peacock-data-public-datasets-idc-14.backup.output
/
lm-evaluation-harness
/build
/lib
/lm_eval
/evaluator.py
import itertools | |
import logging | |
import random | |
import time | |
from collections import defaultdict | |
from typing import TYPE_CHECKING, List, Optional, Union | |
import numpy as np | |
import torch | |
import lm_eval.api.metrics | |
import lm_eval.api.registry | |
import lm_eval.models | |
from lm_eval.caching.cache import delete_cache | |
from lm_eval.evaluator_utils import ( | |
consolidate_results, | |
get_sample_size, | |
get_task_list, | |
prepare_print_tasks, | |
print_writeout, | |
run_task_tests, | |
) | |
from lm_eval.logging_utils import add_env_info, get_git_commit_hash | |
from lm_eval.tasks import TaskManager, get_task_dict | |
from lm_eval.utils import eval_logger, positional_deprecated, simple_parse_args_string | |
if TYPE_CHECKING: | |
from lm_eval.api.model import LM | |
from lm_eval.tasks import Task | |
def simple_evaluate( | |
model, | |
model_args: Optional[Union[str, dict]] = None, | |
tasks: Optional[List[Union[str, dict, object]]] = None, | |
num_fewshot: Optional[int] = None, | |
batch_size: Optional[int] = None, | |
max_batch_size: Optional[int] = None, | |
device: Optional[str] = None, | |
use_cache: Optional[str] = None, | |
cache_requests: bool = False, | |
rewrite_requests_cache: bool = False, | |
delete_requests_cache: bool = False, | |
limit: Optional[Union[int, float]] = None, | |
bootstrap_iters: int = 100000, | |
check_integrity: bool = False, | |
write_out: bool = False, | |
log_samples: bool = True, | |
gen_kwargs: Optional[str] = None, | |
task_manager: Optional[TaskManager] = None, | |
verbosity: str = "INFO", | |
predict_only: bool = False, | |
random_seed: int = 0, | |
numpy_random_seed: int = 1234, | |
torch_random_seed: int = 1234, | |
): | |
"""Instantiate and evaluate a model on a list of tasks. | |
:param model: Union[str, LM] | |
Name of model or LM object, see lm_eval.models.get_model | |
:param model_args: Optional[str, dict] | |
String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object. | |
Ignored if `model` argument is a LM object. | |
:param tasks: list[Union[str, dict, Task]] | |
List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise. | |
:param num_fewshot: int | |
Number of examples in few-shot context | |
:param batch_size: int or str, optional | |
Batch size for model | |
:param max_batch_size: int, optional | |
Maximal batch size to try with automatic batch size detection | |
:param device: str, optional | |
PyTorch device (e.g. "cpu" or "cuda:0") for running models | |
:param use_cache: str, optional | |
A path to a sqlite db file for caching model responses. `None` if not caching. | |
:param cache_requests: bool, optional | |
Speed up evaluation by caching the building of dataset requests. `None` if not caching. | |
:param rewrite_requests_cache: bool, optional | |
Rewrites all of the request cache if set to `True`. `None` if not desired. | |
:param delete_requests_cache: bool, optional | |
Deletes all of the request cache if set to `True`. `None` if not desired. | |
:param limit: int or float, optional | |
Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples. | |
:param bootstrap_iters: | |
Number of iterations for bootstrap statistics | |
:param check_integrity: bool | |
Whether to run the relevant part of the test suite for the tasks | |
:param write_out: bool | |
If True, write out an example document and model input for checking task integrity | |
:param log_samples: bool | |
If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis | |
:param gen_kwargs: str | |
String arguments for model generation | |
Ignored for all tasks with loglikelihood output_type | |
:param predict_only: bool | |
If true only model outputs will be generated and returned. Metrics will not be evaluated | |
