|
- eq_connect0 |
|
- fcard_order_set |
|
- orbitPcycle |
|
- root_root |
|
- subset_closure |
|
- order_cycle |
|
- finv_inj_cycle |
|
- froots_id |
|
- prevE |
|
- connect1 |
|
- looping_order |
|
- mem_orbit |
|
- fpath_f_finv_cycle |
|
- froot_id |
|
- finv_bij |
|
- finv_cycle |
|
- adjunction_closed |
|
- fpath_finv |
|
- undup_cycle_cons |
|
- intro_closed |
|
- cycle_orbit |
|
- connectP |
|
- fpath_finv_f_cycle |
|
- path_connect |
|
- fconnect_f |
|
- strict_adjunction |
|
- cycle_orbit_cycle |
|
- eq_fconnect |
|
- in_orbit_cycle |
|
- fcycleEflatten |
|
- fconnect_iter |
|
- root_connect |
|
- n_comp_connect |
|
- iter_order |
|
- finv_f_in |
|
- iter_order_cycle |
|
- n_comp_closure2 |
|
- same_connect_r |
|
- same_connect1r |
|
- fconnect_findex |
|
- order_id_cycle |
|
- closed_connect |
|
- fcard_gt0P |
|
- dfsP |
|
- intro_adjunction |
|
- orbitE |
|
- fconnect_orbit |
|
- same_connect1 |
|
- findex_eq0 |
|
- n_compC |
|
- findex_max |
|
- connect_root |
|
- f_finv |
|
- finv_inj |
|
- orderPcycle |
|
- mem_closure |
|
- iter_finv_cycle |
|
- same_connect_rev |
|
- f_finv_cycle |
|
- fconnect_sym |
|
- eq_finv |
|
- findex_iter |
|
- iter_order_in |
|
- fconnect_eqVf |
|
- dfs_pathP |
|
- rootP |
|
- fcard_gt1P |
|
- in_orbit |
|
- order_le_cycle |
|
- eq_connect |
|
- fconnect_sym_in |
|
- same_fconnect1_r |
|
- finv_f |
|
- fpath_f_finv_in |
|
- fpath_finv_f_in |
|
- iter_finv |
|
- connect_rev |
|
- fcard_finv |
|
- fcycle_rconsE |
|
- orderSpred |
|
- path: mathcomp/algebra/ssrint.v |
|
theorems: |
|
- nmulrz_rlt0 |
|
- exprz_pintl |
|
- mulr0z |
|
- distn_eq1 |
|
- rpredMz |
|
- sgz_odd |
|
- ltr_piXz2l |
|
- ltr1z |
|
- ler_int |
|
- pmulrz_llt0 |
|
- exprzD_ss |
|
- NegzE |
|
- distn_eq0 |
|
- scalerMzr |
|
- lez_total |
|
- nonzero1z |
|
- mulzn_eq1 |
|
- mulrz_le0 |
|
- intr_norm |
|
- abszMsign |
|
- ltr_int |
|
- sgzX |
|
- ltr_nXz2r |
|
- expfz_eq0 |
|
- abszN1 |
|
- ler_pMz2l |
|
- ltr_pXz2r |
|
- mulrzAC |
|
- distnn |
|
- ltr0_sgz |
|
- oppzK |
|
- rmorphMz |
|
- mulr_absz |
|
- exprSzr |
|
- commr_int |
|
- intrV |
|
- fmorphXz |
|
- exprzMzl |
|
- PoszD |
|
- lerz0 |
|
- mul2z |
|
- eqz_nat |
|
- subSz1 |
|
- natr_absz |
|
- exprnP |
|
- ler_wpXz2r |
|
- pmulrz_lgt0 |
|
- mulrbz |
|
- mulrz_nat |
|
- ltz1D |
|
- Frobenius_aut_int |
|
- mulrz_suml |
|
- rpredZint |
|
- realz |
|
- commrXz |
|
- nmulrz_rgt0 |
|
- ffunMzE |
|
- rmorphXz |
|
- unitr_n0expz |
|
- derivMz |
|
- mulz_Nsign_abs |
|
- pexprz_eq1 |
|
- is_intE |
|
- leqifD_distz |
|
- linearMn |
|
- abszM |
|
- normr_sgz |
|
- natz |
|
- sgz_le0 |
|
- sgzP |
|
- ltNz_nat |
|
- ler_wpMz2l |
|
- sgz_smul |
|
- exprzD_Nnat |
|
- invz_out |
|
- absz_eq0 |
|
- lez_abs |
|
- lez0_abs |
|
- expfz_neq0 |
|
- mulr1z |
|
- nmulrz_lge0 |
|
- horner_int |
|
- oppzD |
|
- distnEl |
|
- sgrMz |
|
- ler_niXz2l |
|
- commrMz |
|
- intr_sign |
|
- mulrz_int |
|
- mul0rz |
|
- invr_expz |
|
- raddfMz |
|
- mulNrNz |
|
- abszX |
|
- lez_anti |
|
- sgz_sgr |
|
- mulrzDr_tmp |
|
- gtz0_ge1 |
|
- mulr2z |
|
- ltr_eXz2l |
|
- ler_wnXz2r |
|
- ler_wpiXz2l |
|
- is_natE |
|
- exprMz_comm |
|
- ltzD1 |
|
- truncP |
|
- Znat_def |
|
- expfzMl |
|
- ler_nMz2r |
|
- intr_sg |
|
- ler_weXz2l |
|
- mulzA |
|
- mulrz_neq0 |
|
- rmorphzP |
|
- distn0 |
|
- mulz0 |
|
- absz1 |
|
- pexpIrz |
|
- ieexprIz |
|
- Frobenius_autMz |
|
- absz0 |
|
- exprnN |
|
- mul0z |
|
- mulrzr |
|
- mulrz_le0_ge0 |
|
- addNz |
|
- exprzMl |
|
- lez1D |
|
- exprz_pMzl |
|
- abszEsg |
|
- ltr_pMz2r |
|
- ler_eXz2l |
|
- distSn |
|
- lez_nat |
|
- intS |
|
- lez_mul |
|
- abszN |
|
- ltr_nMz2l |
|
- sgz_def |
|
- mulrzA_C |
|
- intmul1_is_multiplicative |
|
- pmulrz_rle0 |
|
- nmulrz_lgt0 |
|
- eqr_int |
|
- leqD_dist |
|
- ltzN_nat |
|
- rpredXz |
|
- expNrz |
|
- lerz1 |
|
- lez_add |
|
- ler1z |
|
- ltz_nat |
|
- ltrz1 |
|
- le0z_nat |
|
- sgz_eq0 |
|
- unitrXz |
|
- eqrXz2 |
|
- ler0z |
|
- scalezrE |
|
- distnS |
|
- nmulrz_rle0 |
|
- addzC |
|
- mulrzz |
|
- ltr0z |
|
- polyCMz |
|
- mulNrz |
|
- unitzPl |
|
- mulrzAl |
|
- mulpz |
|
- intr_eq0 |
|
- raddf_int_scalable |
|
- abszE |
|
- natsum_of_intK |
|
- PoszM |
|
- mulzC |
|
- normzN |
|
- sgz_gt0 |
|
- mulz_sign_abs |
|
- absz_gt0 |
|
- mulrz_ge0 |
|
- exp1rz |
|
- sgrEz |
|
- mulrzBr |
|
- sgz_eq |
|
- sgz1 |
|
- prodMz |
|
- nmulrn |
|
- nmulrz_llt0 |
|
- sgz_cp0 |
|
- mulz_addl |
|
- gez0_norm |
|
- distnC |
|
- exprN1 |
|
- sumMz |
|
- intrM |
|
- mulNz |
|
- mulrz_ge0_le0 |
|
- distnDl |
|
- pmulrz_lle0 |
|
- normrMz |
|
- ler_wpMz2r |
|
- mulz_sg |
|
- expr0z |
|
- rpred_int |
|
- pmulrz_rgt0 |
|
- sgz_ge0 |
|
- intz |
|
- absz_sign |
|
- subz_ge0 |
|
- commrXz_wmulls |
|
- int_rect |
|
- leNz_nat |
|
- intP |
|
- exprzDr |
|
- exprz_inv |
|
- scalerMzl |
|
- mulrNz |
|
- intEsg |
|
- mulrzBl |
|
- intrB |
|
- mulz_sg_eq1 |
|
- ler_wniXz2l |
|
- ltr_nMz2r |
|
- sgzN |
|
- abszEsign |
|
- subzSS |
|
- lez0_nat |
|
- ZnatP |
|
- ltz0_abs |
|
- sgz_int |
|
- ler_nMz2l |
|
- ltr_niXz2l |
|
- ler_pXz2r |
|
- mulrzDl_tmp |
