peacock-data-public-datasets-idc-14.backup.output
/
lm-evaluation-harness
/lm_eval
/api
/instance.py
from dataclasses import dataclass, field | |
from typing import Literal, Optional, Tuple | |
OutputType = Literal[ | |
"loglikelihood", "loglikelihood_rolling", "generate_until", "multiple_choice" | |
] | |
class Instance: | |
request_type: OutputType | |
doc: dict | |
arguments: tuple | |
idx: int | |
metadata: Tuple[Optional[str], Optional[int], Optional[int]] = field( | |
default_factory=lambda: (None, None, None) | |
) | |
resps: list = field(default_factory=list) | |
filtered_resps: dict = field(default_factory=dict) | |
# initialized after init | |
task_name: Optional[str] = None | |
doc_id: Optional[int] = None | |
repeats: Optional[int] = None | |
def __post_init__(self) -> None: | |
# unpack metadata field | |
self.task_name, self.doc_id, self.repeats = self.metadata | |
def args(self): | |
""" | |
Returns (string,) where `string` is the string to calculate loglikelihood over | |
""" | |
return ( | |
self.arguments if isinstance(self.arguments, tuple) else (self.arguments,) | |
) | |