:param random_seed: int | |
Random seed for python's random module. If set to None, the seed will not be set. | |
:param numpy_random_seed: int | |
Random seed for numpy. If set to None, the seed will not be set. | |
:param torch_random_seed: int | |
Random seed for torch. If set to None, the seed will not be set. | |
:return | |
Dictionary of results | |
""" | |
eval_logger.setLevel(getattr(logging, f"{verbosity}")) | |
start_date = time.time() | |
if delete_requests_cache: | |
eval_logger.info("Deleting requests cache...") | |
delete_cache() | |
seed_message = [] | |
if random_seed is not None: | |
# See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412 | |
seed_message.append(f"Setting random seed to {random_seed}") | |
random.seed(random_seed) | |
if numpy_random_seed is not None: | |
seed_message.append(f"Setting numpy seed to {numpy_random_seed}") | |
np.random.seed(numpy_random_seed) | |
if torch_random_seed is not None: | |
seed_message.append(f"Setting torch manual seed to {torch_random_seed}") | |
torch.manual_seed(torch_random_seed) | |
if seed_message: | |
eval_logger.info(" | ".join(seed_message)) | |
if tasks is None: | |
tasks = [] | |
if len(tasks) == 0: | |
raise ValueError( | |
"No tasks specified, or no tasks found. Please verify the task names." | |
) | |
if gen_kwargs is not None: | |
gen_kwargs = simple_parse_args_string(gen_kwargs) | |
eval_logger.warning( | |
"generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. " | |
"Ensure 'do_sample=True' for non-greedy decoding!" | |
) | |
if gen_kwargs == "": | |
gen_kwargs = None | |
if isinstance(model, str): | |
if model_args is None: | |
eval_logger.warning("model_args not specified. Using defaults.") | |
model_args = "" | |
if "pretrained" not in model_args and model in [ | |
"hf-auto", | |
"hf", | |
"huggingface", | |
"vllm", | |
]: | |
eval_logger.warning( | |
"pretrained not specified. Using default pretrained=gpt2." | |
) | |
if isinstance(model_args, dict): | |
eval_logger.info( | |
f"Initializing {model} model, with arguments: {model_args}" | |
) | |
lm = lm_eval.api.registry.get_model(model).create_from_arg_obj( | |
model_args, | |
{ | |
"batch_size": batch_size, | |
"max_batch_size": max_batch_size, | |
"device": device, | |
}, | |
) | |
else: | |
eval_logger.info( | |
f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}" | |
) | |
lm = lm_eval.api.registry.get_model(model).create_from_arg_string( | |
model_args, | |
{ | |
"batch_size": batch_size, | |
"max_batch_size": max_batch_size, | |
"device": device, | |
}, | |
) | |
else: | |
if not isinstance(model, lm_eval.api.model.LM): | |
raise TypeError | |
eval_logger.info("Using pre-initialized model") | |
lm = model | |
if use_cache is not None: | |
eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}") | |
lm = lm_eval.api.model.CachingLM( | |
lm, | |
use_cache | |
# each rank receives a different cache db. | |
# necessary to avoid multiple writes to cache at once | |
+ "_rank" | |
+ str(lm.rank) | |
+ ".db", | |
) | |
if task_manager is None: | |
task_manager = TaskManager(verbosity) | |
task_dict = get_task_dict(tasks, task_manager) | |
for task_name in task_dict.keys(): | |
task_obj = task_dict[task_name] | |
if isinstance(task_obj, tuple): | |
_, task_obj = task_obj | |
if task_obj is None: | |
continue | |
if task_obj.get_config("output_type") == "generate_until": | |
if gen_kwargs is not None: | |
task_obj.set_config( | |
key="generation_kwargs", value=gen_kwargs, update=True | |
) | |
if predict_only: | |
log_samples = True | |
eval_logger.info( | |
f"Processing {task_name} in output-only mode. Metrics will not be calculated!" | |
) | |
# we have to change the class properties post-hoc. This is pretty hacky. | |
task_obj.override_metric(metric_name="bypass") | |