|
- mulzN |
|
- lezD1 |
|
- mul1z |
|
- expfz_n0addr |
|
- mulrz_sumr |
|
- mulrzA |
|
- sgzM |
|
- expfzDr |
|
- nmulrz_rge0 |
|
- idomain_axiomz |
|
- gtr0_sgz |
|
- sgrz |
|
- add1Pz |
|
- add0z |
|
- subzn |
|
- ler_wnMz2r |
|
- predn_int |
|
- mulVz |
|
- ler_wneXz2l |
|
- ltrz0 |
|
- pmulrz_rge0 |
|
- mulrIz |
|
- pmulrz_lge0 |
|
- int_rect |
|
- ler_wpeXz2l |
|
- dist0n |
|
- mulrzl |
|
- intrD |
|
- expr1z |
|
- sgz_id |
|
- exprzAC |
|
- exprz_gt0 |
|
- predn_int |
|
- intrN |
|
- ler_nXz2r |
|
- NegzE |
|
- expfV |
|
- nmulrz_lle0 |
|
- ltz_def |
|
- gez0_abs |
|
- mulrzAr |
|
- addzA |
|
- exprzD_nat |
|
- mulz_sg_eqN1 |
|
- absz_sg |
|
- sgz_lt0 |
|
- normr_sg |
|
- ler_piXz2l |
|
- exprz_ge0 |
|
- pmulrn |
|
- exprz_exp |
|
- sgz0 |
|
- addPz |
|
- absz_nat |
|
- hornerMz |
|
- intEsign |
|
- rmorph_int |
|
- absz_id |
|
- lezN_nat |
|
- gtz0_abs |
|
- path: mathcomp/algebra/vector.v |
|
theorems: |
|
- vsof_sub |
|
- limg_line |
|
- capv_idPl |
|
- addvA |
|
- lfun_vect_iso |
|
- vsproj_key |
|
- cat_basis |
|
- limg_dim_eq |
|
- b2mxK |
|
- memv_span1 |
|
- vsprojK |
|
- vs2mxI |
|
- span_lfunP |
|
- dimv_add_leqif |
|
- gen_vs2mx |
|
- lker0_compfK |
|
- lfun_img_key |
|
- eq_limg_ker0 |
|
- add_lfunE |
|
- span_subvP |
|
- memv_cap |
|
- funmx_linear |
|
- memv0 |
|
- vsvalK |
|
- comp_lfun0r |
|
- lpreimK |
|
- subv_anti |
|
- memvB |
|
- freeP |
|
- span_def |
|
- free_cons |
|
- lfun_key |
|
- lker0_compVKf |
|
- subvsP |
|
- mem0v |
|
- congr_subvs |
|
- mxof_comp |
|
- SubvsE |
|
- rVof_sub |
|
- diffvSl |
|
- capv_compl |
|
- coord_free |
|
- dimv_sum_leqif |
|
- memvN |
|
- lpreimS |
|
- mxof1 |
|
- memv_line |
|
- comp_lfunDr |
|
- memvD |
|
- directv_addP |
|
- v2r_inj |
|
- fixedSpace_id |
|
- subv_sumP |
|
- comp_lfunNr |
|
- nil_free |
|
- limg_cap |
|
- dim_vline |
|
- sumv_pi_sum |
|
- fixedSpace_limg |
|
- limgE |
|
- coord_sum_free |
|
- basis_free |
|
- ffun_vect_iso |
|
- span_seq1 |
|
- capfv |
|
- subvP |
|
- vecof_delta |
|
- addv_pi2_proj |
|
- msofK |
|
- basis_not0 |
|
- span_key |
|
- subv0 |
|
- lfun_scale1 |
|
- hommxE |
|
- addv0 |
|
- directv_sumE |
|
- basisEdim |
|
- subvv |
|
- coord_vbasis |
|
- vlineP |
|
- lker_proj |
|
- vecof_eq0 |
|
- lfun_addA |
|
- addvS |
|
- capv_idPr |
|
- memvf |
|
- rVof_linear |
|
- vecof_linear |
|
- subvs_vect_iso |
|
- lker0_lfunK |
|
- addv_pi1_pi2 |
|
- v2rK |
|
- capvv |
|
- dimv_cap_compl |
|
- coord_is_scalar |
|
- span_nil |
|
- directv_addE |
|
- mul_b2mx |
|
- memv_ker |
|
- lim1g |
|
- leigenspaceE |
|
- limgD |
|
- memv_suml |
|
- lfun_is_linear |
|
- vsof_eq0 |
|
- mxof_eq0 |
|
- projv_id |
|
- nil_basis |
|
- capv_diff |
|
- subvPn |
|
- sumv_pi_uniq_sum |
|
- basisEfree |
|
- dimv_leqif_eq |
|
- limg_span |
|
- comp_lfun1r |
|
- comp_lfunZl |
|
- scale_lfunE |
|
- hommx_linear |
|
- rVof_mul |
|
- vsproj_is_linear |
|
- span_b2mx |
|
- rVof_app |
|
- bigcat_basis |
|
- addvv |
|
- catr_free |
|
- lker0_compfVK |
|
- perm_free |
|
- dimvf |
|
- subvf |
|
- msof_sub |
|
- fixedSpacesP |
|
- vs2mxK |
|
- mx2vs_subproof |
|
- addv_diff_cap |
|
- subv_bigcapP |
|
- bigcat_free |
|
- addv_complf |
|
- vecof_mul |
|
- addvC |
|
- vs2mxF |
|
- dimvS |
|
- vs2mxD |
|
- addv_pi2_id |
|
- msof0 |
|
- eqEdim |
|
- vs2mx0 |
|
- free_b2mx |
|
- hommx_eq0 |
|
- dimv_eq0 |
|
- eq_in_limg |
|
- vspaceP |
|
- add0v |
|
- sum_lfunE |
|
- lkerE |
|
- comp_lfunZr |
|
- filter_free |
|
- directvP |
|
- hommxK |
|
- directvEgeq |
|
- subvs_inj |
|
- mxofK |
|
- span_cons |
|
- subv_trans |
|
- limg_ker_compl |
|
- limg_ker0 |
|
- vs2mx_sum_expr_subproof |
|
- comp_lfunA |
|
- vsolve_eqP |
|
- vspace_modl |
|
- bigcapv_inf |
|
- memv_sumP |
|
- lker0_limgf |
|
- matrix_vect_iso |
|
- directv_trivial |
|
- sub_vsof |
|
- lpreim0 |
|
- directv_add_unique |
|
- projv_proj |
|
- limg_basis_of |
|
- daddv_pi_id |
|
- vbasis_mem |
|
- memv_projC |
|
- comp_lfun1l |
|
- free_uniq |
|
- lker_ker |
|
- opp_lfunE |
|
- inv_lfun_def |
|
- binary_addv_subproof |
|
- lpreim_cap_limg |
|
- limg_sum |
|
- subv_cap |
|
- vecofK |
|
- subv_add |
|
- size_basis |
|
- mxof_linear |
|
- eqEsubv |
|
- nary_addv_subproof |
|
- memv_sumr |
|
- lim0g |
|
- lfun_scaleDr |
|
- sub0v |
|
- sumfv |
|
- memv_pi2 |
|
- rVof_eq0 |
|
- lfun1_neq0 |
|
- lker0_lfunVK |
|
- addv_idPl |
|
- directv_sum_unique |
|
- addv_diff |
|
- pair_vect_iso |
|
- limgS |
|
- capvf |
|
- coord_vecof |
|
- capvSr |
|
- limg_lfunVK |
|
- memv_sum_pi |
|
- id_lfunE |
|
- lfun_scaleA |
|
- basis_mem |
|
- coord_rVof |
|
- memv_span |
|
- r2v_inj |
|
- vpick0 |
|
- rVofK |
|
- memv_proj |
|
- dimv_leqif_sup |
|
- memv_addP |
|
- addvSr |
|
- sumv_pi_nat_sum |
|
- linear_of_free |
|
- r2vK |
|
- limg_ker_dim |
|
- daddv_pi_proj |
|
- free_not0 |
|
- memv_submod_closed |
|
- lfunE |
|
- lker0_compKf |
|
- vbasisP |
|
- lfun_add0 |
|
- capvC |
|
- hom_vecof |
|
- directv_sum_independent |
|
- sub_msof |
|
- dimv_disjoint_sum |
|
- vsof0 |
|
- mem_vecof |
|
- memvZ |
|
- cap0v |
|
- r2v_subproof |
|
