File size: 9,260 Bytes
fdf0449
 
 
 
 
 
 
 
9c8054a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf0449
 
 
48d91cc
fdf0449
48d91cc
fdf0449
48d91cc
fdf0449
48d91cc
 
 
 
 
fdf0449
 
 
48d91cc
fdf0449
48d91cc
fdf0449
 
 
48d91cc
fdf0449
67fe087
fdf0449
 
 
 
 
48d91cc
fdf0449
48d91cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf0449
 
 
48d91cc
fdf0449
 
48d91cc
fdf0449
48d91cc
 
fdf0449
 
 
 
 
 
 
 
 
48d91cc
fdf0449
48d91cc
 
 
 
 
fdf0449
48d91cc
 
 
 
 
fdf0449
48d91cc
 
 
 
 
 
 
 
fdf0449
48d91cc
fdf0449
 
 
 
 
 
 
48d91cc
 
 
fdf0449
48d91cc
 
 
 
 
 
 
 
 
 
 
fdf0449
48d91cc
 
 
 
 
 
 
 
fdf0449
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
---
tags:
- computer-vision
- audio
- keypoint-detection
- animal-behavior
- multi-modal
- jsonl
dataset_info:
  features:
  - name: bird_id
    dtype: string
  - name: back_bbox_2d
    sequence: float64
  - name: back_keypoints_2d
    sequence: float64
  - name: back_view_boundary
    sequence: int64
  - name: bird_name
    dtype: string
  - name: video_name
    dtype: string
  - name: frame_name
    dtype: string
  - name: frame_path
    dtype: image
  - name: keypoints_3d
    sequence:
      sequence: float64
  - name: radio_path
    dtype: binary
  - name: reprojection_error
    sequence: float64
  - name: side_bbox_2d
    sequence: float64
  - name: side_keypoints_2d
    sequence: float64
  - name: side_view_boundary
    sequence: int64
  - name: backpack_color
    dtype: string
  - name: experiment_id
    dtype: string
  - name: split
    dtype: string
  - name: top_bbox_2d
    sequence: float64
  - name: top_keypoints_2d
    sequence: float64
  - name: top_view_boundary
    sequence: int64
  - name: video_path
    dtype: video
  - name: acc_ch_map
    struct:
    - name: '0'
      dtype: string
    - name: '1'
      dtype: string
    - name: '2'
      dtype: string
    - name: '3'
      dtype: string
    - name: '4'
      dtype: string
    - name: '5'
      dtype: string
    - name: '6'
      dtype: string
    - name: '7'
      dtype: string
  - name: acc_sr
    dtype: float64
  - name: has_overlap
    dtype: bool
  - name: mic_ch_map
    struct:
    - name: '0'
      dtype: string
    - name: '1'
      dtype: string
    - name: '2'
      dtype: string
    - name: '3'
      dtype: string
    - name: '4'
      dtype: string
    - name: '5'
      dtype: string
    - name: '6'
      dtype: string
  - name: mic_sr
    dtype: float64
  - name: acc_path
    dtype: audio
  - name: mic_path
    dtype: audio
  - name: vocalization
    list:
    - name: overlap_type
      dtype: string
    - name: has_bird
      dtype: bool
    - name: 2ddistance
      dtype: bool
    - name: small_2ddistance
      dtype: float64
    - name: voc_metadata
      sequence: float64
  splits:
  - name: train
    num_bytes: 74517864701.0153
    num_examples: 6804
  - name: val
    num_bytes: 32619282428.19056
    num_examples: 2916
  - name: test
    num_bytes: 38018415640.55813
    num_examples: 3431
  download_size: 35456328366
  dataset_size: 145155562769.764
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: val
    path: data/val-*
  - split: test
    path: data/test-*
---


# Bird3M Dataset

## Dataset Description

**Bird3M** is the first synchronized, multi-modal, multi-individual dataset designed for comprehensive behavioral analysis of freely interacting birds, specifically zebra finches, in naturalistic settings. It addresses the critical need for benchmark datasets that integrate precisely synchronized multi-modal recordings to support tasks such as 3D pose estimation, multi-animal tracking, sound source localization, and vocalization attribution. The dataset facilitates research in machine learning, neuroscience, and ethology by enabling the development of robust, unified models for long-term tracking and interpretation of complex social behaviors.

### Purpose
Bird3M bridges the gap in publicly available datasets for multi-modal animal behavior analysis by providing:
1. A benchmark for unified machine learning models tackling multiple behavioral tasks.
2. A platform for exploring efficient multi-modal information fusion.
3. A resource for ethological studies linking movement, vocalization, and social context to uncover neural and evolutionary mechanisms.

## Dataset Structure

The dataset is organized into three splits: `train`, `val`, and `test`, each as a Hugging Face `Dataset` object. Each row corresponds to a single bird instance in a video frame, with associated multi-modal data.