# override tasks' fewshot values to the provided num_fewshot arg value | |
# except if tasks have it set to 0 manually in their configs--then we should never overwrite that | |
if num_fewshot is not None: | |
if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0: | |
eval_logger.info( | |
f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored." | |
) | |
else: | |
eval_logger.warning( | |
f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}" | |
) | |
task_obj.set_config(key="num_fewshot", value=num_fewshot) | |
else: | |
# if num_fewshot not provided, and the task does not define a default one, default to 0 | |
if (default_num_fewshot := task_obj.get_config("num_fewshot")) is None: | |
task_obj.set_config(key="num_fewshot", value=0) | |
if check_integrity: | |
run_task_tests(task_list=tasks) | |
results = evaluate( | |
lm=lm, | |
task_dict=task_dict, | |
limit=limit, | |
cache_requests=cache_requests, | |
rewrite_requests_cache=rewrite_requests_cache, | |
bootstrap_iters=bootstrap_iters, | |
write_out=write_out, | |
log_samples=log_samples, | |
verbosity=verbosity, | |
) | |
if lm.rank == 0: | |
if isinstance(model, str): | |
model_name = model | |
elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"): | |
model_name = model.config._name_or_path | |
else: | |
model_name = type(model).__name__ | |
# add info about the model and few shot config | |
results["config"] = { | |
"model": model_name, | |
"model_args": model_args, | |
"batch_size": batch_size, | |
"batch_sizes": ( | |
list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else [] | |
), | |
"device": device, | |
"use_cache": use_cache, | |
"limit": limit, | |
"bootstrap_iters": bootstrap_iters, | |
"gen_kwargs": gen_kwargs, | |
} | |
results["git_hash"] = get_git_commit_hash() | |
results["date"] = start_date | |
add_env_info(results) # additional environment info to results | |
return results | |
else: | |
return None | |
def evaluate( | |
lm: "LM", | |
task_dict, | |
limit: Optional[int] = None, | |
cache_requests: bool = False, | |
rewrite_requests_cache: bool = False, | |
bootstrap_iters: Optional[int] = 100000, | |
write_out: bool = False, | |
log_samples: bool = True, | |
verbosity: str = "INFO", | |
): | |
"""Instantiate and evaluate a model on a list of tasks. | |
:param lm: obj | |
Language Model | |
:param task_dict: dict[str, Task] | |
Dictionary of tasks. Tasks will be taken to have name type(task).config.task . | |
:param limit: int, optional | |
Limit the number of examples per task (only use this for testing) | |
:param bootstrap_iters: | |
Number of iterations for bootstrap statistics | |
:param write_out: bool | |
If True, write out an example document and model input for checking task integrity | |
:param log_samples: bool | |
If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis | |
:return | |
Dictionary of results | |
""" | |
eval_logger.setLevel(getattr(logging, f"{verbosity}")) | |
# tracks all Instances/requests a model must generate output on. | |
requests = defaultdict(list) | |
# stores the amount to pad out reqs per req. type so that | |
# number of fwd passes per distributed rank is equal | |
padding_requests = defaultdict(int) | |
# get lists of group hierarchy and each type of request | |
task_hierarchy, eval_tasks = get_task_list(task_dict) | |
if not log_samples: | |
if not all( | |
"bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys() | |
for task_output in eval_tasks | |
): | |
raise ValueError("log_samples must be True for 'bypass' metric-only tasks") | |
for task_output in eval_tasks: | |
task: Task = task_output.task | |
limit = get_sample_size(task, limit) | |
task.build_all_requests( | |
limit=limit, | |
rank=lm.rank, | |
world_size=lm.world_size, | |
cache_requests=cache_requests, | |
rewrite_requests_cache=rewrite_requests_cache, | |
) | |
eval_logger.debug( | |
f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}" | |
