peacock-data-public-datasets-idc-14.backup.output
/
lm-evaluation-harness
/build
/lib
/lm_eval
/evaluator_utils.py
import collections | |
import math | |
import pathlib | |
import sys | |
from typing import Dict, List, Optional, Tuple, Union | |
from lm_eval.api import metrics | |
from lm_eval.utils import eval_logger, positional_deprecated | |
class TaskOutput: | |
""" | |
Wrapper class for Task outputs.It contains various attributes and methods to manage and calculate metrics for the task. | |
Attributes: | |
task (object): The task object. | |
task_name (str): The name of the task. | |
task_config (dict): The configuration of the task. | |
version (str): The version of the task. | |
group_name (str): The name of the task group. | |
n_shot (int): The number of shots for the task. | |
task_alias (str): The alias of the task. | |
group_alias (str): The alias of the task group. | |
is_group (bool): Indicates if the task is a group. | |
logged_samples (list): The list of logged samples. | |
sample_len (int): The length of the samples. | |
sample_metrics (defaultdict): The dictionary of samples' metrics. | |
agg_metrics (defaultdict): The dictionary of aggregate metrics. | |
Methods: | |
from_taskdict(cls, task_name: str, task): | |
Creates a TaskOutput instance from a task dictionary. | |
calculate_aggregate_metric(bootstrap_iters=100000) -> None: | |
Calculates the aggregate metrics for the task. | |
""" | |
def __init__( | |
self, | |
task=None, | |
task_name=None, | |
task_config=None, | |
version=None, | |
group_name=None, | |
n_shot=None, | |
task_alias=None, | |
group_alias=None, | |
is_group=None, | |
): | |
self.task = task | |
self.task_config = task_config | |
self.task_name = task_name | |
self.group_name = group_name | |
self.version = version | |
self.n_shot = n_shot | |
self.task_alias = task_alias | |
self.group_alias = group_alias | |
self.is_group = is_group | |
self.logged_samples = [] | |
self.sample_len = None | |
self.sample_metrics = collections.defaultdict(list) | |
self.agg_metrics = collections.defaultdict(list) | |
def from_taskdict(cls, task_name: str, task): | |
if isinstance(task, tuple): | |
group_name, task = task | |
else: | |
group_name = None | |
if not task: | |
# these gets filtered out in get_task_list | |
# once they are added to group hierarchy | |
is_group = True | |
return cls( | |
task=task, task_name=task_name, is_group=is_group, group_name=group_name | |
) | |
version = task.VERSION | |
task_config = dict(task.dump_config()) | |
if (n_shot := task_config.get("num_fewshot")) == 0: | |
n_shot = task_config.get("metadata", {}).get("num_fewshot", 0) | |
task_alias = task_config.get("alias") | |
group_alias = task_config.get("group_alias") | |
return cls( | |
task=task, | |
task_name=task_name, | |
task_config=task_config, | |
group_name=group_name, | |
version=version, | |
n_shot=n_shot, | |
task_alias=task_alias, | |
group_alias=group_alias, | |
) | |
def calculate_aggregate_metric(self, bootstrap_iters=100000) -> None: | |
for (metric, filter_key), items in self.sample_metrics.items(): | |
agg_fn = self.task.aggregation()[metric] | |
metric_key = f"{metric},{filter_key}" | |
self.agg_metrics[metric_key] = agg_fn(items) | |
self.sample_len = len(items) # TODO: same sample size for each metric? | |
if bootstrap_iters: | |
stderr_fn = metrics.stderr_for_metric( | |
metric=agg_fn, | |
bootstrap_iters=min(bootstrap_iters, 100) | |
if metric in ["bleu", "chrf", "ter"] | |
else bootstrap_iters, | |
) | |
self.agg_metrics[f"{metric}_stderr,{filter_key}"] = ( | |
stderr_fn(items) if (stderr_fn and len(items) > 1) else "N/A" | |
) | |
def __repr__(self): | |
return ( | |
f"TaskOutput(task_name={self.task_name}, " | |
f"group_name={self.group_name}, " | |
f"version={self.version}," | |