### Accessing Splits
```python
from datasets import load_dataset

dataset = load_dataset("anonymous-submission000/bird3m")
train_dataset = dataset["train"]
val_dataset = dataset["val"]
test_dataset = dataset["test"]
```

## Dataset Fields

Each example includes the following fields:

- **`bird_id`** (`string`): Unique identifier for the bird instance (e.g., "bird_1").
- **`back_bbox_2d`** (`Sequence[float64]`): 2D bounding box for the back view, format `[x_min, y_min, x_max, y_max]`.
- **`back_keypoints_2d`** (`Sequence[float64]`): 2D keypoints for the back view, format `[x1, y1, v1, x2, y2, v2, ...]`, where `v` is visibility (0: not labeled, 1: labeled but invisible, 2: visible).
- **`back_view_boundary`** (`Sequence[int64]`): Back view boundary, format `[x, y, width, height]`.
- **`bird_name`** (`string`): Biological identifier (e.g., "b13k20_f").
- **`video_name`** (`string`): Video file identifier (e.g., "BP_2020-10-13_19-44-38_564726_0240000").
- **`frame_name`** (`string`): Frame filename (e.g., "img00961.png").
- **`frame_path`** (`Image`): Path to the frame image (`.png`), loaded as a PIL Image.
- **`keypoints_3d`** (`Sequence[Sequence[float64]]`): 3D keypoints, format `[[x1, y1, z1], [x2, y2, z2], ...]`.
- **`radio_path`** (`binary`): Path to radio data (`.npz`), stored as binary.
- **`reprojection_error`** (`Sequence[float64]`): Reprojection errors for 3D keypoints.
- **`side_bbox_2d`** (`Sequence[float64]`): 2D bounding box for the side view.
- **`side_keypoints_2d`** (`Sequence[float64]`): 2D keypoints for the side view.
- **`side_view_boundary`** (`Sequence[int64]`): Side view boundary.
- **`backpack_color`** (`string`): Backpack tag color (e.g., "purple").
- **`experiment_id`** (`string`): Experiment identifier (e.g., "CopExpBP03").
- **`split`** (`string`): Dataset split ("train", "val", "test").
- **`top_bbox_2d`** (`Sequence[float64]`): 2D bounding box for the top view.
- **`top_keypoints_2d`** (`Sequence[float64]`): 2D keypoints for the top view.
- **`top_view_boundary`** (`Sequence[int64]`): Top view boundary.
- **`video_path`** (`Video`): Path to the video clip (`.mp4`), loaded as a Video object.
- **`acc_ch_map`** (`struct`): Maps accelerometer channels to bird identifiers.
- **`acc_sr`** (`float64`): Accelerometer sampling rate (Hz).
- **`has_overlap`** (`bool`): Indicates if accelerometer events overlap with vocalizations.
- **`mic_ch_map`** (`struct`): Maps microphone channels to descriptions.
- **`mic_sr`** (`float64`): Microphone sampling rate (Hz).
- **`acc_path`** (`Audio`): Path to accelerometer audio (`.wav`), loaded as an Audio signal.
- **`mic_path`** (`Audio`): Path to microphone audio (`.wav`), loaded as an Audio signal.
- **`vocalization`** (`list[struct]`): Vocalization events, each with:
  - `overlap_type` (`string`): Overlap/attribution confidence.
  - `has_bird` (`bool`): Indicates if attributed to a bird.
  - `2ddistance` (`bool`): Indicates if 2D keypoint distance is <20px.
  - `small_2ddistance` (`float64`): Minimum 2D keypoint distance (px).
  - `voc_metadata` (`Sequence[float64]`): Onset/offset times `[onset_sec, offset_sec]`.

## How to Use

### Loading and Accessing Data
```python
from datasets import load_dataset
import numpy as np

# Load dataset
dataset = load_dataset("anonymous-submission000/bird3m")
train_data = dataset["train"]

# Access an example
example = train_data[0]

# Access fields
bird_id = example["bird_id"]
keypoints_3d = example["keypoints_3d"]
top_bbox = example["top_bbox_2d"]
vocalizations = example["vocalization"]

# Load multimedia
image = example["frame_path"]  # PIL Image
video = example["video_path"]  # Video object
mic_audio = example["mic_path"]  # Audio signal
acc_audio = example["acc_path"]  # Audio signal

# Access audio arrays
mic_array = mic_audio["array"]
mic_sr = mic_audio["sampling_rate"]
acc_array = acc_audio["array"]
acc_sr = acc_audio["sampling_rate"]

# Load radio data
radio_bytes = example["radio_path"]
try:
    from io import BytesIO
    radio_data = np.load(BytesIO(radio_bytes))
    print("Radio data keys:", list(radio_data.keys()))
except Exception as e:
    print(f"Could not load radio data: {e}")

# Print example info
print(f"Bird ID: {bird_id}")
print(f"Number of 3D keypoints: {len(keypoints_3d)}")
print(f"Top Bounding Box: {top_bbox}")
print(f"Number of vocalization events: {len(vocalizations)}")

if vocalizations:
    first_vocal = vocalizations[0]
    print(f"First vocal event metadata: {first_vocal['voc_metadata']}")
    print(f"First vocal event overlap type: {first_vocal['overlap_type']}")
```

### Example: Extracting Vocalization Audio Clip
```python
if vocalizations and mic_sr:
    onset, offset = vocalizations[0]["voc_metadata"]
    onset_sample = int(onset * mic_sr)
    offset_sample = int(offset * mic_sr)
    vocal_audio_clip = mic_array[onset_sample:offset_sample]
    print(f"Duration of first vocal clip: {offset - onset:.3f} seconds")
    print(f"Shape of first vocal audio clip: {vocal_audio_clip.shape}")
```
**Code Availability**: Baseline code is available at [https://github.com/anonymoussubmission0000/bird3m](https://github.com/anonymoussubmission0000/bird3m).

## Citation
```bibtex
@article{2025bird3m,
  title={Bird3M: A Multi-Modal Dataset for Social Behavior Analysis Tool Building},
  author={tbd},
  journal={arXiv preprint arXiv:XXXX.XXXXX},
  year={2025}
}
```