- limg_proj |
|
- free_directv |
|
- directv_sumP |
|
- capv0 |
|
- addv_pi1_proj |
|
- memv_preim |
|
- subset_limgP |
|
- dimv_compl |
|
- comp_lfunE |
|
- rVofE |
|
- memv_img |
|
- addvSl |
|
- coord_basis |
|
- lker0_compVf |
|
- fullv_lfunP |
|
- regular_vect_iso |
|
- coord0 |
|
- dimv_sum_cap |
|
- directvE |
|
- memv_pi |
|
- addvf |
|
- limg0 |
|
- fixedSpaceP |
|
- dim_matrix |
|
- memvE |
|
- lfun_scaleDl |
|
- lfunPn |
|
- lin_b2mx |
|
- v2r_subproof |
|
- addv_idPr |
|
- capvS |
|
- memv_pi1 |
|
- limg_bigcap |
|
- eq_span |
|
- hommx_mul |
|
- vsval_is_linear |
|
- coord_span |
|
- row_b2mx |
|
- catl_free |
|
- vsofK |
|
- memv_imgP |
|
- lker0P |
|
- limg_comp |
|
- eqlfun_inP |
|
- msof_eq0 |
|
- eqlfunP |
|
- perm_basis |
|
- dimv_leq_sum |
|
- freeE |
|
- mx2vsK |
|
- diffv_eq0 |
|
- mem_r2v |
|
- lker0_img_cap |
|
- freeNE |
|
- memv_pick |
|
- span_cat |
|
- daddv_pi_add |
|
- path: mathcomp/ssreflect/path.v |
|
theorems: |
|
- suffix_sorted |
|
- e'_e |
|
- eq_in_path |
|
- undup_sorted |
|
- cycle_path |
|
- homo_sorted_in |
|
- homo_path_in |
|
- all_sort |
|
- mem2_map |
|
- sort_stable_in |
|
- cycle_from_next |
|
- order_path_min_in |
|
- filter_sort |
|
- nextE |
|
- loopingP |
|
- mono_cycle_in |
|
- sub_in_cycle |
|
- merge_uniq |
|
- path_relI |
|
- take_sorted |
|
- map_merge |
|
- perm_sort_inP |
|
- pop_stable |
|
- size_traject |
|
- sorted_leq_nth |
|
- cat_path |
|
- merge_stable_sorted |
|
- rcons_path |
|
- e_e' |
|
- take_traject |
|
- sorted_mask_in |
|
- inj_cycle |
|
- cycle_from_prev |
|
- right_arc |
|
- sort_pairwise_stable |
|
- mem2_last |
|
- sub_in_path |
|
- perm_sortP |
|
- subseq_sorted |
|
- count_sort |
|
- sorted_filter |
|
- homo_path |
|
- sub_in_sorted |
|
- mem_next |
|
- mem2_seq1 |
|
- subseq_sort_in |
|
- homo_sort_map_in |
|
- eq_in_cycle |
|
- nth_traject |
|
- rev_path |
|
- mem_fcycle |
|
- leElex |
|
- path_filter_in |
|
- next_prev |
|
- mem_sort |
|
- sorted_ltn_nth_in |
|
- mem2_cat |
|
- mono_sorted |
|
- next_nth |
|
- merge_path |
|
- all_merge |
|
- path_mask_in |
|
- homo_sorted |
|
- prefix_sorted |
|
- ucycle_uniq |
|
- path_sorted |
|
- looping_uniq |
|
- sort_map |
|
- rev_sorted |
|
- mem_prev |
|
- mono_path |
|
- path_le |
|
- irr_sorted_eq |
|
- homo_cycle_in |
|
- homo_cycle |
|
- eq_cycle |
|
- leT_tr' |
|
- infix_sorted |
|
- prev_nth |
|
- cycle_map |
|
- pathP |
|
- sorted_mask_sort_in |
|
- prev_rot |
|
- sort_uniq |
|
- eq_in_sorted |
|
- perm_sort |
|
- perm_iota_sort |
|
- sorted_uniq |
|
- sorted_sort_in |
|
- mono_sorted_in |
|
- ucycle_cycle |
|
- pairwise_sorted |
|
- subseq_sort |
|
- sortedP |
|
- map_sort |
|
- merge_sorted |
|
- mem2r |
|
- path_pairwise |
|
- size_sort |
|
- cycle_catC |
|
- sub_path |
|
- path_filter |
|
- undup_path |
|
- pairwise_sort |
|
- rot_cycle |
|
- splitP |
|
- cat_sorted2 |
|
- prev_rev |
|
- prev_next |
|
- merge_map |
|
- fpath_traject |
|
- traject_iteri |
|
- eq_path |
|
- sort_sorted |
|
- count_merge |
|
- mono_cycle |
|
- sorted_ltn_index |
|
- mem2_splice1 |
|
- size_merge |
|
- sort_sorted_in |
|
- path_sortedE |
|
- prev_map |
|
- path_map |
|
- subseq_path_in |
|
- sorted_filter_in |
|
- sorted_uniq_in |
|
- path_sorted_inE |
|
- size_merge_sort_push |
|
- sorted_relI |
|
- sorted_merge |
|
- fpathE |
|
- sorted_leq_nth_in |
|
- eq_fcycle |
|
- sorted_subseq_sort |
|
- mask_sort_in |
|
- merge_stable_path |
|
- cycle_all2rel |
|
- irr_sorted_eq_in |
|
- next_cycle |
|
- subseq_sorted_in |
|
- mem2_sort |
|
- mem2lf |
|
- mono_path_in |
|
- sorted_pairwise_in |
|
- eq_count_merge |
|
- next_rev |
|
- sorted_leq_index_in |
|
- next_rotr |
|
- mem2_cons |
|
- mem2l_cat |
|
- last_traject |
|
- prefix_path |
|
- mask_sort |
|
- trajectSr |
|
- trajectP |
|
- path_pairwise_in |
|
- fpathP |
|
- sub_cycle |
|
- left_arc |
|
- sorted_leq_index |
|
- mergeA |
|
- path_mask |
|
- splitPl |
|
- sort_iota_stable |
|
- sorted_ltn_nth |
|
- cycle_all2rel_in |
|
- next_rot |
|
- mem2l |
|
- sorted_eq |
|
- eq_sorted |
|
- sortE |
|
- iota_ltn_sorted |
|
- mem2_splice |
|
- sub_sorted |
|
- rot_ucycle |
|
- sorted_pairwise |
|
- cycle_next |
|
- order_path_min |
|
- next_map |
|
- sorted_mask_sort |
|
- ltn_sorted_uniq_leq |
|
- filter_sort_in |
|
- sorted_mask |
|
- push_stable |
|
- rev_cycle |
|
- trajectD |
|
- mem2_sort_in |
|
- prev_cycle |
|
- path: mathcomp/field/finfield.v |
|
theorems: |
|
- finDomain_mulrC |
|
- card_finField_unit |
|
- order_primeChar |
|
- card_finCharP |
|
- finField_galois_generator |
|
- primeChar_scaleDl |
|
- natrFp |
|
- Fermat's_little_theorem |
|
- finField_galois |
|
- primeChar_dimf |
|
- lregR |
|
- ffT_splitting_subproof |
|
- galLgen |
|
- expf_card |
|
- finRing_gt1 |
|
- card_primeChar |
|
- card_vspacef |
|
- card_vspace |
|
- primeChar_scaleDr |
|
- finField_is_abelem |
|
- primeChar_pgroup |
|
- pr_p |
|
- FinSplittingFieldFor |
|
- card_vspace1 |
|
- finField_genPoly |
|
- primeChar_vectAxiom |
|
- PrimePowerField |
|
- galL |
|
- primeChar_scaleAr |