) | |
if write_out: | |
print_writeout(task) | |
# aggregate Instances by LM method requested to get output. | |
for instance in task.instances: | |
reqtype = instance.request_type | |
requests[reqtype].append(instance) | |
if lm.world_size > 1: | |
instances_rnk = torch.tensor(len(task._instances), device=lm.device) | |
gathered_item = ( | |
lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist() | |
) | |
# "multiple_choice" task types dispatch (several) "loglikelihood" request types | |
reqtype = ( | |
"loglikelihood" | |
if task.OUTPUT_TYPE == "multiple_choice" | |
else task.OUTPUT_TYPE | |
) | |
# compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks) | |
numpad = max(gathered_item) - gathered_item[lm.rank] | |
# todo: may not account for padding in cases like SquadV2 which has multiple req types | |
padding_requests[reqtype] += numpad | |
### Run LM on inputs, get all outputs ### | |
# execute each type of request | |
for reqtype, reqs in requests.items(): | |
eval_logger.info(f"Running {reqtype} requests") | |
# create `K` copies of each request `req` based off `K = req.repeats` | |
cloned_reqs = [] | |
for req in reqs: | |
cloned_reqs.extend([req] * req.repeats) | |
if (lm.world_size > 1) and (padding_requests[reqtype] > 0): | |
for _ in range(padding_requests[reqtype]): | |
cloned_reqs.extend([req] * req.repeats) | |
# run requests through model | |
resps = getattr(lm, reqtype)(cloned_reqs) | |
# put responses from model into a list of length K for each request. | |
for x, req in zip(resps, cloned_reqs): | |
req.resps.append(x) | |
if lm.world_size > 1: | |
lm.accelerator.wait_for_everyone() | |
RANK = lm.rank | |
WORLD_SIZE = lm.world_size | |
### Postprocess outputs ### | |
# TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately) | |
for task_output in eval_tasks: | |
task = task_output.task | |
task.apply_filters() | |
### Collect values of metrics on all datapoints ### | |
# # unpack results and sort back in order and return control to Task | |
# TODO: make it possible to use a different metric per filter | |
# Pre-process task.instances to group by doc_id | |
instances_by_doc_id = defaultdict(list) | |
for instance in task.instances: | |
instances_by_doc_id[instance.doc_id].append(instance) | |
# Sort instances within each group | |
for instances in instances_by_doc_id.values(): | |
instances.sort(key=lambda x: x.idx) | |
# iterate over different filters used | |
for filter_key in task.instances[0].filtered_resps.keys(): | |
doc_iterator = task.doc_iterator( | |
rank=RANK, limit=limit, world_size=WORLD_SIZE | |
) | |
for doc_id, doc in doc_iterator: | |
requests = instances_by_doc_id[doc_id] | |
metrics = task.process_results( | |
doc, [req.filtered_resps[filter_key] for req in requests] | |
) | |
if log_samples: | |
target = task.doc_to_target(doc) | |
example = { | |
"doc_id": doc_id, | |
"doc": doc, | |
"target": target, | |
"arguments": [req.args for req in requests], | |
"resps": [req.resps for req in requests], | |
"filtered_resps": [ | |
req.filtered_resps[filter_key] for req in requests | |
], | |
} | |
example.update(metrics) | |
task_output.logged_samples.append(example) | |
for metric, value in metrics.items(): | |
task_output.sample_metrics[(metric, filter_key)].append(value) | |
if WORLD_SIZE > 1: | |
# if multigpu, then gather data across all ranks to rank 0 | |
# first gather logged samples across all ranks | |
for task_output in eval_tasks: | |
if log_samples: | |
# for task_name, task_samples in list(samples.items()): | |
full_samples = [None] * WORLD_SIZE | |
torch.distributed.all_gather_object( | |
obj=task_output.logged_samples, | |
object_list=full_samples, | |
) | |
if RANK == 0: | |
task_output.logged_samples = list( | |
itertools.chain.from_iterable(full_samples) | |
) | |
