peacock-data-public-datasets-idc-14.backup.output
/
lm-evaluation-harness
/scripts
/model_comparator.py
import argparse | |
import os | |
from typing import Dict, List, Tuple | |
import numpy as np | |
import pandas as pd | |
import scipy.stats | |
import torch | |
import lm_eval.evaluator | |
import lm_eval.models.utils | |
from lm_eval import tasks, utils | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
eval_logger = utils.eval_logger | |
def memory_stats(): | |
eval_logger.info( | |
f"Memory allocated: {torch.cuda.memory_allocated() / 1024 ** 2}, reserved: {torch.cuda.memory_reserved() // 1024 ** 2}" | |
) | |
def calculate_z_value(res1: Dict, res2: Dict) -> Tuple[float, float]: | |
acc1, acc2 = res1["acc,none"], res2["acc,none"] | |
st_err1, st_err2 = res1["acc_stderr,none"], res2["acc_stderr,none"] | |
Z = (acc1 - acc2) / np.sqrt((st_err1**2) + (st_err2**2)) | |
# Determining the p-value | |
p_value = 2 * scipy.stats.norm.sf(abs(Z)) # two-tailed test | |
return Z, p_value | |
def print_results( | |
data_to_print: List = None, results_dict: Dict = None, alpha: float = None | |
): | |
model1_data = data_to_print[0] | |
model2_data = data_to_print[1] | |
table_data = [] | |
for task in model1_data.keys(): | |
row = { | |
"Task": task, | |
"HF Accuracy": model1_data[task]["acc,none"], | |
"vLLM Accuracy": model2_data[task]["acc,none"], | |
"HF StdErr": model1_data[task]["acc_stderr,none"], | |
"vLLM StdErr": model2_data[task]["acc_stderr,none"], | |
} | |
table_data.append(row) | |
comparison_df = pd.DataFrame(table_data) | |
comparison_df["Z-Score"] = comparison_df["Task"].apply( | |
lambda task: results_dict[task]["z"] | |
) | |
comparison_df["P-Value"] = comparison_df["Task"].apply( | |
lambda task: results_dict[task]["p_value"] | |
) | |
comparison_df[f"p > {alpha}"] = comparison_df["P-Value"].apply( | |
lambda p: "✓" if p > alpha else "×" | |
) | |
return comparison_df | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--pretrained", default="EleutherAI/pythia-70m", help="name of model to compare" | |
) | |
parser.add_argument( | |
"--hf_args", help="huggingface model args <arg>=<value>", default="" | |
) | |
parser.add_argument("--vllm_args", help="vllm model args <arg>=<value>", default="") | |
parser.add_argument("--tasks", type=str, default="arc_easy,hellaswag") | |
parser.add_argument( | |
"--limit", | |
type=float, | |
default=100, | |
) | |
parser.add_argument( | |
"--alpha", | |
type=float, | |
default=0.05, | |
help="Significance level for two-tailed z-test", | |
) | |
parser.add_argument( | |
"--device", | |
type=str, | |
default="cuda", | |
) | |
parser.add_argument( | |
"--batch", | |
type=str, | |
default=8, | |
) | |
parser.add_argument( | |
"--verbosity", | |
type=str, | |
default="INFO", | |
help="Logging verbosity", | |
) | |
return parser.parse_args() | |
if __name__ == "__main__": | |
tasks.initialize_tasks() | |
args = parse_args() | |
tasks = args.tasks.split(",") | |
print(tasks) | |
hf_args, vllm_args = "," + args.hf_args, "," + args.vllm_args | |
results_vllm = lm_eval.evaluator.simple_evaluate( | |
model="vllm", | |
model_args=f"pretrained={args.pretrained}" + vllm_args, | |
tasks=tasks, | |
limit=args.limit, | |
device=args.device, | |
batch_size=args.batch, | |
) | |
memory_stats() | |
lm_eval.models.utils.clear_torch_cache() | |
eval_logger.info("Memory stats cleared") | |
memory_stats() | |
results_hf = lm_eval.evaluator.simple_evaluate( | |
model="hf", | |
model_args=f"pretrained={args.pretrained}" + hf_args, | |
tasks=tasks, | |
limit=args.limit, | |
device=args.device, | |
batch_size=args.batch, | |
) | |
all_res = {} | |
for task1, task2 in zip( | |
results_hf["results"].items(), results_vllm["results"].items() | |
): | |
assert task1[0] == task2[0] | |
z, p_value = calculate_z_value(task1[1], task2[1]) | |
all_res[task1[0]] = {"z": z, "p_value": p_value} | |
df = print_results( | |
[results_hf["results"], results_vllm["results"]], all_res, args.alpha | |
) | |
print(df) | |