|
- primeChar_scaleA |
|
- finDomain_field |
|
- finCharP |
|
- path: mathcomp/solvable/gseries.v |
|
theorems: |
|
- quotient_subnormal |
|
- subnormalP |
|
- quotient_simple |
|
- normal_subnormal |
|
- subnormalEsupport |
|
- setI_subnormal |
|
- cosetpre_maximal |
|
- isog_simple |
|
- invariant_subnormal |
|
- maximal_exists |
|
- maxnormal_minnormal |
|
- maximalJ |
|
- mulg_normal_maximal |
|
- subnormal_refl |
|
- subnormal_trans |
|
- central_central_factor |
|
- cosetpre_maximal_eq |
|
- injm_maxnormal |
|
- maxnormal_normal |
|
- simple_maxnormal |
|
- chief_series_exists |
|
- maxnormal_sub |
|
- quotient_maximal_eq |
|
- injm_minnormal |
|
- subnormal_sub |
|
- path_setIgr |
|
- morphim_subnormal |
|
- injm_maximal_eq |
|
- maximal_eqP |
|
- subnormalEl |
|
- chief_factor_minnormal |
|
- maxnormalM |
|
- central_factor_central |
|
- injm_maximal |
|
- ex_maxnormal_ntrivg |
|
- maxnormal_proper |
|
- acts_irrQ |
|
- path: mathcomp/algebra/zmodp.v |
|
theorems: |
|
- Fp_nat_mod |
|
- add_1_Zp |
|
- char_Fp_0 |
|
- Zp_addC |
|
- unitZpE |
|
- Fp_fieldMixin |
|
- add_N1_Zp |
|
- Zp_nat |
|
- Zp1_expgz |
|
- rshift1 |
|
- card_Fp |
|
- card_Zp |
|
- Zp_nontrivial |
|
- Zp_mul1z |
|
- val_Fp_nat |
|
- valZpK |
|
- split1 |
|
- order_Zp1 |
|
- Zp_inv_out |
|
- Zp_addA |
|
- Zp_intro_unit |
|
- natr_Zp |
|
- Zp_cycle |
|
- char_Zp |
|
- Zp_mulA |
|
- Zp_mul_addl |
|
- Zp_mul_addr |
|
- modZp |
|
- unitFpE |
|
- Zp_mulz1 |
|
- card_units_Zp |
|
- unit_Zp_expg |
|
- Zp_expg |
|
- units_Zp_abelian |
|
- Zp_add0z |
|
- Zp_mulgC |
|
- add_Zp_1 |
|
- Zp_mulrn |
|
- Zp_mulC |
|
- lshift0 |
|
- Zp_nat_mod |
|
- val_Zp_nat |
|
- char_Fp |
|
- Zp_cast |
|
- Zp_mulzV |
|
- mem_Zp |
|
- ord1 |
|
- Zp_addNz |
|
- natr_negZp |
|
- path: mathcomp/character/integral_char.v |
|
theorems: |
|
- mxZn_inj |
|
- Burnside_p_a_q_b |
|
- group_num_field_exists |
|
- faithful_degree_p_part |
|
- gring_class_sum_central |
|
- gring_classM_coef_sum_eq |
|
- nonlinear_irr_vanish |
|
- gring_mode_class_sum_eq |
|
- Aint_char |
|
- mx_irr_gring_op_center_scalar |
|
- index_support_dvd_degree |
|
- dvd_irr1_index_center |
|
- Aint_irr |
|
- gring_classM_expansion |
|
- Aint_gring_mode_class_sum |
|
- coprime_degree_support_cfcenter |
|
- sum_norm2_char_generators |
|
- set_gring_classM_coef |
|
- cfRepr_gring_center |
|
- gring_irr_modeM |
|
- Aint_class_div_irr1 |
|
- dvd_irr1_cardG |
|
- primes_class_simple_gt1 |
|
- path: mathcomp/ssreflect/prime.v |
|
theorems: |
|
- mem_primes |
|
- logn_gt0 |
|
- primeNsig |
|
- pfactorKpdiv |
|
- sub_in_partn |
|
- up_log_gt0 |
|
- partnC |
|
- prime_nt_dvdP |
|
- primePns |
|
- pdiv_gt0 |
|
- partn_lcm |
|
- dvdn_partP |
|
- ltn_log0 |
|
- primeP |
|
- up_logMp |
|
- ltn_logl |
|
- Euclid_dvdM |
|
- pfactor_gt0 |
|
- max_pdiv_dvd |
|
- partn1 |
|
- elogn2P |
|
- pdiv_leq |
|
- trunc_log_eq |
|
- Euclid_dvdX |
|
- p_natP |
|
- up_log_min |
|
- totient_pfactor |
|
- partn0 |
|
- p'natEpi |
|
- Euclid_dvd1 |
|
- trunc_log1 |
|
- pi_pnat |
|
- partn_biggcd |
|
- pi_pdiv |
|
- logn_count_dvd |
|
- primes_part |
|
- p_part_eq1 |
|
- logn_lcm |
|
- pi_p'nat |
|
- pnat_div |
|
- eq_partn_from_log |
|
- up_log_eq0 |
|
- up_log_bounds |
|
- odd_prime_gt2 |
|
- part_p'nat |
|
- pnat_pi |
|
- sub_pnat_coprime |
|
- pi_of_dvd |
|
- pnatX |
|
- sorted_divisors_ltn |
|
- ifnzP |
|
- sorted_primes |
|
- p'natE |
|
- prime_oddPn |
|
- p'nat_coprime |
|
- prime_decompE |
|
- logn_prime |
|
- primes_prime |
|
- pnatI |
|
- filter_pi_of |
|
- up_log_trunc_log |
|
- prime_gt0 |
|
- coprime_has_primes |
|
- pfactorK |
|
- eq_in_pnat |
|
- divisors_uniq |
|
- widen_partn |
|
- mem_prime_decomp |
|
- logn_coprime |
|
- part_pnat_id |
|
- part_gt0 |
|
- eq_partn |
|
- trunc_expnK |
|
- trunc_log1n |
|
- all_prime_primes |
|
- primesM |
|
- trunc_logMp |
|
- eq_negn |
|
- pi'_p'nat |
|
- pi_max_pdiv |
|
- coprime_pi' |
|
- pdiv_dvd |
|
- divisors_correct |
|
- trunc_lognn |
|
- dvdn_pfactor |
|
- totientE |
|
- pi_of_exp |
|
- leq_trunc_log |
|
- up_expnK |
|
- up_log0 |
|
- prime_coprime |
|
- up_log2S |
|
- logn0 |
|
- trunc_log_gt0 |
|
- logn_part |
|
- dvdn_sum |
|
- p_part_gt1 |
|
- partnM |
|
- coprime_partC |
|
- pnat_1 |
|
- pfactor_dvdn |
|
- logn_gcd |
|
- primePn |
|
- modn_partP |
|
- max_pdiv_prime |
|
- pnatPpi |
|
- logn1 |
|
- max_pdiv_gt0 |
|
- pnat_dvd |
|
- p_part |
|
- up_lognn |
|
- prime_above |
|
- max_pdiv_max |
|
- negnK |
|
- lognE |
|
- trunc_log_eq0 |
|
- prime_gt1 |
|
- pnatNK |
|
- partn_eq1 |
|
- pi_ofM |
|
- trunc_log0n |
|
- partnNK |
|
- pnatE |
|
- prime_decomp_correct |
|
- up_log_gtn |
|
- trunc_log2_double |
|
- partn_gcd |
|
- up_log_eq |
|
- trunc_log0 |
|
- trunc_log2S |
|
- dvdn_part |
|
- edivn2P |
|
- divisor1 |
|
- odd_2'nat |
|
- pnat_coprime |
|
- pdivP |
|
- primes_eq0 |
|
- primes_uniq |
|
- trunc_log_bounds |
|
- even_prime |
|
- eqn_from_log |
|
- leq_up_log |
|
- eq_pnat |
|
- pnatP |
|
- partn_dvd |
|
- pi_of_part |
|
- lognX |
|
- pnat_id |
|
- eq_piP |
|
- pdiv_prime |