# then collect metrics across all ranks | |
for metrics in task_output.sample_metrics: | |
metric_list = [None] * WORLD_SIZE | |
torch.distributed.all_gather_object( | |
obj=task_output.sample_metrics[metrics], | |
object_list=metric_list, | |
) | |
if RANK == 0: | |
task_output.sample_metrics[metrics] = list( | |
itertools.chain.from_iterable(metric_list) | |
) | |
if RANK == 0: | |
### Aggregate results over all datapoints ### | |
# aggregate results ; run bootstrap CIs | |
for task_output in eval_tasks: | |
task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters) | |
results, samples, configs, versions, num_fewshot = consolidate_results( | |
eval_tasks | |
) | |
### Calculate group metrics ### | |
if bool(results): | |
for group, task_list in reversed(task_hierarchy.items()): | |
if len(task_list) == 0: | |
# task_hierarchy entries are either | |
# `group_name: [subtask1, subtask2, ...]` | |
# or `task_name: []`. | |
# we only want to operate on groups here. | |
continue | |
metric_list = list( | |
{ | |
key | |
for task in task_list | |
for key in results[task].keys() | |
if "_stderr" not in key and key not in ["alias", "samples"] | |
} | |
) | |
for metric in metric_list: | |
stderr = "_stderr,".join(metric.split(",")) | |
# gather metrics, sizes, and stderrs from subtasks | |
metrics = [ | |
results[task][metric] | |
for task in task_list | |
if metric in results[task] | |
] # TODO: copy? | |
stderrs = [ | |
results[task][stderr] | |
for task in task_list | |
if stderr in results[task] | |
] | |
sizes = [ | |
results[task]["samples"] | |
for task in task_list | |
if metric in results[task] | |
] | |
# compute group's pooled metric and stderr | |
results[group][ | |
metric | |
] = lm_eval.api.metrics.aggregate_subtask_metrics(metrics, sizes) | |
# TODO: calculate grouped metric using aggregation fn | |
if "N/A" in stderrs: | |
results[group][stderr] = "N/A" | |
else: | |
results[group][ | |
stderr | |
] = lm_eval.api.metrics.pooled_sample_stderr(stderrs, sizes) | |
# TODO: allow GroupConfigs to choose which variance formula is used, for back-compatibility | |
# To use the old (likely incorrect) variance formula, comment out the above and uncomment this line: | |
# results[group][stderr] = lm_eval.api.metrics.combined_sample_stderr(stderrs, sizes, metrics=metrics) | |
results[group]["samples"] = sum(sizes) | |
results_agg = defaultdict(dict) | |
groups_agg = defaultdict(dict) | |
all_tasks_list = list(task_hierarchy.keys()) | |
while True: | |
add_tasks_list = list(k for k in results_agg.keys()) | |
left_tasks_list = sorted(list(set(all_tasks_list) - set(add_tasks_list))) | |
if len(left_tasks_list) == 0: | |
break | |
_task_hierarchy = { | |
k: v for k, v in task_hierarchy.items() if k in left_tasks_list | |
} | |
_results_agg, _groups_agg = prepare_print_tasks(_task_hierarchy, results) | |
results_agg = {**results_agg, **_results_agg} | |
groups_agg = {**groups_agg, **_groups_agg} | |
for group_name, task_list in task_hierarchy.items(): | |
if task_list: | |
num_fewshot[group_name] = num_fewshot[ | |
task_list[0] | |
] # TODO: validate this | |
results_dict = { | |
"results": dict(results_agg.items()), | |
**({"groups": dict(groups_agg.items())} if bool(groups_agg) else {}), | |
"group_subtasks": dict(reversed(task_hierarchy.items())), | |
"configs": dict(sorted(configs.items())), | |
"versions": dict(sorted(versions.items())), | |
"n-shot": dict(sorted(num_fewshot.items())), | |
} | |
if log_samples: | |
results_dict["samples"] = dict(samples) | |
return results_dict | |
else: | |
return None | |
def request_caching_arg_to_dict(cache_requests: str) -> dict: | |
request_caching_args = { | |
"cache_requests": cache_requests in {"true", "refresh"}, | |
"rewrite_requests_cache": cache_requests == "refresh", | |
"delete_requests_cache": cache_requests == "delete", | |
} | |
return request_caching_args | |