peacock-data-public-datasets-idc-14.backup.output
/
lm-evaluation-harness
/build
/lib
/lm_eval
/models
/mamba_lm.py
from typing import Optional, Union | |
import torch | |
import lm_eval.models.utils | |
from lm_eval.api.registry import register_model | |
from lm_eval.models.huggingface import HFLM | |
class MambaLMWrapper(HFLM): | |
def __init__( | |
self, | |
pretrained="state-spaces/mamba-130m", | |
**kwargs, | |
) -> None: | |
""" | |
Mamba (via the `mamba_ssm` package) supports the following args: | |
``` | |
d_model: int, | |
n_layer: int, | |
vocab_size: int, | |
initializer_cfg=None, | |
pad_vocab_size_multiple: int = 1, | |
ssm_cfg=None, | |
norm_epsilon: float = 1e-5, | |
rms_norm: bool = False, | |
initializer_cfg=None, | |
fused_add_norm=False, | |
residual_in_fp32=False, | |
``` | |
See https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py#L175 for more info. | |
The above can all be passed via `--model_args` or to this __init__() directly | |
but we recommend placing many of these within the config.json file uploaded alongside your | |
Mamba model to the HF Hub instead. | |
All other HuggingFace from_pretrained() kwargs | |
such as those related to | |
`parallelize=True`, PEFT, autoGPTQ, | |
or any sub-configurations of these advanced args, | |
are unsupported by the `mamba_ssm` package. | |
The HFLM arguments | |
`backend`, `tokenizer`, `truncation`, `max_length`, | |
`device`, `dtype`, `batch_size`, `max_batch_size`, `trust_remote_code`, `use_fast_tokenizer` | |
Are all supported by Mamba where they do not conflict | |
with Mamba-specific restrictions such as causal LMs only. | |
""" | |
if "backend" in kwargs: | |
# mamba currently only supports causal models | |
assert kwargs["backend"] == "causal" | |
super().__init__( | |
pretrained=pretrained, | |
# set appropriate defaults for tokenizer, max length, etc | |
backend=kwargs.pop("backend", "causal"), | |
tokenizer=kwargs.pop("tokenizer", "EleutherAI/gpt-neox-20b"), | |
max_length=kwargs.pop("max_length", 2048), | |
**kwargs, | |
) | |
def _get_config( | |
self, | |
pretrained: str, | |
**kwargs, | |
) -> None: | |
try: | |
from mamba_ssm.utils.hf import load_config_hf # noqa: F811 | |
except ModuleNotFoundError: | |
raise Exception( | |
"attempted to use 'mamba_ssm' LM type, but package `mamba_ssm` is not installed. \ | |
please install mamba via `pip install lm-eval[mamba]` or `pip install -e .[mamba]`", | |
) | |
self._config = load_config_hf(pretrained) | |
def _create_model( | |
self, | |
pretrained: str, | |
dtype: Optional[Union[str, torch.dtype]] = "float16", | |
# no `parallelize=True` options | |
# no PEFT and quantization options | |
# Mamba does not support arbitrary HF from_pretrained() args | |
**kwargs, | |
) -> None: | |
try: | |
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel # noqa: F811 | |
except ModuleNotFoundError: | |
raise Exception( | |
"attempted to use 'mamba_ssm' LM type, but package `mamba_ssm` is not installed. \ | |
please install mamba via `pip install lm-eval[mamba]` or `pip install -e .[mamba]`", | |
) | |
self._model = MambaLMHeadModel.from_pretrained( | |
pretrained, | |
device=self._device, | |
dtype=torch.float16 | |
if dtype == "auto" | |
else lm_eval.models.utils.get_dtype(dtype), | |
) | |
def _model_generate(self, context, max_length, stop, **generation_kwargs): | |
for key in ("do_sample", "attention_mask"): | |
if key in generation_kwargs: | |
generation_kwargs.pop(key) | |
# mamba's custom GenerationMixin currently does not support | |
# passing stopping criteria. | |
# for the time being, we simply generate to max length, | |
# then truncate (equivalent result) | |
# -- this should be revisited to speed up generation | |
# stopping_criteria = stop_sequences_criteria( | |
# self.tokenizer, stop, 1, context.shape[0] | |
# ) | |
return self.model.generate( | |
input_ids=context, | |
max_length=max_length, | |
# stopping_criteria=stopping_criteria, | |
# pad_token_id=self.tokenizer.pad_token_id, | |
# use_cache=True, | |
**generation_kwargs, | |
) | |