|
- divisors_id |
|
- pfactor_coprime |
|
- partnT |
|
- ltn_pdiv2_prime |
|
- up_log1 |
|
- pi_of_prime |
|
- sub_in_pnat |
|
- totient_coprime |
|
- up_logP |
|
- eq_primes |
|
- sorted_divisors |
|
- partn_pi |
|
- partnI |
|
- partn_biglcm |
|
- totient_gt1 |
|
- dvdn_leq_log |
|
- trunc_log_max |
|
- prod_prime_decomp |
|
- logn_Gauss |
|
- totient_gt0 |
|
- pdiv_min_dvd |
|
- pfactor_dvdnn |
|
- part_pnat |
|
- dvdn_divisors |
|
- path: mathcomp/character/mxabelem.v |
|
theorems: |
|
- rVabelemN |
|
- GLmx_faithful |
|
- mx_group_homocyclic |
|
- rowg_mxS |
|
- faithful_repr_extraspecial |
|
- abelem_mx_faithful |
|
- GL_mx_repr |
|
- abelem_rV_S |
|
- abelem_rV_X |
|
- rstabs_abelem |
|
- pcore_faithful_mx_irr |
|
- comp_reprGLm |
|
- rowg_mx1 |
|
- im_abelem_rV |
|
- rfix_pgroup_char |
|
- scale_actE |
|
- abelian_type_mx_group |
|
- card_rowg |
|
- rVabelem_minj |
|
- astab_rowg_repr |
|
- rVabelemD |
|
- mxsimple_abelemP |
|
- mxrank_rowg |
|
- sub_rVabelem |
|
- abelem_rV_V |
|
- exponent_mx_group |
|
- mx_repr_is_groupAction |
|
- abelem_rV_injm |
|
- rowg_mx_eq0 |
|
- pcore_sub_rstab_mxsimple |
|
- eq_rowg |
|
- card_rVabelem |
|
- abelem_mx_irrP |
|
- val_reprGLm |
|
- rowgS |
|
- rker_abelem |
|
- rVabelem_injm |
|
- im_rVabelem |
|
- rfix_abelem |
|
- rVabelem0 |
|
- mxmodule_abelem_subg |
|
- rowg0 |
|
- rowg_stable |
|
- afix_repr |
|
- astab_setT_repr |
|
- scale_is_groupAction |
|
- abelem_rV_isom |
|
- mxsimple_abelem_subg |
|
- p_pr |
|
- gacent_repr |
|
- mx_repr_is_action |
|
- abelem_rV_K |
|
- dim_abelemE |
|
- extraspecial_repr_structure |
|
- rowgI |
|
- eq_abelem_subg_repr |
|
- rVabelemK |
|
- mx_Fp_stable |
|
- abelem_rV_inj |
|
- dprod_rowg |
|
- astab1_scale_act |
|
- mx_Fp_abelem |
|
- stable_rowg_mxK |
|
- card_abelem_rV |
|
- rowgK |
|
- abelem_rV_M |
|
- mx_repr_actE |
|
- rowg_mxSK |
|
- rVabelem_inj |
|
- abelem_rV_1 |
|
- abelem_rowgJ |
|
- reprGLmM |
|
- sub_abelem_rV_im |
|
- bigdprod_rowg |
|
- mxmodule_abelemG |
|
- abelem_mx_linear_proof |
|
- rVabelem_mK |
|
- rVabelemS |
|
- sub_rVabelem_im |
|
- cprod_rowg |
|
- rowgD |
|
- mem_rowg |
|
- rsim_abelem_subg |
|
- mxmodule_abelem |
|
- mxsimple_abelemGP |
|
- trivg_rowg |
|
- abelem_rV_J |
|
- sub_im_abelem_rV |
|
- isog_abelem_rV |
|
- modIp' |
|
- abelem_mx_repr |
|
- ker_reprGLm |
|
- abelem_rV_mK |
|
- bigcprod_rowg |
|
- pcore_sub_rker_mx_irr |
|
- rstab_abelem |
|
- acts_rowg |
|
- mem_rVabelem |
|
- rstabs_abelemG |
|
- rank_mx_group |
|
- rVabelemJ |
|
- mem_im_abelem_rV |
|
- rowg_mxK |
|
- scale_is_action |
|
- rV_abelem_sJ |
|
- rVabelemZ |
|
- path: mathcomp/character/vcharacter.v |
|
theorems: |
|
- zchar_split |
|
- zchar_onS |
|
- dirr_constt_oppr |
|
- dirr_dchi |
|
- dirr_norm1 |
|
- cfnorm_map_orthonormal |
|
- irr_constt_to_dirr |
|
- Aint_vchar |
|
- cfdot_sum_orthonormal |
|
- Z_S |
|
- ndirr_inj |
|
- Zisometry_of_cfnorm |
|
- dirr_opp |
|
- cfdot_dirr_eq1 |
|
- mul_vchar |
|
- char_vchar |
|
- isometry_in_zchar |
|
- vchar_mulr_closed |
|
- zchar_trans |
|
- zchar_small_norm |
|
- notS0 |
|
- cfdot_add_dirr_eq1 |
|
- cfdot_dirr |
|
- ndirrK |
|
- dchi_ndirrE |
|
- cfnorm_orthonormal |
|
- sub_aut_zchar |
|
- dirr_dIirrE |
|
- cnorm_dconstt |
|
- dirr_constt_oppl |
|
- zcharW |
|
- dIrrP |
|
- cfInd_vchar |
|
- Cnat_cfnorm_vchar |
|
- dirrP |
|
- cfdot_sum_orthogonal |
|
- zchar_on |
|
- cfproj_sum_orthonormal |
|
- zcharD1 |
|
- Zchar_zmod |
|
- cfnorm_sum_orthogonal |
|
- dchi_vchar |
|
- cfnorm_sum_orthonormal |
|
- zchar_tuple_expansion |
|
- zchar_nth_expansion |
|
- map_pairwise_orthogonal |
|
- cfdot_dchi |
|
- dirr_constt_oppI |
|
- zchar_filter |
|
- zchar_span |
|
- orthonormal_span |
|
- Cnat_dirr |
|
- dirr_small_norm |
|
- dirrE |
|
- cfAut_vchar |
|
- cfRes_vchar |
|
- scale_zchar |
|
- vchar_norm1P |
|
- Zisometry_inj |
|
- vchar_aut |
|
- cfdot_sum_dchi |
|
- conjC_vcharAut |
|
- zchar_subseq |
|
- cfproj_sum_orthogonal |
|
- dirr_aut |
|
- support_zchar |
|
- dirr_consttE |
|
- zchar_onG |
|
- dirr_sign |
|
- Zisometry_of_iso |
|
- dirr_dIirrPE |
|
- cfdot_vchar_r |
|
- mem_zchar_on |
|
- cfun0_zchar |
|
- irr_dirr |
|
- sub_conjC_vchar |
|
- Frobenius_kernel_exists |
|
- dchi1 |
|
- map_orthonormal |
|
- vchar_orthonormalP |
|
- dirr_oppr_closed |
|
- ndirr_diff |
|
- irr_vchar |
|
- cfun_sum_dconstt |
|
- cfRes_vchar_on |
|
- cfAut_zchar |
|
- zchar_trans_on |
|
- cfdot_todirrE |
|
- Cint_cfdot_vchar_irr |
|
- of_irrK |
|
- to_dirrK |
|
- cfdot_aut_vchar |
|
- Cint_cfdot_vchar |
|
- nS1 |
|
- Cint_vchar1 |
|
- zchar_sub_irr |
|
- zchar_expansion |
|
- cfnorm_orthogonal |
|
- irr_vchar_on |
|
- path: mathcomp/solvable/burnside_app.v |
|
theorems: |
|
- R50_inj |
|
- F_Sv |
|
- F_r034 |
|
- Fid3 |
|
- is_isoP |
|
- r41_inv |
|
- F_r32 |
|
- dir_s0p |
|
- burnside_app_iso_2_4col |
|
- card_Fid |
|
- F_s6 |
|
- r14_inv |
|
- act_f_morph |
|
- F_r012 |
|
- act_g_morph |
|
- group_set_iso3 |
|
- F_r013 |
|
- card_n4 |
|
- iso_eq_F0_F1_F2 |
|
- R021_inj |
|
- rot_eq_c0 |
|
- s14 |
|