f"n_shot={self.n_shot}" | |
f"task_alias={self.task_alias}, group_alias={self.group_alias})" | |
) | |
def get_task_list(task_dict: dict) -> Tuple[Dict[str, list], List[TaskOutput]]: | |
task_hierarchy = collections.defaultdict(list) | |
outputs = list(TaskOutput.from_taskdict(x, y) for x, y in task_dict.items()) | |
for task_output in outputs: | |
if group_name := task_output.group_name: | |
task_hierarchy[group_name].append(task_output.task_name) | |
else: | |
task_hierarchy[task_output.task_name] = [] | |
# returns task_hierarchy tracking which groups contain which subtasks, | |
# and a list of TaskOutput classes for each non-group subtask | |
return task_hierarchy, [x for x in outputs if x.task] | |
def print_writeout(task) -> None: | |
for inst in task.instances: | |
# print the prompt for the first few documents | |
if inst.doc_id < 1: | |
eval_logger.info( | |
f"Task: {task}; document {inst.doc_id}; context prompt (starting on next line):\ | |
\n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)" | |
) | |
eval_logger.info(f"Request: {str(inst)}") | |
def get_sample_size(task, limit: Optional[int]) -> Union[int, None]: | |
if limit is not None: | |
limit = ( | |
int(math.ceil(len(task.eval_docs) * limit)) if limit < 1.0 else int(limit) | |
) | |
return limit | |
def prepare_print_tasks( | |
task_hierarchy: dict, results: dict, tab=0 | |
) -> Tuple[dict, dict]: | |
""" | |
@param task_hierarchy: Dictionary representing the group hierarchy of tasks. Each key is a group name and its | |
value is a list of task names. | |
@param results: Dictionary containing the results of each task. Each key is a | |
group name and its value is a dictionary of task results. | |
@param tab: The indentation level for printing the task | |
hierarchy. Default is 0. | |
@return: A tuple of two dictionaries: results_agg and groups_agg. results_agg contains | |
aggregated results for each task, and groups_agg contains aggregated results for each group. | |
Prepares the task hierarchy and aggregates the results for each task and group recursively for printing. | |
""" | |
results_agg = collections.defaultdict(dict) | |
groups_agg = collections.defaultdict(dict) | |
(group_name, task_list), *_ = task_hierarchy.items() | |
task_list = sorted(task_list) | |
results_agg[group_name] = results[group_name].copy() | |
# results_agg[group_name]["tab"] = tab | |
if "samples" in results_agg[group_name]: | |
results_agg[group_name].pop("samples") | |
tab_string = " " * tab + "- " if tab > 0 else "" | |
if "alias" in results_agg[group_name]: | |
results_agg[group_name]["alias"] = tab_string + results_agg[group_name]["alias"] | |
else: | |
results_agg[group_name]["alias"] = tab_string + group_name | |
if len(task_list) > 0: | |
groups_agg[group_name] = results[group_name].copy() | |
# groups_agg[group_name]["tab"] = tab | |
if "samples" in groups_agg[group_name]: | |
groups_agg[group_name].pop("samples") | |
if "alias" in groups_agg[group_name]: | |
groups_agg[group_name]["alias"] = ( | |
tab_string + groups_agg[group_name]["alias"] | |
) | |
else: | |
groups_agg[group_name]["alias"] = tab_string + group_name | |
for task_name in task_list: | |
if task_name in task_hierarchy: | |
_task_hierarchy = { | |
**{task_name: task_hierarchy[task_name]}, | |
**task_hierarchy, | |
} | |
else: | |
_task_hierarchy = { | |
**{task_name: []}, | |
**task_hierarchy, | |
} | |
_results_agg, _groups_agg = prepare_print_tasks( | |
_task_hierarchy, results, tab + 1 | |
) | |
results_agg = {**results_agg, **_results_agg} | |
groups_agg = {**groups_agg, **_groups_agg} | |
return results_agg, groups_agg | |
def consolidate_results( | |
eval_tasks: List[TaskOutput], | |
) -> Tuple[dict, dict, dict, dict, dict]: | |
""" | |
@param eval_tasks: list(TaskOutput). | |
