--- dataset_info: features: - name: doi/arxiv_id dtype: string - name: title dtype: string - name: paper_category dtype: string - name: error_category dtype: string - name: error_location dtype: string - name: error_severity dtype: string - name: error_annotation dtype: string - name: paper_content list: - name: image_url struct: - name: url dtype: string - name: text dtype: string - name: type dtype: string - name: error_local_content list: - name: image_url struct: - name: url dtype: string - name: text dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 58231756 num_examples: 68 download_size: 55816319 dataset_size: 58231756 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 language: - en size_categories: - n<1K --- --- # SPOT > Preprocessed Contents of **Scientific Paper ErrOr DeTection** (SPOT) > *SPOT contains 83 papers and 91 human-validated errors to test academic verification capabilities.* > *This repo contains preprocessed contents of 62 manuscripts with share-permissive licenses.* ## 📖 Overview This repository holds the **full paper files** (parsed Markdown, and base64 encodings of extracted figures) for the subset of SPOT manuscripts that are openly licensed. Combined with the annotations in [SPOT-MetaData](https://github.com//SPOT-MetaData), you can run end-to-end evaluations of LLMs on multi-modal academic error detection. > **Benchmark at a glance** > > * **83** published manuscripts > * **91** confirmed errors (errata or retractions) > * **10** scientific domains (Math, Physics, Biology, …) > * **6** error types (Equation/Proof, Fig-duplication, Data inconsistency, …) > * Average paper length: \~12 000 tokens & 18 figures > **Included** > - **62** open-access papers (CC-BY or equivalent) > - High-fidelity **Markdown** conversions of each PDF > - **base64 encoding** of every figure, table, and equation > - All in **openai api** format. > **Excluded** > - Paywalled or proprietary manuscripts (cannot be redistributed) ## 📋 Column Descriptions Each row in `annotations/errors.csv` contains the following fields: * **`doi/arxiv_id`**: The paper’s DOI (journal) or arXiv identifier. * **`title`**: Full title of the manuscript. * **`paper_category`**: Scientific domain of the paper, one of: Mathematics, Physics, Biology, Chemistry, Materials Science, Medicine, Environmental Science, Engineering, Computer Science, Multidisciplinary. * **`error_category`**: Type of error, one of: * `Equation/Proof` * `Figure duplication` * `Data inconsistency` * `Experiment setup` * `Reagent identity` * `Statistical reporting` * **`error_location`**: Where the error appears (e.g., Figure 2, Equation (5), Section 3.1, Table 4). * **`error_severity`**: Indicates whether the issue led to an `Erratum` correction or a `Retraction`. * **`error_annotation`**: Written summary describing the error. * **`paper_content`**: Processed content of the full paper (text in markdown, images in base64 encodings). * **`error_local_content`**: Extracted snippet around the error—paragraph, caption, or equation block used in experiments in Appendix B.1. ## 📜 License & Copyright > SPOT code: CC-BY-4.0 > Individual papers & Processed Contents: distributed under their original licenses.