- sd2_inv |
|
- iso0_1 |
|
- R32_inj |
|
- Lcorrect |
|
- card_n |
|
- burnside_app_rot |
|
- prod_t_correct |
|
- ecubes_def |
|
- r3_inv |
|
- S2_inv |
|
- F_r021 |
|
- rot_is_rot |
|
- F_Sh |
|
- card_Fid3 |
|
- isometries_iso |
|
- r2_inv |
|
- F_r05 |
|
- burnside_app_iso |
|
- sd1_inv |
|
- act_g_1 |
|
- s23_inv |
|
- R043_inj |
|
- R042_inj |
|
- R1_inj |
|
- group_set_diso3 |
|
- R14_inj |
|
- R013_inj |
|
- Sh_inj |
|
- F_r3 |
|
- card_n3s |
|
- S5_inv |
|
- R2_inj |
|
- R024_inj |
|
- Sv_inj |
|
- card_n2 |
|
- group_set_iso |
|
- r1_inv |
|
- r50_inv |
|
- F_s05 |
|
- eqperm |
|
- S0_inv |
|
- S14_inj |
|
- sop_inj |
|
- R012_inj |
|
- group_set_rot |
|
- sop_spec |
|
- Sd2_inj |
|
- burnside_app2 |
|
- F_r14 |
|
- R031_inj |
|
- card_n2_3 |
|
- sv_inv |
|
- F_r042 |
|
- iso3_ndir |
|
- seqs1 |
|
- F_r41 |
|
- rotations_is_rot |
|
- group_set_iso2 |
|
- F_r23 |
|
- F_Sd2 |
|
- F_Sd1 |
|
- iso_eq_F0_F1 |
|
- act_f_1 |
|
- F_s1 |
|
- F_s2 |
|
- F_r2 |
|
- F_s5 |
|
- card_n3_3 |
|
- L_iso |
|
- stable |
|
- group_set_rotations |
|
- F_r024 |
|
- dir_iso_iso3 |
|
- R23_inj |
|
- S4_inv |
|
- uniq4_uniq6 |
|
- R41_inj |
|
- S6_inv |
|
- R3_inj |
|
- R05_inj |
|
- F_r031 |
|
- card_n3 |
|
- burnside_app_iso_3_3col |
|
- F_s4 |
|
- eqperm_map |
|
- F_r043 |
|
- F_s3 |
|
- F_r1 |
|
- R034_inj |
|
- Fid |
|
- gen_diso3 |
|
- ndir_s0p |
|
- is_iso3P |
|
- burnside_app_iso3 |
|
- card_rot |
|
- F_r50 |
|
- card_iso2 |
|
- diff_id_sh |
|
- F_s14 |
|
- ord_enum4 |
|
- burnside_formula |
|
- sop_morph |
|
- path: mathcomp/algebra/finalg.v |
|
theorems: |
|
- unit_is_groupAction |
|
- mulrV |
|
- unit_actE |
|
- zmod_mulgC |
|
- val_unitV |
|
- zmodXgE |
|
- zmodVgE |
|
- invr_out |
|
- mulVr |
|
- unit_mul_proof |
|
- unit_mul1u |
|
- unit_muluA |
|
- decidable |
|
- card_finRing_gt1 |
|
- card_finField_unit |
|
- zmod1gE |
|
- val_unit1 |
|
- intro_unit |
|
- val_unitX |
|
- val_unitM |
|
- unit_mulVu |
|
- zmodMgE |
|
- path: mathcomp/ssreflect/binomial.v |
|
theorems: |
|
- bin2_sum |
|
- binS |
|
- fermat_little |
|
- card_partial_ord_partitions |
|
- ffact_small |
|
- cards_draws |
|
- bin_gt0 |
|
- bin0 |
|
- bin_sub |
|
- binSn |
|
- ffactnS |
|
- bin2 |
|
- bin_ffact |
|
- bin1 |
|
- prime_modn_expSn |
|
- leq_bin2l |
|
- bin_small |
|
- mul_bin_left |
|
- prime_dvd_bin |
|
- ffact_factd |
|
- binn |
|
- modn_summ |
|
- predn_exp |
|
- bin2odd |
|
- Wilson |
|
- dvdn_pred_predX |
|
- card_uniq_tuples |
|
- mul_bin_down |
|
- subn_exp |
|
- ffactE |
|
- ffact_fact |
|
- bin_ffactd |
|
- card_ltn_sorted_tuples |
|
- expnDn |
|
- logn_fact |
|
- card_sorted_tuples |
|
- card_ord_partitions |
|
- ffactn1 |
|
- ffact0n |
|
- ffactnn |
|
- Vandermonde |
|
- binE |
|
- bin0n |
|
- card_inj_ffuns |
|
- ffact_prod |
|
- ffactn0 |
|
- bin_fact |
|
- card_inj_ffuns_on |
|
- card_draws |
|
- fact_prod |
|
- mul_bin_diag |
|
- path: mathcomp/ssreflect/div.v |
|
theorems: |
|
- dvdn_lcm |
|
- divnMA |
|
- lcmnAC |
|
- gcdnMDl |
|
- lcmn_gt0 |
|
- divn1 |
|
- divn0 |
|
- edivnB |
|
- modn1 |
|
- divnK |
|
- chinese_modr |
|
- divnn |
|
- modnMDl |
|
- dvdn1 |
|
- modnDmr |
|
- coprime_dvdl |
|
- gcdn_gt0 |
|
- modn0 |
|
- dvdnn |
|
- gcdnMr |
|
- dvdnP |
|
- modnDml |
|
- divn2 |
|
- coprimen1 |
|
- leq_div2r |
|
- divnDl |
|
- modn_small |
|
- dvd1n |
|
- gcdnC |
|
- divnAC |
|
- dvdn_add_eq |
|
- dvdn_addr |
|
- edivn_pred |
|
- leq_mod |
|
- gcdn_idPl |
|
- modnD |
|
- egcd0n |
|
- edivn_eq |
|
- gcdnDl |
|
- divn_gt0 |
|
- Bezoutl |
|
- gcdnAC |
|
- ltn_ceil |
|
- Gauss_dvdl |
|
- modn_pred |
|
- dvdn_mull |
|
- lcmnMl |
|
- dvdn_exp2r |
|
- dvdn_gcd |
|
- leq_div |
|
- coprimeXl |
|
- gcdnDr |
|
- gcdn_modr |
|
- Gauss_dvd |
|
- gcdnA |
|
- dvdn_exp |
|
- modnMl |
|
- dvdn_gcdr |
|
- gcdn0 |
|
- divn_eq |
|
- chinese_modl |
|
- ltn_divRL |
|
- divnDMl |
|
- coprimeXr |
|
- modnDl |
|
- gcdnCA |
|
- divnB |
|
- dvdn_addl |
|
- coprime_pexpr |
|
- coprimen2 |
|
- mulKn |
|
- modn2 |
|
- dvdn_pexp2r |
|
- gcdnACA |
|
- dvdn_gcdl |
|
- gcd1n |
|
- coprime_modr |
|
- lcmn_idPr |
|
- Gauss_gcdl |
|
- ltn_Pdiv |
|
- modnS |
|
- lcmn_idPl |
|
- leq_divDl |
|
- dvdn_add |
|
- gcdn_idPr |
|
- leqDmod |
|
- dvd0n |
|
- expnB |
|
- dvdn_pmul2l |
|
- divnMBl |
|
- lcmnCA |
|
- dvdn_Pexp2l |
|
- mod0n |
|
- dvdn_subl |
|
- geq_divBl |
|
- eqn_modDr |
|
- muln_lcm_gcd |
|
- coprimeP |
|
- coprime_dvdr |
|
- modn_mod |
|
- divn_modl |
|
- coprimenS |
|
- edivnS |
|
- modn_def |
|
- dvdn_mul |
|
- dvdn_fact |
|
- modnMml |
|
- coprimeMl |
|
- gcdn_def |
|
- dvdn_odd |
|
- divnMr |
|
- coprimeMr |
|
- expn_max |
|
- muln_gcdr |
|
- coprimeSn |
|
- divn_pred |
|
- dvdn_double_leq |
|
- muln_divCA |
|
- lcmnA |
|
- modn_coprime |
|
- muln_modr |
|
- dvdn_exp2l |
|
- lcmnACA |
|
- coprime1n |
|
- gcdnE |
|
- modnMr |
|
- edivn_def |
|
- divn_small |
|
- dvdn_pmul2r |
|
- lcmn1 |
|
- divnA |
|
- leq_divLR |
|
- dvdn_div |
|
- dvdn_divRL |
|
- muln_divA |
|
- edivnD |
|
- egcdnP |
|
- eqn_mul |
|
- coprimenP |
|
- modnDr |
|
- dvdn_gt0 |
|
