peacock-data-public-datasets-idc-14.backup.output
/
lm-evaluation-harness
/scripts
/cost_estimate.py
import random | |
import transformers | |
from lm_eval import evaluator, tasks | |
from lm_eval.api.model import LM | |
class DryrunLM(LM): | |
def __init__(self): | |
self.tokencost = 0 | |
self.tokenizer = transformers.GPT2TokenizerFast.from_pretrained("gpt2") | |
self.tokenizer.pad_token = "<|endoftext|>" | |
def create_from_arg_string(cls, arg_string): | |
return cls() | |
def loglikelihood(self, requests): | |
res = [] | |
for ctx, cont in requests: | |
res.append((-random.random(), False)) | |
self.tokencost += len(self.tokenizer.tokenize(ctx + cont)) | |
return res | |
def generate_until(self, requests): | |
res = [] | |
for ctx, _ in requests: | |
res.append("lol") | |
# assume worst case - generates until 256 | |
self.tokencost += len(self.tokenizer.tokenize(ctx)) + 256 | |
return res | |
def loglikelihood_rolling(self, requests): | |
res = [] | |
for (s,) in requests: | |
# assume worst case: extra full context | |
self.tokencost += len(self.tokenizer.tokenize(s)) + 2048 | |
return res | |
def main(): | |
lm = DryrunLM() | |
task_list = "arc_challenge,arc_easy,boolq,cola,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,record,rte,sciq,sst,triviaqa,webqs,wic,wikitext,winogrande,wnli,wsc" | |
values = [] | |
for taskname in task_list.split(","): | |
lm.tokencost = 0 | |
evaluator.simple_evaluate( | |
lm=lm, | |
task_dict={taskname: tasks.get_task(taskname)()}, | |
num_fewshot=0, | |
limit=None, | |
bootstrap_iters=10, | |
) | |
print(taskname, lm.tokencost) | |
values.append( | |
[ | |
taskname, | |
lm.tokencost, | |
lm.tokencost / 1000 * 0.0008, | |
lm.tokencost / 1000 * 0.0012, | |
lm.tokencost / 1000 * 0.006, | |
lm.tokencost / 1000 * 0.06, | |
] | |
) | |
from pytablewriter import MarkdownTableWriter | |
writer = MarkdownTableWriter() | |
writer.headers = ["Task", "Tokens", "Ada", "Babbage", "Curie", "Davinci"] | |
values.sort(key=lambda x: -x[1]) | |
totcost = sum([x[1] for x in values]) | |
values.append( | |
[ | |
"**Total**", | |
totcost, | |
totcost / 1000 * 0.0008, | |
totcost / 1000 * 0.0012, | |
totcost / 1000 * 0.006, | |
totcost / 1000 * 0.06, | |
] | |
) | |
writer.value_matrix = values | |
print(writer.dumps()) | |
if __name__ == "__main__": | |
main() | |