# -*- coding: utf-8 -*- """tonal.159 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1d2iQuX1rG4rDuN_HjwOCnEStQRLaq-0V """ import numpy as np import pandas as pd import os import seaborn as sns import matplotlib.pyplot as plt import plotly.express as px import pandas as pd import missingno as msno import warnings warnings.filterwarnings('ignore') df = pd.read_csv("/content/ecommerce_sales_analysis.csv") df.head() df.tail() df.shape df.info() df.describe().T df.describe().T.plot(kind='bar') df.isnull().sum() sns.heatmap(df.isnull()) df.duplicated().sum() numeric_df = df.select_dtypes(include=['number']) plt.figure(figsize=(12, 6)) sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm') plt.title('Correlation Heatmap') plt.show() df.columns.to_list() import plotly.express as px columns = ['product_id', 'product_name', 'category', 'price', 'review_score', 'review_count', 'sales_month_1', 'sales_month_2', 'sales_month_3', 'sales_month_4', 'sales_month_5', 'sales_month_6', 'sales_month_7', 'sales_month_8', 'sales_month_9', 'sales_month_10', 'sales_month_11', 'sales_month_12',] for column in columns: if df[column].dtype == 'object' or df[column].dtype == 'category': column_counts = df[column].value_counts().reset_index() column_counts.columns = [column, 'count'] fig = px.bar( column_counts, x=column, y='count', title=f'Distribution of {column}', labels={column: column, 'count': 'Count'}, text='count' ) fig.update_layout( xaxis_title=column, yaxis_title='Count', paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', title_font=dict(size=18, family="Arial"), xaxis={'categoryorder':'total descending'} ) fig.show() elif df[column].dtype == 'int64' or df[column].dtype == 'float64': fig = px.histogram( df, x=column, title=f'Distribution of {column}', labels={column: column, 'count': 'Count'}, ) fig.update_layout( xaxis_title=column, yaxis_title='Count', paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', title_font=dict(size=18, family="Arial") ) fig.show() df import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS from collections import Counter import pandas as pd stop_words_list = set(STOPWORDS) counts = Counter(df["category"].dropna().apply(lambda x: str(x))) wcc = WordCloud( background_color="black", width=1600, height=800, max_words=2000, stopwords=stop_words_list ) wcc.generate_from_frequencies(counts) plt.figure(figsize=(10, 5), facecolor='k') plt.imshow(wcc, interpolation='bilinear') plt.axis("off") plt.tight_layout(pad=0) plt.show()