- modnMm |
|
- gcd0n |
|
- gcdn_modl |
|
- leq_div2l |
|
- coprime_modl |
|
- coprime2n |
|
- odd_mod |
|
- divnDr |
|
- modnn |
|
- dvdn_double_ltn |
|
- lcmnMr |
|
- divnMl |
|
- divnD |
|
- lcm0n |
|
- muln_divCA_gcd |
|
- ltn_pmod |
|
- muln_lcmr |
|
- Gauss_gcdr |
|
- divn_mulAC |
|
- muln_gcdl |
|
- muln_modl |
|
- Bezoutr |
|
- divnBMl |
|
- lcmn0 |
|
- gtnNdvd |
|
- expn_min |
|
- dvdn_leq |
|
- gcdnMl |
|
- eqn_dvd |
|
- lcm1n |
|
- chinese_mod |
|
- dvdn2 |
|
- chinese_remainder |
|
- modnDm |
|
- dvdn_trans |
|
- modn_divl |
|
- ltn_divLR |
|
- div0n |
|
- muln_lcml |
|
- coprimePn |
|
- coprime_egcdn |
|
- ltn_mod |
|
- dvdn_divLR |
|
- Gauss_dvdr |
|
- dvdn_mulr |
|
- divnBl |
|
- mulnK |
|
- gcdnn |
|
- divnS |
|
- gcdn1 |
|
- divnMDl |
|
- path: mathcomp/algebra/interval.v |
|
theorems: |
|
- mem0_itvoo_xNx |
|
- mid_in_itvcc |
|
- BInfty_leE |
|
- le_bound_refl |
|
- itv_bound_can |
|
- BRight_BLeft_leE |
|
- itv_splitI |
|
- oppr_itvcc |
|
- subset_itv |
|
- itv_meetA |
|
- bound_lex1 |
|
- subitvPl |
|
- subitvP |
|
- BLeft_ltE |
|
- BInfty_le_eqE |
|
- miditv_ge_right |
|
- itv_splitU |
|
- BLeft_BRight_ltE |
|
- BInfty_BInfty_ltE |
|
- itv_meetUl |
|
- bound_meetA |
|
- subset_itv_oo_cc |
|
- itv_le0x |
|
- in_segmentDgt0Pr |
|
- in_segmentDgt0Pl |
|
- miditv_le_left |
|
- bound_lexx |
|
- subitvPr |
|
- bound_joinA |
|
- mid_in_itv |
|
- itv_ge |
|
- itv_dec |
|
- BInfty_geE |
|
- mem_miditv |
|
- subset_itv_co_cc |
|
- ge_pinfty |
|
- BInfty_gtF |
|
- itv_meetKU |
|
- itv_total_meet3E |
|
- bound_leEmeet |
|
- itvxx |
|
- in_itv |
|
- itvP |
|
- oppr_itvoo |
|
- bound_meetC |
|
- bound_meetKU |
|
- leBRight_ltBLeft |
|
- lteif_in_itv |
|
- subitv_trans |
|
- BInfty_ltF |
|
- boundr_in_itv |
|
- lt_ninfty |
|
- ltBSide |
|
- subitvE |
|
- predC_itv |
|
- bound_le0x |
|
- boundl_in_itv |
|
- gt_pinfty |
|
- bound_joinKI |
|
- BLeft_BSide_leE |
|
- BInfty_ltE |
|
- predC_itvr |
|
- itv_joinA |
|
- ltBRight_leBLeft |
|
- bound_ltxx |
|
- itv_bound_total |
|
- itv_splitU1 |
|
- BSide_ltE |
|
- lt_in_itv |
|
- oppr_itvoc |
|
- itv_bound_display |
|
- in_itvI |
|
- bound_joinC |
|
- oppr_itv |
|
- BInfty_gtE |
|
- itv_splitUeq |
|
- mid_in_itvoo |
|
- BSide_leE |
|
- subitv_anti |
|
- itv_boundlr |
|
- subset_itv_oo_oc |
|
- itvxxP |
|
- predC_itvl |
|
- subset_itv_oc_cc |
|
- lt_bound_def |
|
- itv_lex1 |
|
- BInfty_ge_eqE |
|
- subset_itv_oo_co |
|
- le_bound_anti |
|
- itv_meetC |
|
- interval_can |
|
- itv_total_join3E |
|
- itv_joinC |
|
- BRight_leE |
|
- BRight_BSide_ltE |
|
- mem0_itvcc_xNx |
|
- itv_xx |
|
- subitv_refl |
|
- interval_display |
|
- path: mathcomp/solvable/center.v |
|
theorems: |
|
- center_class_formula |
|
- xcprodmI |
|
- xcprodmEl |
|
- cprod_by_uniq |
|
- subcentP |
|
- ker_cprod_by_central |
|
- subcent1_cycle_sub |
|
- subcent1_id |
|
- injm_cpairg1 |
|
- xcprodm_cent |
|
- im_cpair_cprod |
|
- ncprod1 |
|
- xcprodP |
|
- center_bigdprod |
|
- injm_cpair1g |
|
- sub_center_normal |
|
- injm_xcprodm |
|
- xcprodmE |
|
- cprod_center_id |
|
- im_cpair_cent |
|
- subcent1C |
|
- cpairg1_dom |
|
- center_bigcprod |
|
- center_cprod |
|
- ncprodS |
|
- cpair1g_dom |
|
- xcprod_subproof |
|
- subcent_norm |
|
- injgz |
|
- subcent_sub |
|
- cpair1g_center |
|
- isog_xcprod |
|
- center_normal |
|
- Aut_cprod_by_full |
|
- cpairg1_center |
|
- ker_cprod_by_is_group |
|
- gzZchar |
|
- im_xcprodm |
|
- center_char |
|
- center_idP |
|
- isog_cprod_by |
|
- Aut_cprod_full |
|
- subcent1_cycle_normal |
|
- center_ncprod0 |
|
- centerP |
|
- cprod_by_key |
|
- morphim_center |
|
- subcent_normal |
|
- center_abelian |
|
- center1 |
|
- subcent1_cycle_norm |
|
- in_cprodM |
|
- subcent1_sub |
|
- xcprodmEr |
|
- cyclic_center_factor_abelian |
|
- cpair_center_id |
|
- im_cpair |
|
- isog_center |
|
- eq_cpairZ |
|
- gzZ_lone |
|
- ncprod0 |
|
- injm_center |
|
- ker_in_cprod |
|
- im_xcprodml |
|
- centerC |
|
- subcent1P |
|
- subcent_char |
|
- ncprod_key |
|
- cyclic_factor_abelian |
|
- Aut_ncprod_full |
|
- setI_im_cpair |
|
- gzZ |
|
- im_xcprodmr |
|
- path: mathcomp/solvable/jordanholder.v |
|
theorems: |
|
- maxainv_norm |
|
- qacts_coset |
|
- maxainvM |
|
- asimpleP |
|
- section_reprP |
|
- asimpleI |
|
- StrongJordanHolderUniqueness |
|
- simple_compsP |
|
- maxainvS |
|
- maxainv_exists |
|
- trivg_acomps |
|
- asimple_acompsP |
|
- qacts_cosetpre |
|
- maxainv_ainvar |
|
- section_repr_isog |
|
- gactsM |
|
- compsP |
|
- exists_comps |
|
- qact_dom_doms |
|
- maxainv_sub |
|
- asimple_quo_maxainv |
|
- acomps_cons |
|
- trivg_comps |
|
- acts_qact_doms |
|
- exists_acomps |
|
- comps_cons |
|
- path: mathcomp/solvable/commutator.v |
|
theorems: |
|
- derJ |
|
- commXg |
|
- quotient_cents2 |
|
- sub_der1_abelian |
|
- commg_subr |
|
- dergS |
|
- commgV |
|
- normsRr |
|
- commXXg |
|
- commgMJ |
|
- commg_normal |
|
- normsRl |
|
- commMgR |
|
- der_normalS |
|
- derg1 |
|
- commg_normr |
|
- der_abelian |
|
- commgAC |
|
- Hall_Witt_identity |
|
- quotient_der |
|