@return: A tuple containing the consolidated results, samples, configs, versions, and num_fewshot. | |
Consolidates the results of multiple evaluation tasks into a single structure. | |
The method iterates over each evaluation instance and extracts relevant information to create the consolidated | |
results structure. The consolidated results structure has the following properties: | |
- results: A defaultdict with task names as keys and dictionaries as values. Each dictionary contains | |
metric/filter pairs as keys and corresponding metric values as values. The "alias" key is used to store task | |
aliases specified in the task configuration. | |
- samples: A defaultdict with task names as keys and lists of log samples as values. | |
- configs: A defaultdict with task names as keys and task configurations as values. | |
- versions: A defaultdict with task names as keys and task versions as values. | |
- num_fewshot: A defaultdict with task names as keys and number of few-shot samples as values. | |
The method then returns the consolidated results, samples, configs, versions, and num_fewshot as a tuple. | |
""" | |
# stores the final result for each task, for each metric/filter pair. | |
results = collections.defaultdict(dict) | |
# logs info about each document evaluated. | |
samples = collections.defaultdict(list) | |
# store num-fewshot value per task | |
num_fewshot = collections.defaultdict(int) | |
# Tracks the YAML configs of all chosen task | |
configs = collections.defaultdict(dict) | |
# Tracks each task's version. | |
versions = collections.defaultdict(dict) | |
for task_output in eval_tasks: | |
if "task_alias" in (task_config := task_output.task_config): | |
results[task_output.task_name]["alias"] = task_config["task_alias"] | |
if group_alias := task_output.group_alias: | |
if group_alias not in results and (group_name := task_output.group_name): | |
results[group_name]["alias"] = group_alias | |
num_fewshot[task_output.task_name] = task_output.n_shot | |
configs[task_output.task_name] = task_output.task_config | |
versions[task_output.task_name] = task_output.version | |
samples[task_output.task_name] = task_output.logged_samples | |
for (metric, filter_key), items in task_output.sample_metrics.items(): | |
metric_key = f"{metric},{filter_key}" | |
results[task_output.task_name][metric_key] = task_output.agg_metrics[ | |
metric_key | |
] | |
results[task_output.task_name]["samples"] = task_output.sample_len | |
results[task_output.task_name][ | |
f"{metric}_stderr,{filter_key}" | |
] = task_output.agg_metrics[f"{metric}_stderr,{filter_key}"] | |
return results, samples, configs, versions, num_fewshot | |
def find_test_root(start_path: pathlib.Path) -> pathlib.Path: | |
""" | |
Search upward in the directory tree to a maximum of three layers | |
to find and return the package root (containing the 'tests' folder) | |
""" | |
cur_path = start_path.resolve() | |
max_layers = 3 | |
for _ in range(max_layers): | |
if (cur_path / "tests" / "test_version_stable.py").exists(): | |
return cur_path | |
else: | |
cur_path = cur_path.parent.resolve() | |
raise FileNotFoundError( | |
f"Unable to find package root within {max_layers} upwards" + f"of {start_path}" | |
) | |
def run_task_tests(task_list: List[str]): | |
""" | |
Find the package root and run the tests for the given tasks | |
""" | |
import pytest | |
package_root = find_test_root(start_path=pathlib.Path(__file__)) | |
task_string = " or ".join(task_list) | |
args = [ | |
f"{package_root}/tests/test_version_stable.py", | |
f"--rootdir={package_root}", | |
"-k", | |
f"{task_string}", | |
] | |
sys.path.append(str(package_root)) | |
pytest_return_val = pytest.main(args) | |
if pytest_return_val: | |
raise ValueError( | |
f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}" | |
) | |