- sub_der1_norm |
|
- commg_sub |
|
- commG1 |
|
- commg_norm |
|
- commg_normSr |
|
- commg_norml |
|
- sub_der1_normal |
|
- der1_min |
|
- der_sub |
|
- commg_normSl |
|
- comm1G |
|
- commMGr |
|
- commVg |
|
- charR |
|
- der_normal |
|
- expMg_Rmul |
|
- commgMR |
|
- der_cont |
|
- morphim_der |
|
- der_norm |
|
- comm_norm_cent_cent |
|
- der_group_set |
|
- commMgJ |
|
- dergSn |
|
- conjg_mulR |
|
- commg_subl |
|
- commg_subI |
|
- three_subgroup |
|
- der1_joing_cycles |
|
- derG1P |
|
- conjg_Rmul |
|
- path: mathcomp/ssreflect/finfun.v |
|
theorems: |
|
- card_pfamily |
|
- tnth_fgraph |
|
- ffunK |
|
- card_ffun |
|
- ffunE |
|
- eq_dffun |
|
- supportP |
|
- FinfunK |
|
- tuple_of_finfunK |
|
- nth_fgraph_ord |
|
- tfgraph_inj |
|
- ffunP |
|
- codom_ffun |
|
- fgraphK |
|
- tagged_tfgraph |
|
- fgraph_codom |
|
- familyP |
|
- pffun_onP |
|
- card_dep_ffun |
|
- finfun_of_tupleK |
|
- pfamilyP |
|
- ffun_onP |
|
- card_ffun_on |
|
- card_family |
|
- card_pffun_on |
|
- eq_ffun |
|
- codom_tffun |
|
- fgraph_ffun0 |
|
- tfgraphK |
|
- ffun0 |
|
- path: mathcomp/ssreflect/ssrfun.v |
|
theorems: |
|
- eq_omap |
|
- inj_omap |
|
- omapK |
|
- omap_id |
|
- path: mathcomp/ssreflect/choice.v |
|
theorems: |
|
- chooseP |
|
- pair_of_tagK |
|
- ltn_code |
|
- seq_of_optK |
|
- nat_pickleK |
|
- gtn_decode |
|
- codeK |
|
- bool_of_unitK |
|
- pickle_invK |
|
- xchooseP |
|
- pickleK_inv |
|
- sigW |
|
- eq_xchoose |
|
- pickle_seqK |
|
- sig_eqW |
|
- PCanHasChoice |
|
- nat_hasChoice |
|
- opair_of_sumK |
|
- codeK |
|
- eq_choose |
|
- tag_of_pairK |
|
- sig2_eqW |
|
- decodeK |
|
- pcan_pickleK |
|
- xchoose_subproof |
|
- path: mathcomp/algebra/polyXY.v |
|
theorems: |
|
- map_div_annihilantP |
|
- swapXYK |
|
- swapXY_is_multiplicative |
|
- size_poly_XaY |
|
- max_size_lead_coefXY |
|
- swapXY_comp_poly |
|
- horner_polyC |
|
- swapXY_poly_XaY |
|
- swapXY_map |
|
- horner_poly_XaY |
|
- max_size_evalC |
|
- div_annihilant_in_ideal |
|
- lead_coef_poly_XaY |
|
- sizeY_mulX |
|
- poly_XaY_eq0 |
|
- swapXY_key |
|
- root_annihilant |
|
- max_size_evalX |
|
- poly_XmY0 |
|
- coef_swapXY |
|
- swapXY_map_polyC |
|
- swapXY_polyC |
|
- horner2_swapXY |
|
- swapXY_eq0 |
|
- sizeY_eq0 |
|
- algebraic_root_polyXY |
|
- horner_swapXY |
|
- div_annihilant_neq0 |
|
- size_poly_XmY |
|
- swapXY_Y |
|
- swapXY_poly_XmY |
|
- map_sub_annihilantP |
|
- poly_XmY_eq0 |
|
- horner_poly_XmY |
|
- sub_annihilant_neq0 |
|
- div_annihilantP |
|
- sub_annihilantP |
|
- swapXY_is_additive |
|
- sub_annihilant_in_ideal |
|
- path: mathcomp/algebra/ring_quotient.v |
|
theorems: |
|
- rquot_IdomainAxiom |
|
- nonzero1q |
|
- idealMr |
|
- mulqC |
|
- idealr_closed_nontrivial |
|
- idealr1 |
|
- pi_is_multiplicative |
|
- idealrDE |
|
- addqC |
|
- addNq |
|
- idealr_closedB |
|
- pi_is_additive |
|
- pi_opp |
|
- addqA |
|
- mul1q |
|
- idealrBE |
|
- equivE |
|
- pi_mul |
|
- idealr0 |
|
- mulq_addl |
|
- add0q |
|
- pi_add |
|
- path: mathcomp/solvable/hall.v |
|
theorems: |
|
- strongest_coprime_quotient_cent |
|
- coprime_Hall_trans |
|
- ext_coprime_quotient_cent |
|
- quotient_TI_subcent |
|
- coprime_cent_mulG |
|
- Hall_exists_subJ |
|
- SchurZassenhaus_trans_actsol |
|
- Hall_superset |
|
- sol_coprime_Sylow_subset |
|
- external_action_im_coprime |
|
- ext_norm_conj_cent |
|
- Hall_subJ |
|
- SchurZassenhaus_split |
|
- Hall_exists |
|
- coprime_norm_cent |
|
- ext_coprime_Hall_exists |
|
- coprime_Hall_subset |
|
- Hall_Frattini_arg |
|
- sol_coprime_Sylow_trans |
|
- norm_conj_cent |
|
- coprime_norm_quotient_cent |
|
- sol_coprime_Sylow_exists |
|
- SchurZassenhaus_trans_sol |
|
- ext_coprime_Hall_subset |
|
- Hall_trans |
|
- ext_coprime_Hall_trans |
|
- coprime_Hall_exists |
|
- path: mathcomp/ssreflect/ssrAC.v |
|
theorems: |
|
- serial_Op |
|
- set_pos_trecE |
|
- cforallP |
|
- pos_set_pos |
|
- proof |
|
- path: mathcomp/field/cyclotomic.v |
|
theorems: |
|
- prod_cyclotomic |
|
- size_cyclotomic |
|
- Cintr_Cyclotomic |
|
- root_cyclotomic |
|
- Cyclotomic_monic |
|
- C_prim_root_exists |
|
- minCpoly_cyclotomic |
|
- prod_Cyclotomic |
|
- cyclotomic_monic |
|
- separable_Xn_sub_1 |
|
- size_Cyclotomic |
|
- Cyclotomic0 |
|
- path: mathcomp/solvable/primitive_action.v |
|
theorems: |
|
- n_act0 |
|
- stab_ntransitive |
|
- dtuple_on_add_D1 |
|
- ntransitive_weak |
|
- ntransitive1 |
|
- n_act_add |
|
- ntransitive_primitive |
|
- trans_prim_astab |
|
- ntransitive0 |
|
- n_act_dtuple |
|
- dtuple_on_add |
|
- stab_ntransitiveI |
|
- prim_trans_norm |
|
- dtuple_on_subset |
|
- dtuple_onP |
|
- card_uniq_tuple |
|
- path: mathcomp/ssreflect/ssrbool.v |
|
theorems: |
|
- if_add |
|
- classic_ex |
|
- classic_sigW |
|
- if_or |
|
- if_implybC |
|
- if_and |
|
- relpre_trans |
|
- homo_mono1 |
|
- path: mathcomp/field/algebraics_fundamentals.v |
|
theorems: |
|
- rat_algebraic_archimedean |
|
- minPoly_decidable_closure |
|
- rat_algebraic_decidable |
|
- Fundamental_Theorem_of_Algebraics |
|
- alg_integral |
|
|